
 Automatic Generation of Implementation Layer
for Embedded System using PSS and SystemRDL

SUDHIR BISHT
R & D ENGINEER

AGNISYS

© Accellera Systems Initiative

About us
Pioneer in providing design & verification
solutions for hardware/software interface

Founded in 2007 in Boston, MA
Privately held, US owned
business.
Profitable since founded!

 Trusted by 40+ customers
 1000+ users worldwide
Over 80% Customer retention
rate

Worldwide offices
o 50+ Engineers Worldwide

o 24x7 Worldwide support
o Sales Offices - USA, Europe,

Japan, S Korea, China, Taiwan &
India

o R&D centers in USA and India

Agnisys Maximizes Productivity & Eliminates Errors

• Automatic Generation of SoC HSI:
○ Synthesizable RTL
○ UVM Register Abstraction Layer (RAL)
○ Software models
○ Documentation

• Single Golden Specification across Teams

• Correct-by-Construction Output for Teams

Peace of Mind: No Errors introduced in HSI portion of SoC

The State of Verification in 2023

4

• Most development time spent in verification

• However, respins per project still increasing

• Greatest verification challenge (by far)…
 creating sufficient tests

Source: Wilson Research Group 2022, courtesy Siemens
EDA

SystemRDL & Agnisys Innovations

Varian
ts

Pre-proce
ssor

enum

Multi - dim
array

More SW
access

struct
union

Limited
special

registers
Memory

component and
much more

UVM
Verification
constructs

Building
blocks

constraint
coverage
hdl_path

Special
Registers

A wide range of special registers are
only supported by AGNISYS

Variants

• Agnisys Enhancements
• Special features for use by customersAGNISYS

• Constructs given by Accellera
SystemRDL 2.0 committee.
• Has many constructs so that user can
create whole spec in less time.

SystemRDL
2.0

•Some of the old construct that are already
been used in the industry.

• Includes preprocessor, components,
limited special registers.

SystemRDL
1.0

CPU(s)

HW/SW Interface of a Typical SoC

6

A
PB

 S
la

ve Sensors

A
PB

 S
la

ve Sensors

CPU(s)
Sub-sys

tem

AXI /AHB Interconnect Fabric

A
PB

B

ri
d

ge

A
PB

 b
u

s

Pr
o

gr
am

m
ab

le

IP

Pr
o

gr
am

m
ab

le

IP

Pr
o

gr
am

m
ab

le

IP

Pr
o

gr
am

m
ab

le

IP

Pr
o

gr
am

m
ab

le

IP

C/C++
Program

Assembly
Slave w/
Memory

Memory

Interrupts
Programable
Registers

Full SoC now requires
HW/SW Interfacing
(HSI) Complex VIPs
and SW/HW Test
content

Register/Memory
Specification

Custom Sequence
Specification

Library of
Standard IP

Blocks

Chip Hookup
Specification

RTL Design Code

UVM Testbench
Models

UVM Sequences

C/C++ Driver
Code

User
Documentation

Sources
Generated Outputs Beneficiaries

RTL Designers

Verification
Engineers

Embedded
Programmers

Technical
Writers

Lab Bring-Up
Team

Typical SoC Development

Challenges Development Teams Face with Sequences

•Sequence is not clear or
well documented

•A sequence works on
one platform and not on
other

•No way to create the
same debug environment
on multiple platforms

Has this ever
happened to you?

•In-exact definition
•Inconsistent
interpretation

•Incorrect implementation

Inconsistent definition
of Sequences

•Industry Standards –
IP-XACT, SystemRDL,
RALF

•Custom formats – CSV,
Excel, XML

•IDesignSpec formats –
IDS-NG, IDSWord,
IDSExcel

Sequences contain
Register data that can

be in any format:

•Architects/designers plan
them

•Design engineers
encode Verilog
functionality

•Verification engineers
write them in UVM or
PSS

Sequences are
everywhere

• Describe the programming and test sequences of a device
and automatically generate sequences ready to use from an
early design and verification stage to post silicon validation

• Centralize creation of sequences from a single specification
and generate various output formats for multiple SoC teams
– SV/UVM, PSS, C, CSV or Matlab
– PDF or HTML

• Specify portable sequences for multiple IPs at a higher level
in-sync with the register specification

• Use register descriptions in standard formats such as
IP-XACT, SystemRDL, RALF or leverage IDesignSpec™
integrated flow to use the register data

• Sequence constructs include loops, if-else, wait, arguments,
constant, in-line functions

An Ideal Solution

Register Implementation in Hardware Design

• Characterized by a large number of control and
status registers.

• Registers are important for making the chip/IP
configurable.

• A configurable chip/IP is more versatile, and
generates larger ROI.

• Supported Register Buses :

SystemRDL (System Register Description Language)
• accellera – Standardized by the SystemRDL Working Group.

https://www.accellera.org/activities/working-groups/systemrdl/

• “Excerpt from “Introduction”
 The SystemRDL language was designed specifically for describing and implementing registers and memory.
 SystemRDL allows developers to automatically generate and synchronize register specifications in hardware design,
software development, verification, and documentation.

The purpose behind language standardization is to significantly shorten the development cycle for hardware designers,
hardware verification engineers, software developers, and document developers.

intended to be applied for the following purposes
— RTL generation & Validation
— Document
— Pass information to other tools such as debuggers
— Software development (Register info.)

https://www.accellera.org/activities/working-groups/systemrdl/

The Accellera Portable Stimulus Standard
Accellera’s PSS committee was formed to drive a
common standard for modeling stimulus that could be
ported between simulation, emulation and fabricated
silicon.

This stimulus methodology could drive block level
simulation as well as embedded software tests for SoC
designs.

For more detail of PSS, please visit Accellera PSWG
page.

PSS
The Portable test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration. With this
standard, users can specify a set of behaviours, from which multiple implementations may be derived.

● PSS has constructs for
○ Modelling Data flow (Buffers, Streams, States)
○ Modeling Behavior (Actions, Activities, Components, Resource, Pooling)
○ Constraints, Randomization, Coverage

● PSS is useful for SoC high-level test scenario creation

A concept of defining Registers and Sequences has been introduced in PSS2.0. Currently, three
accesses are supported i.e., Read-Only, Read-Write, Write-Only.
IDS-Validate helps in generating the PSS register model through various inputs supported by IDS
such as SystemRDL, IP-XACT, IDS-NG, Word, Custom CSV etc

What does a common sequence specification need
• Like pseudo code
• Control flow
• Register read/writes
• Signal or interface read/writes
• Ability to execute arbitrary transactions
• Deal with timing differently

• A millisecond on the board takes a very long time to simulate
• Deal with hierarchy

• Design hierarchy IP/SoC
• Sequence calling other sequences

• Parallelism
• Sub-system or SoC Level
• Multiple interfaces at IP level
• Between Environment and the Device

• Meta information
• Arguments
• Parameters
• Variables
• Enum
• Define
• Macros
• Structures

What does a sequence generation need
• Create a variety of output formats

• Flexibility in how Read/Writes are generated

• Output specific
• UVM : font door/back door / peek/poke
• C/C++ : Consolidated read/write
• Test/Validation : Multiple test sites – for testing multiple chips simultaneously
• Target platform may not support hierarchy, loops, variables

● PSS 2.0 is a new* industry standard created by Accellera
● Agnisys is a working group member & contributed to standardization

Expertise in creating the Realization Layer
● Widest / Most comprehensive Register/Memory

definition
● Pioneer in Sequence/Functions for IP/SoC

Agnisys offers
● Use PSS (or Excel, Python, GUI (NG)) to create Golden

Spec for Sequences
● Generate C functions and UVM Sequences

Key Benefits
● Single Golden Source for Registers and Sequences

reduces Time to Market, improves quality

IDS-Validate (PSS Support)

Possible Outputs From PSS Files: Tests

PSS files
Agnisys
PSS
Compiler

1. Models

3. Tests

2. Run Env

Sequences &
Registers

RTL UVM
RAL

HTML
PDF

Flow Chart
View

 Verification (SV/UVM based) Validation (C/C++ based)

1. Automatic Reg tests
2. UVM based PSS tests

1. Automatic Reg tests
2. C based PSS tests

IP-XACT
SystemRDL
YAML, XML
…

Hierarchical
Register Map

Registers Reg Abstraction Layer Registers Sequences

4. Misc *Makefile, *main.c Custom outputs
 (Velocity Template based)

C/C++
Header

Registers

Additional Automated Outputs Generated
● RAL Model, UVM, UVM sequences with

verification environment
● RTL
● PDF/HTML
● C tests & C sequences with validation

environment
● Headers

PSS Input

Directory Structure SystemRDL Input

UVM Output

C OutputPSS Compiler

Conclusion
The SoC specification defining the registers and memory can be written in SystemRDL format as well as in PSS 2.0
format released by Accellera recently.
Both SystemRDL and PSS powerful compilers have been written to generate various outputs such RTL, UVM, Headers
and documentation. There should be a way to generate custom tests for boards as well as UVM and UVM-C based
environments through a common specification. This provides a solution for firmware engineers to write and debug their
device drivers and application software. Therefore, PSS helps in the solution for SOC/IP teams who aim to cut down the
verification and validation time, through automatic generation of UVM and sequences which enables exhaustive testing of
memories and register maps.
This approach also unifies the creation of portable sequences from a golden specification. Sequences can be captured in
PSS, python, spreadsheet format, or GUI(NG) and Register models has been capture in system RDL and generate
multiple output formats for a variety of domains:

• UVM sequences for verification
• SystemVerilog sequences for validation
• C code for firmware and device driver development
• Specialized formats for automated test equipment (ATE)
• Hooks to the latest Portable Stimulus Standard (PSS)
• Documentation outputs such as HTML and flowchart

