Identifying and Overcoming Multi-Die System Verification Challenges

Varun Agrawal Product Manager Synopsys

For the last 50 years the semiconductor industry has been driven by Moore's Law

The number of transistors in a dense IC doubles about every two years

Reaching the End of Economic Viability

The Drive to Multi-Die Systems

Motivation for Multi-Die Systems

Accelerated scaling of system functionality at a cost-effective price (>2X reticle limits)

Reduced risk & time-to-market by re-using proven designs/die

Lower system power while increasing throughput (up to 30%)

Rapid creation of new product variants for flexible portfolio management

Multi-Design System Challenges

Transformation from Monolithic SoC to Multi-Die Systems

From Moore's Law to SysMoore

Evolving Trend

- 2.5D: Interposer-mounted chiplets
- 3D stack(s) regular structures (memory, FPGA, ...)
- Heterogeneous stacks mounted on interposers / bridges
- Recursive composition formulation ... stacks of stacks
 - Ever larger memory and computation
 - Partition system to balance throughput and energy (EDP)
 - Tackle "Memory Wall" Time and energy moving data to/from large off-chip memory
 - New Mantra: Move the computation, not the data \rightarrow then hide the latency

Fundamental challenge = Size, allows building designs (already) extreme large!

Is Multi-Die System Verification Harder?

Still Need to Verify the Functionality of the Overall System

- Mostly impacts physical layer (dies, routing, power dissipation, packaging, ...)

• Increased scale and complexity exacerbates verification

accellera

SYSTEMS INITIATIVE

• Fundamentally alters the incremental refinement design flow

A System-Approach is Required

- Many organizations become possible
- Must be modeled, laid-out & verified in the context of the system
 - Design aspects and optimizations become architectural decisions
 - Tiling and placement, die-to-die communication, power, thermal, ...
 - A lot of work must be done early on: Shift Left
- Need a framework for end-to-end co-exploration and co-optimization of technologies, architectures, and algorithms
 - Architectural exploration to quickly estimate PPA for a range of workloads
- Flow:
 - − Full system spec \rightarrow Design (& verify) individual blocks \rightarrow Assemble system \rightarrow Verify as a whole
 - Modularized approach Akin to board-level verification

Synopsys Platform Architect

From Monolithic To Multi-Die System

System-Level Disaggregation

Multi-Die System Verification Challenges

- System verification must validate assumptions made during architecture design
 - Must consider die-to-die communication: delay, jitter, coherency, power, guaranteed delivery and errors
 - Monolithic SoCs only consider delay
- Design size and complexity exacerbate Verification
 - Need adequate levels of capacity and performance
 - Hybrid models and traffic generators to focus on a few dies at a time
 - Very large memories bottlenecks
 - Scalability of simulation/emulation models
 - Include analog components

SYSTEMS INITIATIVE

- Scalable system integration methodology (system aggregation)
- Knowing when Verification is complete
 - Exhaustive verification of individual dies Complete functional coverage (UVM)
 - Die-level bugs cannot be fixed at the system level
 - System level verification focus on scenarios Explicit coverage model (PSS) plus SW/FW

Functional Verification of Multi-Die Systems

- A Multi-Die system is not one design, it is a combination of independently manufactured designs (dies) interconnected through communication fabric(s)
- Multi-Die system-level verification needs to target
 - Complex functions spanning multiple dies
 - Performance that is a function of multi-die functionality
 - Closer to system validation of multi-chip solutions Verify functional scenarios
- Basic functional test: Assemble and simulate the RTL of all the dies
 - How does one assemble "independent" designs into one simulation environment
 - Compile Issues: How to avoid name clashes
 - Capacity implications: Does compute server have enough memory to build and execute the simulation
 - Can the die-level testbenches be re-used and/or synchronized?
 - Can the simulation be distributed over multiple servers?

Assembling Multi-Die System for Simulation

Single Executable to Simulate System Aggregation

- Analyze each die into a separate library
 - Same names (e.g., module) may be used in multiple dies No name clash
 - Top-level assembly and configuration files
 - No changes to per-die code

SYSTEMS INITIATIVE

The multi-die system's name scope is strictly hierarchical

Single Executable Multi-Die System Simulation with Synopsys VCS Functional Verification Solution

Distributed Simulation of Multi-Die Systems

Addressing Verification Capacity and Scalability

- Separate compilation No clashes
- Concurrent execution
- Client Server architecture (-distsim)
 - Exploits cloud elasticity & scalability
- Communication & synchronization APIs
- accellera

SYSTEMS INITIATIVE

- Asynchronous distributed execution
 - Kept in lock step with infrequent synch-points
 - Die-to-die communication uses SerDes
 - Breaks Von Nuemann bottleneck

• Multiple testbench modes

Software Development & System Validation

Hybrid Solutions, Approximate Models, and Traffic Generators

Die-to-Die Communication Verification

- Need to consider delay, jitter, coherency, power, guaranteed delivery and errors
 - Generally, very difficult: Depends technologies (bumps, TSV, wires) plus system routing
- Standard die-to-die interfaces can help

SYSTEMS INITIATIVE

- AIB, BoW, OHBI, UCIe, XSR supporting a variety of use cases and speeds of 6-32 Gbps/pin

• Pick the right protocol (use-case) & verify with VIP using Synopsys VCS or ZeBu

Summary of 5 Main D2D Standards Substrate

Organic

Interpose

\$\$\$

Key Figures of Merit: Technical (Bandwidth, Power, Latency) & Cost

Why is UCIe a Preferred D2D Interface?

Technical Merits, Comprehensive Spec & Broad Eco-System

- Technical Merits (Most compelling PPAs)
 - Energy efficiency <0.3pJ/Bit
 - Edge efficiency >5Tbps/mm
 - Latency ~2ns from FDI to FDI
- Comprehensive & Futureproof
 - All use cases
 - All package types
 - Chip to Chip use case with retimer
 - Complete protocol stack
 - Future proof with support up to 32Gbps data rate per pin
- Broad Ecosystem
 - Wide range of promoters & contributors spanning all industry

segments

Universal Chiplet Interconnect Express
Google Cloud intel. Microsoft
NUDIA. Qualconm SAMSUNG Achronix ADVANTEST. 故羅解 AkroStar without and the second and the se
このでは、 このでは、 Stillion to Software このでは、 このでは、 <p< th=""></p<>
> 110 members (June 2023)

UCIe Built to Enable Common and New Use Models

UCIe Retimer Enables Extension of Reach Beyond Rack (with Optical IO)

Server or AI Scaling (Homogeneous) (NoC-to-NoC with low latency & coherency)

UCle Streaming

- CXS or AXI bridge
- User Defined / Proprietary

Heterogeneous Computing (Accelerator) (Interoperability with low latency & coherency)

UCIe CXL or PCIe

- For interoperability **UCle Streaming**
- CXS or AXI bridge

IO or Memory Split

(Interoperability with low latency)

Resource Aggregation (Pooling) w/Retimer (Rack-to-Rack with low latency)

UCIe CXL or PCIe6

- Coherency for Memory **UCle Streaming**
- AXI bridge for Ethernet •

UCIe CXL or PCIe6 For Aggregation **UCle Streaming** For CPO / Eth.

Broad Protocol Solution Across Verification Use Cases

PCIe 6.0, CXL 3.0, USB 4, HBM3, UCIe, ...

Industry-first protocol solutions leverage Synopsys IP

Protocol Validation using Physical and Virtual testers

Synopsys VIP for UCIe

Architecture and Key Features

Verification IP Features

- Native SV/UVM Architecture
- Specification Version UCle v1.0, v1.1
- Interfaces: FDI/RDI/Logical PHY link
- Supports all topologies for various DUT types
- Operation Modes Active, Passive
- Streaming testbench interfaces for easy traffic generation
- RDI Shim layer at D2D adapter for early test development
- APIs for traffic generation and sideband service requests
- Protocol checks and functional coverage at each layer
- Exceptions, Callback and Analysis ports for Scoreboard
- Configurable interpacket delays for mainband and sideband packets
- Reference example illustrating API usage and representative protocol scenarios

Close Collaboration with UCIe Consortium, Industry leading Synopsys IP and Key market leaders

0000

- Supports 11+ Verification Topologies for various Design types
- Supported Use-cases
 - D2D / PHY / Protocol Layer DUT
 - D2D-PHY Interoperability
 - Protocol-layer-D2D-Controller
 Interoperability
 - UCIe Subsystem
 - UCIe Full Stack
- Support hooks for Software Discovery and Device Enumeration
- APIs for Configuration Space Testing
- Single and Multi-node Setups
- Developed alongside Synopsys IPs and with leading customers

Synopsys SoC Verification Kit (SVK)

Accelerating SoC Verification with Synopsys IP, VIP and VCS

- Challenges
 - Expertise for UVM-based, scalable testbenches
 - Verification resource limitations
- Key Benefits
 - Out-of-the-box verification solution for complex protocols, tailor made for specific IP configuration
 - Accelerates the SoC testbench development for design and verification engineers
 - Enables rapid integration and testing of Synopsys IPs in Subsystem/SoC environment
 - Mitigates integration risk by providing industry-proven verification methodology by protocol experts

Multi-Die System Power Intent Verification

- UPF allows to overlay power intent over functional intent
- What about a Multi-Die system?
- Power Domain 1
- Power Domain 2
- Power Domain 3
- Isolation
- Retention
- That is not possible pre-manufactured die!
- Power intent is part of the architecture : shift-left
 - Dies implement power intent voltages & signaling ports
 - Power intent disaggregation (top-down \rightarrow bottom-up flow)
- Assemble & connect power ports
 - Static verification (VC LP) can verify such connections
- System-level PST is challenging
 - Per-Die predefined "power modes" (off, standby, ...)

Multi-Die System Power Verification Challenges

SYSTEMS INITIATIVE

Power Domain 1
Power Domain 2
Power Domain 3
Isolation
Retention

- Verification tools will honor UPF targeting dies. No "set die"!
- Logical and physical hierarchies are not the same!

Synopsys Multi-Die System Solutions

A Comprehensive Solution for Heterogeneous Integration

NFERENCE AND EXHIBITION

QUESTIONS?

Thank You