

1

DVCon India 2023

TITLE OF PAPER Tackling the verification complexities of a processor
subsystem through Portable stimulus

AUTHOR 1 Name: Vivek Gopalkrishna
Organization: Analog Devices
Job Title: Design Verification Engineer
Email ID: Vivek.Gopalkrisna@analog.com

Mobile no: 8792324950
AUTHOR 2 Name: Ponnambalam Lakshmanan

Organization: Analog Devices
Job Title: Senior Design Verification Manager
Email ID: Ponnambalam.Lakshmanan@analog.com
Mobile no: 9945089481

AUTHOR 3 Name: Nitish Swamy
Organization: Analog Devices
Job Title: Senior Design Verification Engineer
Email ID: Nitish.Swamy@analog.com

Mobile no: 7411393620

ABSTRACT

Today across the semiconductor industry, different languages and techniques are used for

functional verification depending on the scope of verification. When verifying RTL block and

subsystem, UVM based verification environment or other custom SystemVerilog based

verification environments are preferred, which provide an elaborate support to constrained-

random stimulus. At system level, embedded software is frequently used to exercise the design,

resulting in use of languages and platforms with limited constrained-random capabilities.

Several challenges result from different languages and techniques being used for block and

subsystem-level verification. Additional complexities are introduced in tests for designs with

multiple processor cores with the need of manually added synchronization handshakes in

complex test scenarios. For every target application, the specifications need to be revisited and

new tests must be developed at different layers of testing.

To avoid duplication of test creation effort, ensure better reuse of test suite, facilitate better

constrained-random stability, aim for a unified test generation framework and for early

coverage closure by discarding redundant tests, Portable Stimulus is a natural answer. The

solution described in this paper aims at highlighting the various capabilities of PSS, unravelling

the practical advantages achieved in modeling complex test behaviors and the path one must

take to fully utilize its potential.

2

BACKGROUND

Creating sufficient tests to verify today’s complex designs is a key verification challenge, and this

challenge is present from IP block-level verification all the way to SoC validation. In cases of multi core

designs, there is an added complexity. The tests must be multi-threaded to handle the various core

operations as well as drive stimulus to the UVM based testbenches. This is traditionally done by

manually creating tests which have the right synchronization handshakes between the multiple

threads. In certain scenarios it is needed to switch between having core and coreless architectures.

For instance, in block level tests, it may be sufficient to use a BFM model with a coreless design. The

tests created for such an environment cannot be ported directly to a subsystem or system level

verification with the actual cores in place. Also, coverage closure being the key metric driving the

verification effort, it is required to create meaningful tests that add to the overall coverage and make

sure that these are not redundant tests.

Looking for a solution to all such challenges in the traditional verification strategy, Portable Stimulus

is the industry’s attempt to reign in the exploding cost of doing verification caused by the duplication

of efforts across the different engineering roles throughout a project’s development life cycle. This

paper captures the portability, ease of generating multi-threaded tests, ease of switching between

core and coreless architectures and techniques to help in early coverage closure.

DESCRIPTION

The Portable Stimulus process includes writing a model in a standard language which captures the

verification intent, independent of the verification/validation platform and can be used to derive tests

for a given target application. This will allow improved collaboration between engineering teams,

vertical stimulus re-use from block to system level and horizontal re-use across project platforms

(Virtual platform, simulation, emulation, FPGA and post-silicon) and different projects.

Test development process with Portable Stimulus

As described in the below figure 1, test development process is based on the PSS foundational

framework, with models described for each IP, capturing the nature of test scenarios intended to be

run.

3

Figure 1: Test development process in ADI with PSS

IP/block level verification, along with subsystem level to some extent, rely on a UVM based simulation

environment, aided by emulation in the faster platforms. As these tests cannot be directly carry

forwarded to the system level in the traditional flow, PSS enables separation of “test intent” from the

“implementation”. The models defined in PSS can carry the verification intent at a much higher level

of abstraction and be independent from the implementation platforms. This enables reuse of test

scenarios defined in ip/subsystem level across system level too, by modifying the underlying

integration hooks to map to the right implementation platforms. Figure 2 showcases the separation

of test intent from the implementation for a sample SPI transmit scenario.

Figure 2: Separation of test intent from implementation

4

Prerequisites for Portable Stimulus Deployment

All designs may not be suitable for PSS framework. To deploy the PSS flow in any design verification,

certain prerequisites must be met. Captured below is a checklist of steps to be carried out to consider

the feasibility of portable stimulus. Buy-in from all stake holders including DV, emulation, firmware

development, Eval and Post-Si teams is required to ensure a unified verification flow with PSS.

Figure 3: Prerequisites for PSS deployment

PSS Usage Flow

The process of deploying PSS framework involves model creation and test generation. Model creation

comprises of building PSS file sets which depict the various design components and the interaction

between them. Test generation involves "solving" the model along with the various constraint-

random configurations specified in the model and to create scenarios that are defined in the

verification plan.

Model writers must be well versed with PSS and capturing the design elements in the right way which

includes components, actions, data structures, data flow elements and the integrations for various

target platforms. Test writers can have a limited understanding of PSS and need to be able to create

complex scenarios by using the building block actions defined in the model. This involves handling

native operators in PSS (sequence, parallel, repeat) and creating meaningful scenarios.

5

Figure 4: PSS Usage Flow

Modeling

Modeling involves the usage of PSS constructs to define the DUT blocks, VIP blocks and describe the

associated tasks to be performed on each of these blocks, coded in an aspect-oriented approach

called the DSL (Domain Specific Language). Few PSS terminologies used in the following sections are

described below:

• Component: Represent the design elements that make up the hierarchy. Eg: spi, i2c, uart,
spi_vip

• Action: Elements which capture test behaviors in a PSS model. Eg:spi_config, uart_tx, spi_tx

• Flow objects: Represents incoming or outgoing data/control flow for actions. Eg: buffer,
state, stream

• Resources: Hardware design resources that are needed to perform the test functionalities.
Eg: dma channels, processor cores.

• Activity(scenarios): A set of action instances, flow objects and scheduling constraints which
makes up testcases.

Modeling an IP in PSS requires an elaborate effort from the model-writer to effectively capture the

design configurations and constraints in order to meet the verification strategy. This can be seen as a

one-time effort and the same model of the IP can be re-used across different projects with very

minimal changes to suit the custom needs of the design. The steps involved in effective modeling

strategy is listed below.

1. Defining Scenario Space

The first step of modeling an IP would be to define its scenario space. Scenario space of that

IP comprises of all the possible legal configurations in which the IP can be configured to run.

6

This should effectively capture the variables which are randomized and the associated

constraints. It is important to correctly capture all essential fields as this would be an input

to the model writer. Any missed constraints/fields would result in verification holes.

SPI peripheral DUT would have the configuration fields as below:

o State: initiator or target.
o Mode of operation: half duplex, full duplex
o Tx/Rx DMA: enabled or disabled
o Continuous chip-select: enabled or disabled
o Various interrupt controlling fields
o Tx/Rx transaction count

2. Modeling the components and actions

This would be the most important aspect of model writing. It involves the usage of PSS

constructs to define the blocks which make up the model. On a top level, the dut block and its

VIP counterpart are declared as "components". The tasks to perform at a higher abstraction

level are declared as "actions". Actions combine to form the scenarios that represent the

verification intent. These actions are embedded into their respective components.

To model the data flow elements between the actions, we make use of "state", "buffer" and

"stream" objects. These components and their actions are all residing in a top-level default

component called "pss_top".

Figure 5: Modeling of SPI

Shown in the figure above is the modeling aspects of a typical peripheral IP like SPI, along with

the PSS structures defined.

PSS-integrated verification setup

With the modeling aspects covered, it is important to consider the integration of the model

into various target platforms. The implementation specific functions and tasks, corresponding

to each action are to be mapped to the right target platforms. This would ensure that the flow

of control and data between the abstract action/scenarios to the leaf level execution bodies

7

is as expected. The implementation tasks/functions which are used by the leaf level actions

need to be provided in the model as imported functions. Example is shown in figure 2.

For designs with more than one execution threads, it is important to identify them, including

the SV-UVM execution flows run on the host machine.

Tool specific libraries that help in handling memories, processor cores and various IPs in the

design can be made use of. Mailbox enables the mechanism for inter-executable

synchronization between C and SV threads in the generated tests. Regions of a common

memory must be identified and declared as part of the integration PSS files.

Shown below is a typical config.csv file which is read by the solver tool to populate the

processor information required to solve the model. It contains the various cores in the design

along with their attributes and mapping schemes.

Table 1: Processor info table

@package:
sml_pkg

@size_const:
NUM_OF_CORES

@struct: sml_processor_info_s

#tag #kind #cluster #cluster_id #core_id #mapping_scheme #enabl
ed

core0 M33 CLUSTER1 1 0 EMBEDDED_C TRUE

core1 M33 CLUSTER2 2 1 EMBEDDED_C TRUE

core2 M33 CLUSTER3 3 2 EMBEDDED_C TRUE

host NONE NONE NONE NONE SV_UVM TRUE

Table 2 contains the memory information which can be used to read and write into the

design memories using pre-defined actions.

Table 2: Memory Info Table

@package:
sml_pkg

@size_const:
NUM_OF_MEM_BLOCKS

@struct:
sml_memory_info_s

#mem_bloc
k

 #base_addr #end_addr #alignment #backdoor
_enabled

 #ctype #s
ec

#enabled

SRAM0 0x20000000 0x2001FFFC 4 TRUE WriteBack 0 TRUE

SRAM1 0x20040000 0x2005FFFC 4 TRUE None 1 TRUE

SRAM2 0x20080000 0x2009FFFC 4 TRUE WriteThrough 2 TRUE

SRAM3 0x200C0000 0x200DFFFC 4 TRUE WriteThrough 2 TRUE

Design Topology can be captured in user-defined tables and parsed with the tool libraries.

These can contain the various instances of the design along with any interesting attributes

required to be captured by the user. The model is written to be design change agnostic in

terms of the number of instances and their configurations.

8

Table 3: Design Topology Table: SPI and DMA

3. Coverage

The coverage targets specified by the covergroup construct are more directly related to the

test scenario being created. PSS allows defining of covergroups and coverpoints similar to

systemverilog and can be used to collect the pre-run coverage metrics, allowing the users the

flexibility to either retain the tests or discard them based on the value they add to the overall

coverage.

PSS enables coverage specification on use cases and on attributes of actions and flow objects.

The coverage metrics can be collected either in generation time or in runtime, and on all

executable platforms including post-silicon validation platforms.

o Generation time coverage helps in regression planning and to prioritize the
execution of tests on target platforms.

o Run time coverage helps in validating the generation time coverage results, and to
perform coverage analysis on scenarios and attributes that cannot be determined at
generation time. .

Figure 6: Covergroup in PSS

PSS ON EMULATION

As design size and complexity increases, there is a need to accelerate the runtimes of simulations to

achieve faster coverage targets and gain confidence on the design. With our project, it was necessary

to cover long running simulations that would span over days together. These scenarios are not feasible

on simulation and hence were run on Emulator.

@struct:
spi_info_s

 @size_const:
NUM_OF_SPI

 @package:
config_pkg

#spi_inst

spi_inst0

spi_inst1

@struct:
dma_info_s

 @size_const:
NUM_OF_DMA

 @package:
config_pkg

#dma_inst

dma_inst0

dma_inst1

9

Figure 7: Simulation Acceleration using emulation

The challenge was to generate test cases that would run on the Emulator without any hassle of manual

tweaks to the tests. The capabilities of PSS were truly tested and with minor updates to the existing

model, the tests scenarios running on simulations were also run-on emulator, observing a very high

degree of runtime improvements (upto 100x speedup).

The setup involved declaring the drive and collect tasks, which form the key components of

communication between Testbench and DUT, as interface tasks. This limits the number of

synchronization points between the simulator and emulator, thereby resulting in faster runtimes.

Figure 8: PSS on Emulation

PSS ON VIRTUAL PROTOTYPING PLATFORM

Porting PSS to enable test generation on System C models was seamlessly done. This involved the

binding of relevant target functions which can be run on these models. The VP platform being on

Windows required the generated target directory to be copied over to the windows setup.

10

Figure 9: PSS on VP

PRELIMINARY RESULTS

• PSS vastly reduces the bring-up time of test suites for complex processor subsystems with
multiple cores.

• Coverage closure can be tightly monitored at test generation time, rather than post
simulation.

• Self-checkers(scoreboards) in PSS removes the need of checkers in all target platforms. This
saved enormous time for Virtual Protoyping platform, Emulation platform and on custom
FPGA.

• Multi platform and cross project test intent reuse enables better utilization of resources.

Figure 7: Live-project processor subsystem shown with the various target platforms

11

CONCLUSION

• PSS has helped us shorten the design verification cycle, with an estimated reduction of 50%
of time spent in test generation for VP, FPGA and Emulation platforms.

• Coverage with PSS enables users to check the metrics before running a simulation and
significantly reduces time spent by optimizing the test regression suite prior to running them.

• Duplication of test creation effort has been nullified and creating complex test scenarios in
designs with multiple cores has been made simple.

• Randomization of attributes is offloaded to the solver engine, thereby reducing the effort and
time on the run time simulator.

ACKNOWLEDGEMENTS

• Rajiv Nadig, Paul Drum, Jatin Nagpal, Sonal Patil, Akshata Kulkarni, Shriyanshi Kapoor and
Kajal Majalatti for the continuous effort in modeling and bring-up.

• Gnaneshwara Tatuskar and Sandeep Katti for their constant tool and methodology support.

Figure 9: Thread view of SPI-DMA test scenario

Figure 8: PSS generated test scenario: SPI-DMA

