2023

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

UVM Sequence Layering for Register Sequences
Effective Reusability

Muneeb Ulla Shariff, Mirafra Technologies Pvt Ltd, Bangalore, Karnataka, India
(muneebullashariff@mirafra.com)

Sangeetha Sekar, Mirafra Technologies Pvt Ltd, Bangalore, Karnataka, India
(sangeethasekar(@mirafra.com)

Ravi Reddy, Roche Sequencing Solutions, Santa Clara, California, USA
(ravireddy(@roche.com)

Abstract—Universal Verification Methodology (UVM) Sequence Layering enables protocol-independent test
scenario development by adding an intermediary layer between the sequence and sequencer flow. The additional
layer allows higher-level coding, enhances code reusability, and scalability. This paper showcases the application of
UVM Sequence Layering on RAL register sequences, leveraging Cadence VIP, and demonstrates two use cases for
PCle and SPI protocols. The implementation of adapter layer sequence integration required minor RAL model
modifications. With the introduction of the PCle and SPI adapter layer sequences, finer-granularity was achievable
with existing register sequences, resulting in faster verification turnaround time with minimal additional effort.

Keywords—UVM(Universal Verification Methodology); RAL(Register Abstraction Layer); VIP(Verification
Intellectual Property)

1. INTRODUCTION OF UVM SEQUENCE LAYERING

Sequence layering facilitates the development of test scenarios that are protocol independent. The high level
sequence is protocol-independent and the protocol conversion can be done by the intermediate layer along with
additional processing, before passing it to the lower protocol-level sequencer, which pushes them forward to the
driver.

UVM Layering UVM Agent

Sequence Monitor :

Layered i W‘ff .

Figure 1. Concept Diagram for UVM Sequence Layering

DUT
High Level

Sequence

We can apply this concept while working with the RAL model, as depicted in Figure 2. The
protocol-adapter-layer sequence replaces the traditional RAL adapter’s reg2bus() function and converts the
register transactions to the protocol specific sequences, handles complicated processing and then starts the
protocol-specific sequence(s) on the protocol-agent’s sequencer.

mailto:muneebullashariff@mirafra.com
mailto:sangeethasekar@mirafra.com
mailto:ravi.reddy@roche.com

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Register Sequence
reg.read()
reg.write()

Register Model H Register Map J

uvm_reg_item

(" Protocol Adapter
Layer Sequence

Layered
Sequencer

> N\
Cadence Protocol 1
Protocol Adapter Layer Agent Monitor
body() buT
Hardware
_ Y,) Registers
Sequencer Driver
protocol seq_item L J
S/

Figure 2. Protocol Adapter Layering Sequence with the RAL Model

II. IMPLEMENTATION

1. In order to use a protocol adapter layer sequence with the register layer, the integration of the RAL
model has to be changed slightly.

// Class: user env
// User environment class

class user _env extends uvm env;
“uvm component utils(user env)

// layered sequencer

uvm_sequencer #(u'vmfreggitem) régFlayeredfsqr;

// adapter layer sequence
user reg adapter layer seq user reg layer seq;

// Function: build phase
// Used for creating the required components

Creating the

function void build phase(uvm phase phase);
RAL model

// creating the user regmodel =
user_regmodel_h = user_regmodel::type_id::create("user_regmodel’, this);
user_regmodel_h.build();
user_regmodel_h.lock_model();

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

// Protocol adapter layering sequence

reg_layered_sqr = uvm_sequencer #(uvm_reg_item)::type_id::create('reg_layered_sqr”, this);
user_reg_layer_seq = user_reg_adapter_layer_seq::type_id::create(user_reg_layer_seq");
user_reg_layer_seq.layered_sqr = reg_layered_sqr;

endfunction: build phase Creating the adap?er}ayer
sequence and assigning to
/7 the layered sequencer

// Function: connect phase

// Used for making necessary connections .
J e ? 777777777 y 77777777777777777777777777777 Connecting the RAL model

map's sequencer to the
layered sequencer

function void connect phase(uvm phase phase);

// Assign target sequencer to reg_map, leaving the adpater handle as a null assignment
user_regmodel_h.default_map.set_sequencer(reg_layered_sqr, null);

endfunction: connect phase

Starting the adapter-layer-

A AL L ALt R AR DAL DR LR R LR sequence on the

// Task: run _phase cadence's protocol-agent
// The sequence layer sequence must be started sequencer
NS

task run phase(uvm phase phase);
// During the run_phase, the protocol adapter layering sequence is started on the
// protocol agent sequencer

user_reg_layer_seq.start(cadence_vip_env.protocol_agent.sequencer);
endtask: run phase

endclass: user env

Figure 3. Adapter Layer Sequence Integration (Showing only the additional and modified code) [1]

2. Use case for PCle protocol: The user _reg layer seq is a protocol based sequence that the user has to
write. As shown in Figure 4, pcie reg_adapter layer seq is the user reg layer seq written based on
the PCle protocol in perspective. [2][3]

DESIGN AND Vg;\l"

DVLCOIN

CONFERENCE AND EXHIBITION

INDIA

// Class: pcie reg adapter layer seq
// Sequence layer for replacement for adapter's reg2bus function

“uvm object utils (pcie reg adapter layer seq)
Cadence PCle Base
_ —

uvm_reg item item;

uvm_reg target reg;

uvm reg addr t reg addr;
uvm reg data t reg wr data;
uvm reg data t reg rd data;

// Variable: reg write seq
// Used for PCIe MMIO register writes, which are posted writes
blocking mem write seq reg write seq;

// Variable: reg read seq
// Used for PCIe MMIO register reades, which are non-posted reads
blocking mem read seq reg read seq;

// Constructor

function new(string name = "pcie reg adapter layer seq");
super.new(name) ;

endfunction: new

Get the item from reg.write() or

// Body Task reg.read() methods

task body();

“uvm_info(get type name(),$sformatf("Inside t ie reg adapter layer seg\n"}, UVM LOW);

forever begin

‘uvm info(get type name(),$sformatf("Got the item from reg sequence\n"), UVM HIGH);

if(item.element kind == UVM REG) begin
$cast(target reg, item.element);
end
else “uvm fatal(get type name(),"Its not an reg access");

// Get the address and data
reg addr = target reg.get address(item.map);
reg wr data = item.value[0];

o

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

// PCIle MMIO register read
if (item.kind == UVM READ) begin

begin
‘uvm do with(reg read seq,{ Starting the
function nb == 0; Cadence PCle
bar nb == 0: non-posted read
// offset address inside BAR® sequence
address == reg addr;
13
end

// Get the read data from payloadAccumulated array

// Each iteration gets 8bits of read data

for (int i=0;i<reg read seq.payloadAccumulated.size();i++) begin
reg rd data[(i*8) +: 8] = reg read seq.payloadAccumulated[i];

end

// Returning back the read value to reg sequence
item.value[0] = reg rd data;
end

// PCIle MMIO register write
else begin

begin

“uvm_do with(reg write seq,{ Starting the
function nb == 0; Cadence PCle
bar nb == 0; posted write
// offset address inside BAR® sequence
address == reg addr;
// 32 bits data = 4bytes
Data.size() == 4;

Data[0] == reg wr data[7:0];

Data[l] == reg wr data[15:8];
Data[2] == reg wr data[23:16];
Data[3] == reg wr data[31:24];
})
end

end

// Returning back control to the layered sequencer
layered_sqr.item_done();

end

Returning back the
endtask: body control to the reg.read() or

reg.write() methods
endclass : pcie reg adapter layer seq

Figure4: PCle Protocol Adapter Layer Sequence Implementation With Cadence PCle Sequences

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

3. Use case for SPI protocol: In our design, every register accessed via the SPI interface should be a 80
bits transfer. In other words, every reg.write() or reg.read() needs to be converted to a 80 bits SPI
transfer. In-order to support byte-granularity we need to send multiple transactions but the traditional
RAL adapter's reg2bus() function will be called only once for each reg.write() or reg.read(). Hence,
using the SPI adapter layer sequence, we can achieve byte-granularity with existing register

sequences.[4]

// Class: spi reg adaption layer seq
// Sequence layer for replacement for adapter's reg2bus function

class spi reg adaption layer seq extends cdnSpiUvmSequence;
‘uvm_object utils (spi reg adaption layer seq)

// Variable: layered_sqr
// Used for getting the uvm_reg_item from reg_sequence
uvm_sequencer #(uvm_reg_item) layered_sqr;

Cadence SPI
base sequence

uvm reg item item;

uvm_reg target reg;

uvm reg addr t reg addr;

uvm reg data t reg wr data;

uvm reg data t reg rd data;

// 86bits = lGbytes

bit[7:0] spi mosi data array[10]
bit[7:0] spi miso data array[10]

// Variable: reg write seq
// Used for SPI write transfers
spl write seq reg write seq;

// Variable: reg read seq
// Used for SPI read transfers
spi read seq reg read seq;

// Constructor

function new(string name = "spi reg adaption layer seq");
super.new(name) ;

endfunction: new

Get the item from reg.write() or
reg.read() methods for registers

// Body Task accessed via SPI interface
task body();

‘uvm info(get type name(),$sformatf("Inside th 1 reg adaption layer seq\n"), UVM LOW);

forever begin

// Getting the uvm_reg_item from reg_sequence via layered sequencer
layered_sqr.get_next_item(item);

‘uvm_info(get type name(),$sformatf("Got the item from reg sequence\n"), UVM HIGH);

if(item.element kind == UVM REG) begin
$cast(target reg, item.element);
end
else “uvm fatal(get type name(),"Its not an reg access")

// Get the address and data
reg addr = target reg.get address(item.map);
reg wr data = item.value[0]

DESIGN AND VQA‘I’I?I“

DVLCOIN

CONFERENCE AND EXHIBITION

INDIA

// Deduce the B0bits MOSI data from register address and register data
spi mosi data array = get 80bits spi data(reg addr, reg wr data);

// SPI register read
if (item.kind == UVM READ) begin

// Sending the data in terms of bytes to achieve byte-granularity

For each reg.read(),
10 Cadence SPI
read sequences for
BYTE transfers are
started

// Deriving the 32bits register read data from address and miso data
reg rd data = derive 32bits read data(reg addr, spi miso data array);

// Returning back the read value to reg sequence
item.value[@] = reg rd data;
end

// SPI register write
else begin

// Sending the data in terms of bytes to achieve byte-granularity

For each reg.write(),
10 Cadence SPI
write sequences for
BYTE transfers are
started

end

end

Returning back the control to the

endtask: body reg.read() or reg.write() methods

endclass : spi reg adaption layer seq

Figure5: SPI Protocol Adapter Layer Sequence Implementation With Cadence SPI Sequences

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

I11. REsuLTS

With the implementation of UVM Sequence Layering for RAL, engineers were able to reuse register
sequences with a faster verification turnaround time without modifying the testbench. The development of
sequence adapter_layer required only 8% extra effort but resulted in a 70% time-saving while bringing up the
testbench and running tests. The overall activity effort to re-write sequences and develop custom verification
components was just around 100-man hours, including the use of Cadence VIP for PCle and SPI interfaces with
excellent support from the Cadence VIP team. This demonstrated the effectiveness of UVM Sequence Layering
in improving code reusability and scalability.

1V. CONCLUSION

In conclusion, the paper demonstrates the successful application of Universal Verification Methodology
(UVM) Sequence Layering on RAL register sequences, using Cadence VIP for PCle and SPI protocols. The
introduction of the sequence adapter layer resulted in faster verification turnaround times with minimal
additional effort. This approach significantly improved code reusability and scalability, making it a valuable
technique for complex verification environments.

ACKNOWLEDGMENT

I would like to gratefully acknowledge the critical feedback and support that I received on the content of this
paper from my colleagues, Mayukh Majumdar, Vishwanath Anathakrishnan, Priya Anathakrishnan.

REFERENCES

M. Peryer, D. Aerne, "A New Class Of Registers," - DVCon US 2016

]

] Verification Academy — UVM Cookbook: htps:/verificationacademy.com/cookbook/registers/integrating
] Universal Verification Methodology (UVM) 1.2 Users Guide — Accellera, October 8, 2015
]

UVM Tutorial for Candy Lovers — 16. Register Access Methods — ClueLogic

https://verificationacademy.com/cookbook/registers/integrating
http://cluelogic.com/2013/02/uvm-tutorial-for-candy-lovers-register-access-methods/

