

1

DVCon India 2023

TITLE OF PAPER Fast Convergence Modular Advanced Smart-Hybrid
Testbench (FCMAST) to automate and expedite SoC gate
level simulations closure

AUTHOR 1 Name: Harshal Kothari
Organization: Samsung Semiconductors India Research,
Bangalore
Job Title: Staff Engineer
Email ID: harshal.k1@samsung.com

AUTHOR 2 Name: Eldin Ben Jacob
Organization: Samsung Semiconductors India Research,
Bangalore
Job Title: Staff Engineer
Email ID: eldin.jacob@samsung.com

AUTHOR 3 Name: Chandrachud Murali
Organization: Samsung Semiconductors India Research,
Bangalore
Job Title: Staff Engineer
Email ID: chandru.m@samsung.com

AUTHOR 4 Name: Sriram Kazhiyur Soundarrajan
Organization: Samsung Semiconductors India Research,
Bangalore
Job Title: Associate Director
Email ID: sriram.k.s@samsung.com

AUTHOR 5 Name: Somasunder Kattepura Sreenath
Organization: Samsung Semiconductors India Research,
Bangalore
Job Title: Director
Email ID: soma.ks@samsung.com

ABSTRACT
Gate level simulations (GLS) are an integral part of the ASIC verification cycle to verify the impact of synthesis,

insertion of power elements and placement & routing by running functional datapaths using dynamic simulations.

It is imperative to run timing gate level and power aware simulations with Standard Delay Format (SDF) back-

annotation to validate that the hardware designs function as intended in the best and the worst PVT corner delays

on the post PnR netlists. This however, comes with a trade-off of huge simulation times, especially when run at a

full chip netlist level. With increasing size and complexity of the chip, the total number of tests to be verified and

net run time rise exponentially. With time to market and adherence to schedule being critical parameters for the

success of a product, the need to strategize optimal selection of tests to be run without compromise on quality

while simultaneously obtaining quicker results without doing multiple iterations is of paramount importance. Fast

Convergence Modular Advanced Smart-Hybrid Testbench (FCMAST) addresses these vulnerabilities with its

robust and flexible architecture. The testbench environment is self-aware and capable of auditing the logs, failures

and test plan status, reporting all issues, timing violations and intelligently identifying erroneous environment

which will need reruns at later stages. This paper highlights how FCMAST, a holistic approach to expedite gate

mailto:harshal.k1@samsung.com
mailto:eldin.jacob@samsung.com
mailto:chandru.m@samsung.com
mailto:sriram.k.s@samsung.com
mailto:soma.ks@samsung.com

2

level simulation, resulted in achieving 100% pass rate closure well ahead of metal tapeout. Audit and automations

results in early capture of environment issues even ahead of a simulation being run. Smart modular hybrid

testbench setup can be reused across all flavours of simulations - unit delay GLS, timing GLS, unit delay power

aware GLS and timing power aware GLS across projects. Furthermore, with Dynamic Save and Restore (DSNR),

Capture and Replay (CNR) and LSF optimizations integrated across simulation flavours, FCMAST which is

deployed on AR/VR SoC and HPC 3DIC SoC delivered up to 65% savings on simulation time and 35% less

resources without compromising on quality.

Keywords: Verfication, gate, netlist, testbench, simulation, performance, automation.

INTRODUCTION

Figure 1. FCMAST Implementation Strategy

FCMAST employs a few techniques which are a mix of traditional and innovative and novel processes to expedite

and automate the GLS cycle (Figure 1). The traditional techniques are common testbench for different flavours

of DUTs resulting in environment variable based version control for RTL/PRENET/POSTNET/PGNET/SDF, on

the fly hybrid elaboration and simulation and timing violation parser. GLS audit of elaboration and simulation

logs, test plan status audit, label on label timing violation mapper employ a mix of traditional and novel methods.

The innovative and novel methods involve improving simulation time by optimizing environment on which the

simulation is run and accelerating the tool and compute along with scaling up the methodologies and deploying

them across simulation flavours. All these methodologies work in tandem under the FCMAST hood.

FCMAST Traditional Techniques

Figure 2. Traditional FCMAST testbench architecture

3

Common TB: To develop the common testbench for different flavoured DUTs, the testbench is architected on

UVM that provides high standardization with respect to skeleton architecture, file/directory structure, naming

rule, Verification IP (VIP) configuration, register model and general access sequences. The environment (Figure

2) is scalable to any IP/Sub-system/SoC that bolsters the reusability aspect or different flavours of DUTs

(RTL/PRENET/POSTNET/PGNET). An internal tool utility dumps out this skeleton testbench based on excel

input containing top level DUT spec.

Figure 3. IP wise on the fly Hybrid Verification Environment

Hybrid DUT: Traditionally, by replacing non-targeted block netlist with black-box or RTL and employing fast

boot using forces, time saving of around 6-10% can be achieved by bringing down the gate count. Apart from the

simulation time, the hybrid verification method (Figure 3) helps in saving precious engineer’s time due to the

reduced volume of errors originating from a block/IP which is not the point of interest. PERL macro based

configuration offers the flexibility to pick simulator options [1], switches, the model type (RTL/Netlist/Fake) and

the DUT version of each block on the fly for elaboration/simulation. The combinations of configuration results in

creation of a unique Design Environment (DE) and Verification Environment (VE). The environment also

supports the combinational usage of DE/VEs resulting in faster simulation of cross functional datapaths. Using a

hybrid DUT for simulation helps save tremendous amount of run time when a functional datapath does not traverse

all the blocks. For example, when running a camera stream datapath to DRAM, only the blocks containing CPU,

DPHY, Camera Serial Interface, system network fabric and memory controller are needed as netlists. Remaining

blocks can either be stubbed out by fake blackbox driving a known output or RTL. Similarly, for 3DIC, if top die

is running DMA transfers to local SRAM, bottom die is stubbed out to save half the total gate count. The multi-

step incremental elaboration and simulation flow eliminates recompile of DUT due to VE changes.

Figure 4. Final output of timing violation parser utility

Violation Parser: Timing GLS simulation aids in identifying all hold/setup/recovery/removal violations of the

DUT. The violation parser utility comprises of a set of Python scripts with artificial intelligence to map the

violation type and reports the timing violation analysis using machine learning with in depth details about the

block, violation type, scope, violation time in the run at the end of the simulation automatically (Figure 4). It can

also be run on multiple simulations or regression in parallel.

4

FCMAST Mix of Traditional and Automation Techniques

ENV Audit: While running simulations with a highly hybrid yet complex environment to get faster turnaround,

the probability of an oversight occurring increases. GLS environment configuration requires an in depth

understanding of functional path spanning across blocks failing which may result in a fake pass, where a block of

concern or importance might be run as non-netlist. SDF files, accurate timing checks off files for asynchronous

flops/false path/multicycle path and incorrect file version control also impact the result of simulation and

warranting reruns. With the Python based environment audit script (Figure 5), such mistakes which results in vast

simulation rerun times can be caught even before starting the simulation, ensuring first time correctness of GLS

environment and runs as per design requirement. This project agnostic utility checks for annotation percentage as

well as ascertains the genuineness of passing test in the most optimum conditions. This audit utility brings down

the number of iterations before stable environment convergence from 4 or 5 to 1 (Table 1).

Figure 5. GLS environment audit script output

Plan Audit: In order to save time on GLS runs, it is prudent to have a historical data of the test progress and

reference to narrow down on the failures. This utility audits the verification plan status based on the inputs from

the engineers and checks for errors in the logs, existence of test database for a particular release version/flavour

as required. When SoC is nearing tapeout, it might get difficult to procure a regression manager license as

thousands of RTL and netlist simulations would be running in parallel. In such scenario, it can mimic that

functionality without needing an additional costly license. The utility is capable of saving at least 1.5 – 2 man

months with audit ensuring correctness of the databases across different flavour of DUT over different releases

(Figure 7).

Figure 6. Sample input test plan status xls

Figure 7. Audit output based on DUT type and release label

Violation Mapper: Simulation free of timing violations is key to successful silicon results. Debugging the

violation on GLS is very time consuming and has a direct impact on valuable engineer’s time. This calls for an

efficient and methodical approach to map the violations over different DUT versions, grouping similar violations

5

across blocks to avoid duplicate efforts from engineers working on the SoC and to dynamically track the resolution

of the violation in subsequent release and in the JIRA or bug tracker system. The Violation Mapper script (Figure

8) with artificial intelligence built-in, reduced not just the turn-around time for the resolution of the issues but also

improved the efficiency of the team by avoiding duplicate/rework resulting in a saving of at least 10 – 15 months

for bigger SoCs with efficient tracking of all the violations.

Figure 8. Utility output

With a mix of traditional and audit automation techniques combined with erstwhile pure traditional techniques,

around 4x-5x performance improvement is observed for a GLS suite of around 120 tests (Table 1).

Table 1. Initial v/s improved GLS metrics

FCMAST Fast Convergence Innovation Techniques

 Custom Simulation Strategies (CSS)

The simulations for the current DUT takes approximately 60 hours to complete a basic SoC boot with full chip

netlist which can go up to 200+ hours for timing PG net simulations. The internal methods via CSS to curtail these

simulation times include the design and sequence based changes that regulates the load on the simulator. FCMAST

employs Skip Initialization Analysis to retain the intent of simulation by eliminating irrelevant

clock/firewall/controller/DRAM initialisations. Upon further analysis, a matrix was developed for skipping power

up based on block/IP function resulting in further saving of simulation time. X propagation originating from non-

resettable flops which was optimized at zero time with library cell hack deposits instead of tcl initialisation.

Additionally, with CSS deployed across the project, savings on disk space became notably visible with reduction

in build/simulation sizes. The CSS techniques resulted in saving close to 8000 man-hours (Table 2) over the course

of the project.

Block
Total

Tests

No. of

netlist

labels

Avg

Iterations

for first

pass

Avg run

time (hrs)

Total

runtime

(hrs)

Avg

Iterations

for first

pass

Avg run

time (hrs)

Improved

Total

runtime

(hrs)

Net

Improvement

(X times)

A 19 8 4 85 51680 1 78 11856 4.4

B 12 8 4 76 29184 1 68 6528 4.5

C 4 8 2 94 6016 1 84 2688 2.2

D 3 7 3 63 3969 1 57 1197 3.3

E 2 8 2 67 2144 1 55 880 2.4

F 14 8 4 78 34944 1 69 7728 4.5

G 8 8 3 163 31296 1 145 9280 3.4

H 22 8 4 102 71808 1 97 17072 4.2

I 13 6 3 73 17082 1 62 4836 3.5

J 17 8 4 68 36992 1 60 8160 4.5

K 6 8 5 152 36480 1 129 6192 5.9

L 10 8 3 79 18960 1 74 5920 3.2

Improved Metrics via Traditional+Audit techniquesInitial Metrics

6

Table 2. FCMAST improvement metrics via CSS

 Simulation Performance Optimization Wrapper (SPOW)

SPOW deploys combination of simulation tool methods and Load Sharing Facility (LSF) optimisations to deliver

upto 5x simulation improvements (Table 5).

Capture and Replay (CNR): CNR is a mechanism by which the simulation result is captured first and

run/replayed on a different version of the same design without the need to run the test. In FCMAST architecture

this flow is deployed to capture stimulus from RTL to replay at GLS for the first time. It additionally optimises

runs for the targeted block and aids VCD generation for power estimation and IR drop analysis.

Figure 9. Capture and replay from RTL to GLS

Incremental Checkpoint Utility - Save and Restore (ICU - SNR): SNR is a method in which the common

sequences of a SoC level test can be saved and any other test can be restored from the end of previous simulation

snapshot. FCMAST additionally enhances the simulation time savings with extending the save timeframe to IP

specific sequences with ICU. Every IP has its own set of initialization sequences that are required to be executed

after the common sequences. Adding it as a part of the SoC common sequences will be counterproductive. ICU

enables the creation of checkpoints at the end of the IP specific initialization sequences by leveraging the SoC

snapshot (Figure 10).

Figure 10. Before and after incremental snapshot implementation

Table 3. Runs with and without ICU

Scenario Compile Boot test Mem test CPU test Power test Disp test PCIE test

Traditional 23hrs 38hrs 71hrs 60hrs 62hrs 66hrs 72hrs

Skip Init runs 23hrs 28hrs 45hrs 42hrs 38hrs 40hrs 55hrs

Skip Power up runs 23hrs 24hrs 38hrs 36hrs 34hrs 46hrs 53hrs

GLS + RTL runs 13hrs 24hrs 38hrs 36hrs 34hrs 46hrs 53hrs

GLS + FAKE runs 12hrs 20hrs 29hrs 30hrs 26hrs 32hrs 38hrs

Improvement 1.9x 1.9x 2.4x 2x 2.3x 2x 2.2x

Criteria

Memory

overhead

(For 1 IP)

Avg Run

time

 (For 1 IP)

Without ICU 0 86.1hrs

With ICU 31GB 28.4hrs

Improvement - 3.02x

7

Automatic Periodic Checkpoint Generation (APCG): APCG plugin periodically saves the simulation snapshot

of the run based on simulation time or wall clock time. The plugin has flexibility to program the number of

snapshots to be saved to get rid of redundant snapshots. The periodic checkpoint generation (Figure 11) setting is

based on the analysis of simulation kill, user mistakes, failure stop & rerun scenarios and regression run times. In

Figure 11, the periodic checkpoint generation is represented by picking the number of snapshots that are stored at

any time to be 3. Here, the parallel running tcl script spawns 3 individual breakpoints and each breakpoint

maintains its own checkpoint. Another add-on to APCG plugin ensures that restarted simulations and their status

are accurately represented in the HTML regression dashboards. This custom script ensures that the correct test

command is replaced by the older test command so that when the abruptly ended run is restarted, it will

appropriately modify the regression dashboard to reflect the correct number of tests and their run status.

Figure 11. Automatic Periodic Checkpoint Generator flow

Table 4. Normal v/s runs with APCG

Profiling & Directed Access: Simulation profiling and further analysis of the weight each component had

resulted in modifying the testbench and RTL coding styles for optimal performance. The profiling activity resulted

in tweaking the simulator with appropriate switches that are custom suited for the database resulting in up to 20%

simulation speed improvements [2]. The simulation tool debug permission across the full compiled database was

tweaked due to the confidence resulting from other FCMAST checks. Optimisation at signals level were carried

with AI and ML scripts that restricts the debug access to signals that explicitly require permissions. Experiments,

including dedicated machine runs, were carried out to understand, analyse and optimise the machine (LSF) on

which the simulation is executed.

Table 5. FCMAST improvement metrics for external methods via SPOW

Criteria for 1 IP
Memory

overhead

No. of

abruptly

killed

runs

Time spent

on rerun of

abruptly

killed runs

Without APCG 0 5 157h

With APCG 90GB 7 84h

Improvement (%) - - 46

Scenario Boot test Mem test CPU test Power test Disp test PCIE test

Access +RWC 50hrs 75hrs 69hrs 72hrs 73hrs 85hrs

Access +R 38hrs 71hrs 60hrs 62hrs 66hrs 72hrs

Afile 32hrs 65hrs 56hrs 57hrs 60hrs 65hrs

Dedicated 31hrs 63hrs 52hrs 54hrs 54hrs 63hrs

Improvement 1.4x 1.2x 1.3x 1.4x 1.4x 1.3x

With SNR 31hrs 29hrs 33hrs 25hrs 28hrs 40hrs

Improvement 1x 2.2x 1.7x 2.1x 2.1x 1.7x

w/o ICU & APCG

Avg time for 100 tests
31hrs 156hrs 120hrs 98hrs 186hrs 264hrs

w/ ICU & APCG

Avg time for 100 tests
31hrs 45hrs 43hrs 30hrs 49hrs 60hrs

Improvement 1x 3.4x 2.8x 3.2x 3.8x 4.4x

8

RESULT
FCMAST’s modularity and ease to deploy across projects and different abstraction of the testbench resulted in

huge savings in terms of manual effort the engineer spends, simulation run times and performance enhancement

in the range of 6x-10x (Table 6). FCMAST has been implemented in 2 recent SoC DV projects for AR/VR and

HPC 3DIC applications and it has provided consistent improvement in GLS execution.

Table 6. Improvement metrics with FCMAST per IP test

The methodology guarantees first run correctness and fast convergence to meet stringent timelines with its

automated plug-ins. FCMAST has proven to save both precious man months and the costlier licensing, storage

and infrastructure costs (Table 7). Future scope with integration of emulation into FCMAST and leveraging AI

and ML tools for wavemining and automated debugs have already been evaluated and are under development

stage. EDA tool vendors are also evolving their solutions based on the feedback and reports to further ameliorate

the simulation performance.

Table 7. Consolidated initial v/s final FCMAST GLS metrics

REFERENCES
[1] Harshal Kothari, Vinay Swargam, Sriram Kazhiyur Soundarrajan, Somasunder Kattepura Sreenath, “A Novel

Approach to Expedite Verification Cycle using an Adaptive and Performance Optimized Simulator

Independent Verification Platform Development”, DVCON Europe 2022.

[2] Harshal Kothari, Eldin Ben Jacob, Sriram Kazhiyur Sounderrajan, Somasunder Kattepura Sreenath,

“Centralized Regression Optimization Toolkit (CROT) for expediting Regression Closure with vManager &

Xcelium Performance Optimization”, CadenceLive India 2021.

Scenario Boot test Memory tests CPU tests Power tests Display tests PCIE tests

Initial avg 50hrs 156hrs 120hrs 98hrs 186hrs 264hrs

FCMAST Optimized avg 18hrs 26hrs 25hrs 24hrs 28hrs 29hrs

Improvement 2.7x 6x 4.8x 4.1x 7x 9.1x

Block Total Tests
No. of netlist

labels

Avg Iterations

for first pass

Avg run

time (hrs)

Total runtime

(hrs)

Avg

Iterations

for first

pass

Avg run time

(hrs)

Improved Total

runtime (hrs)

Net Improvement

(X times)

A 19 8 4 85 51680 1 48 7296 7.1

B 12 8 4 76 29184 1 33 3168 9.2

C 4 8 2 94 6016 1 42 1344 4.5

D 3 7 3 63 3969 1 35 735 5.4

E 2 8 2 67 2144 1 31 496 4.3

F 14 8 4 78 34944 1 38 4256 8.2

G 8 8 3 163 31296 1 101 6464 4.8

H 22 8 4 102 71808 1 44 7744 9.3

I 13 6 3 73 17082 1 24 1872 9.1

J 17 8 4 68 36992 1 28 3808 9.7

K 6 8 5 152 36480 1 86 4128 8.8

L 10 8 3 79 18960 1 31 2480 7.6

FCMAST Improved MetricsInitial Metrics

