

1

An Efficient Verification Methodology to

Achieve DV Sign-off with Emphasis on

Quality and Quicker DV Cycle

Piyush Agnihotri (piyush.a@samsung.com), Nirmal Kumar (nirmal.k@samsung.com), Arnab Ghosh

(arnab.ghosh@samsung.com), Parag S Lonkar (parag.lonkar@samsung.com)

 Samsung Semiconductor India Research (SSIR), Bengaluru, India.

Abstract – The semiconductor industry has seen tremendous growth in past few decades but in recent times

requirements like higher computation, high bandwidth and quick time to market have put each domain under

tremendous pressure to be more efficient while maintaining strict focus on quality. In this aspect the task of both design

and verification engineers becomes very critical as onus of time to market as well as quality lies very much with them.

This paper deals with this situation from the perspective of a verification engineer and suggests the process to optimize

the entire DV signoff using some methodology enhancements and scripting.

I. BACKGROUND & INTRODUCTION

 The design verification flow starts with Test-bench (TB) bring up along with RTL integration, followed by

various phases of verification like introducing checkers, test sequences, debug, regression, reporting and finally

signing off with aligned metrics which is coverage. Each phase has its own significance and challenges but is

equally very critical when it comes to confidence on IP quality. One important phase which is usually missed or

lesser valued is Quality Checks post DV completion. In the subsequent sections we have tried to touch upon most

of the above phases along with QA (Quality Audit) metrics while adding focus on automation and scripting.

II. RELATED WORK & APPLICATION

 In this paper, a quick and efficient verification flow is proposed for attaining DV closure in smaller time as

compared to standard flow. The flow starts with the automated generation of required TB files starting from RTL-

TB Top integration using interface signals, creating generic checkers, coverage, external VIP connections and

basic sequence files using a ‘Python’ script.

 The next challenging phase is debugging the failures, where it becomes even more difficult for long running

simulations. While debugging failures where RTL or TB updates needed, the updated results can be achieved

faster using S-R technique as it can save the snapshot till desired timestamp. To reduce the efforts in coverage

closure, we propose a combination of ranked VSIF (Verification Session Input File) and a Perl script which is

capable of producing directed test-cases based on the information of coverage holes.

 At the last phase, we perform Test-bench Quality Analysis using a Perl script having various checks, which

ensures whether the test-bench is created with proper coding guidelines and standards, disk space optimisation

and required DV metrics are met without any compromise.

2

A. DV Phase 1: Integration Phase

Automated TB file generation:

 The automated TB file generation is achieved using a python script, which takes the top RTL module name and

RTL file as inputs and it provides RTL and TB top integration, configuration parameters based on input signals

of DUT, coverage bins, X/Z checkers, clock monitor checks, clock management unit, interface connections with

external VIP interfaces.

Figure 1. Files generated from automation script

 The script takes a xls sheet (shown in Fig-2) as input which has the following details like RTL path, top module

name, options to choose whether the user wants to generate files such as DUT instantiation with interface signal

connections, interface file, config file, coverage file, xz checkers, clock monitors, clock management unit files.

The other input to the script is the RTL top file (shown in Fig-3). In Figure .2, the user has selected option “Yes”

for interface, x_z_checkers, config file, clock monitor files. So the script will generate the necessary files as per

user request. During the script run, a few intermediate xls will appear to set the initial values of the interface

signals, creating bins for coverpoints in a covergroup. The user can fill the xls as optional which will be reflected

in the final output.

 Figure 2. Input XLS to script

 Figure 3. Input RTL file

3

a.) RTL and TB integration:

 The script automatically integrates RTL and TB

top using interface signals. It creates configuration

parameters on DUT inputs and coverage bins on DV

engineer inputs. It creates interface connections

between RTL and external VIP interfaces like APB.

 Figure 4. Block diagram of RTL and TB integration

 The snippet of interface output file and DUT instantiation file is shown in Fig 5 and Fig 6 respectively. The

script generated files can be placed in respective folders in user’s workspace as per the need. The integration is

done and the DV engineer can start to focus on sequence and checkers.

 Figure 5. Output Interface File

 Figure 6. Dut instantiation file

b) X/Z checkers: X/Z checkers are automatically generated on output and input signals of major interfaces. The

XZ checker is very helpful in finding the occurrence of any x or z on any of the input or output ports of a module

which are undesirable. The XZ checker module snippet and the error report generated by xz checker module is

shown in Fig-7 and Fig-8 respectively.

Figure 7. XZ checker snippet

Figure 8. Error report by XZ checker

c) Clock monitors: The script integrates DUT clock signals to different clock checkers like phase checkers, duty

cycle checkers. The clock checker helps in checking the period time (high time and low time) of the clock period.

It also provides checks for clock division, as it checks whether the output clock is exactly a divided version of the

input clock by a factor of input value n. (ie : output_clock_frequency = input_clock_frequency/n) . The code

snippet of clock monitor and error report generated by clock monitor is shown in Fig-9 and Fig – 10 respectively.

Figure 9. Clock checker code snippet

4

Figure 10. Error report by clock monitor

B. DV Phase 2: Connection Checks & Failures Debug Phase

1) Input/output Connectivity script:

 In High Speed PHY IPs, there are many interface boundaries like Analog – Digital boundaries in PMA. The

manual effort to code large number of signals for connectivity check becomes cumbersome. To avoid this, we

make use of a Perl script, which extracts the source and destination signals based on design input and creates a

CSV. The csv file is given as input to sequence to perform I/O connectivity check.

Figure 11. I/O Connectivity check flow

2) Save-Restore (S-R) Technique [EDA Feature]:

We make use of Save-Restore technique, where the common simulation task with identical configuration and

loaded at zero timestamp reducing the simulation time to a great extent when we re-run with updates in RTL or

TB. Regressions time also gets reduced significantly as initialization sequence which takes major time is not

needed to run for all sims once already verified.

Figure 12. Debugging Failures and Rerun Using S-R Technique

Saving the snapshot means saving memory, file pointers etc. When the “process_save” option is added at

elaboration time then “$save” system task is available for use in Verilog code through which the snapshot can

Reg def XML

file
Script Output CSV

file

Connectivity

sequence

5

be saved. User can call $save after the completion of the init phase or wherever required. Below are the snapshot

samples for reference:

Figure 13. Saving the snapshot of init sequence using $save

Once the snapshot is saved after sim finished, the user can restore the snapshot for next simulations using uvm

factory override. Below are the snapshots for reference where the init sequence which was saved as shown

above restored to save the initialization sequence and how the log file for next simulation looks like:

Figure 14. Reloading the snapshot of init sequence (Linkup of UniPro IP)

As you can see the log file snap, the sim got started from the previous saved snapshot (time_stamp =

9408760ns). This utility is found very useful while debugging and where the user needs to see the results fast

after changing something tb other than saved snapshot phase.

C. DV Phase 3: Coverage Closure Phase

Smart and Fast Coverage Closure using Ranked Vsif & Scripting:

 The Automated TB generation script (discussed above in phase1) provides us coverage file as per data provided

by in XLS sheet filled by DV engineer. The Script created by us helps in generating the directed test vectors to

cover the un-hit bins after fetching information from coverage database about the coverage holes. The

Combination of scripting and ranked vsif helps in faster coverage closure.

Figure 15. Smart Coverage Closure Flow

6

 The main function of the coverage hole script agent is to obtain the latest coverage database, extract the

information of un-hit bins and create directed test suite to hit the remaining bins with single run. The coverage

ranking script ranks the regression runs based on the coverage contribution and creates a test suite to target the

obtained coverage. This comes very handy during not so uncommon cases of multiple RTL releases, where

verification team has to iteratively rush for quick coverage closures

Figure 16. Input file generated by Coverage Holes Script (Ref: UniPro) Figure 17. Example code of Power Mode Change (PMC)

D. DV Phase 4: Final Signoff & QA Phase

Test-bench Quality Analysis:

 Once all the above mentioned DV phase are done and required signoff criterion is achieved, here we have

introduced a next phase which does Quality Assurance on all DV deliverables and signoff metrics. This is

achieved using a set of scripts which analyse and ensures the metrics listed below are thoroughly checked: RTL

and Test-bench are latest ones based on label, register definitions files are latest, sanity test environment is

clean, all reported issues are attended/closed, regressions are clean, functional and code coverage are 100%, tool

versions are as per expectations, any force statements are used in TB, unconnected ports at different RTL

interfaces, optimization of disk space by listing the workspace details using space more than threshold for all

users.

Figure 18. Test-bench Quality Analysis Flow

7

 The script takes a xls sheet (shown in Fig. 19) as input which has the following details like IP name, RTL and

Test bench latest label, Register definition files (if any), JIRA details, sanity test case command, Functional and

Code coverage numbers, regression status. The script will initially sync the test bench with the latest label

mentioned in input xls to ensure that all RTL and Tb files are updated. The script performs parallel tasks like

coverage number check (which has to be 100%), sanity test run, regression status check (all tests should pass),

JIRA details check (all JIRA has to be closed), usage of force statements check. Apart from this it performs Disk

space optimisation where the script calculates the space occupied by different user in that particular project. Based

on the threshold size, the script will decide whether a particular workspace has to be deleted or not in order to

pass the Quality Analysis test. All the above checks are printed in separate text files and the overall analysis report

is represented in the form of a HTML report (shown in Fig .20). The HTML report will have the hyperlink to all

the result text files. The user can click on each link to view the result of each metric. The Disk space optimisation

result is shown in Fig-21.

Figure 19. Input xls sheet to Quality Analysis script

Figure 20. Quality Analysis HTML report

Figure 21. Disk space optimization result

8

III. RESULTS & CONCLUSION

 With the help of Automated TB generation script, we were able to reduce the TB files creation time to a large

extent. Here are some of the results based on number of DUT ports.

TABLE I

RESULTS OF BRING UP PHASE

DUT Ports Count Time Taken (Manual Coding) Time Taken (Automation script + DV

engineer inputs)

50 1 day to 2 days Less than 30 mins

200 2 days to 4 days Less than an hour

Below results are shown for different test vector’s suites debug-fix time for a high speed PHY IP.

TABLE II

RESULTS OF DEBUGGING PHASE

Test Vectors Scenarios Without Save-Restore With Save - Restore

Bring-up Related Failure 60 – 80 mins 60 – 80 mins

Basic Data-path Failure 6 hrs – 12 hrs 3 hrs – 6 hrs

Hibern8/Line Reset/POR failures 1 day – 3 days 12 hrs – 1.5 days

Below results are shown for time taken to achieve coverage closure from initial bring up phase for UniPro

2.0 LINK IP.

TABLE III

RESULTS OF COVERAGE CLOSURE PHASE

Milestone Without Ranked vsif and scripting
approach

With Ranked vsif and scripting
approach

Final Coverage Closure (100% FC) 7 weeks – 10 weeks 4 weeks – 6 weeks

Conclusion:

The issues like usage of unnecessary force statements in TB files, registers definition mismatch, tool versions

mismatch, RTL or TB database mismatch, unconnected ports at different RTL interfaces, high disk space

usage etc. were detected in QA phase by using QA script.

 This paper summarized the techniques and benefits of using scripting and EDA features during different

phases of DV flow. The repetitive tasks of DV engineers can be reduced to a great extent and they can focus

on other critical analysis and testing. The results also suggest the amount of time saved by the engineer while

ensuring a quality DV closure for any complex IP design.

References:

[1] https://perldoc.perl.org/ , Perl 5.38.0 Documentation

[2] https://docs.python.org/3/library , The Python Standard Library

