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Abstract- Verification planning involves identifying the features of the DUT that need to be verified, prioritizing those 

features, measuring progress, and adjusting the allocation of verification resources so that verification closure can be 
reached on the required timescale. One of the major challenges in SoC verification is to achieve comprehensive coverage 
while minimizing number of testcases. The complexity of SoC design along with the limited amount of verification closure 

time often leads to inability to achieve the complete coverage by testing all the possible combination of stimuli. 
Consequently, some corner cases being left unverified may exhibit abnormal behaviour in real-time application. 

This paper will share an approach to tackle the aforementioned challenges in SoC verification. The proposed 

approach involves the utilization of a smart stimuli generator that can effectively prune the testcases and accelerate the 
coverage closure. The proposed approach generates efficient testcases that cover the maximum number of scenarios based 
on specified coverage target and eliminate redundant testcases. The smart stimuli generator optimizes the test coverage 

by generating stimuli that are likely to reveal bugs in the design. The performance of the smart stimuli generator has been 
assessed on group of benchmark designs and the results demonstrate the significant improvements in coverage and 
overall reduction in the volume of testcases. The proposed approach provides a promising solution for accelerating SoC 

Verification and reducing the overall verification efforts. 

 

I.   INTRODUCTION 

 In the field of verification, achieving comprehensive functional coverage is of paramount importance to ensure 

the reliability and quality of SoC. Traditionally, the process of reaching 100% coverage involves iterative testcase 

development, regression testing and subsequent analysis. However, this approach can be time-consuming resource-

intensive, and may not always yield optimal results due to design complexity and limited turnaround time. 

To address these challenges, the concept of smart stimuli generation has emerged as a powerful approach to boost 

the functional coverage process. The smart stimuli generator approach offers a systematic and efficient method to 

achieve 100% coverage for covergroups or coverpoints using strategically designed testcases. It enables a 

streamlined verification process while uncovering hidden design issues and reducing the time-to-market. 

One of the key advantages of the smart stimuli generator approach is its ability to achieve comprehensive 

coverage with a single simulation. By iteratively generating datapaths, it ensures that all critical functional 

requirements or features are exercised, leaving no gaps in coverage. This approach minimizes the need for the 

manual intervention, post simulation coverage mixing and testcase modification, thereby streamlining the 

verification process.  

Furthermore, the smart stimuli generator approach enables engineers to extend coverage scenarios by 

incorporating additional scenarios in the verification plan. This flexibility expands the coverage of the design, 

allowing for the identification of previously undetected bugs and improving overall design. 

 

 

 

 

 



 
 

II.   CONVENTIONAL APPROACH AND CONCEPT OF SMART STIMULI 

A. Conventional Approach and Limitations 

It is essential to understand the conventional approach employed for coverage prior to dive into the proposed 

smart stimuli approach. Consider the cover point for the write transaction of AXI protocol in Fig. 1  

 

 
Figure 1. Cover point for the write transaction of AXI protocol 

 

The above cover group is defined to capture the characteristics of AXI write transaction like AWLEN used to 

cover burst length, AWSIZE used to cover Burst width etc. The goal is to create test case that exercise all of the bins 

in the cover point and during simulation, the simulator generates coverage data based on the stimuli provided by the 

test case. The results of the simulation are analyzed to determine if the coverage goal has been met, and if not, then 

the stimuli may be updated with additional constraints or seed values to target the untouched bins, and this process 

continues until the coverage goal is met. Fig.2 shows the flow diagram of an ideal approach to achieve the coverage 

goals. 

 

 
Fig.2: Conventional Approach of Functional Coverage 

 

     The above figure is defining the conventional approach to achieve complete functional coverage. It’s needed post 

simulation efforts to analyze the coverage results and further improvements in the constraints to achieve 100% 

coverage.  

     However, there are some limitation and challenges of the conventional approach: 

1. Time-consuming: Creating Testcases, analyzing results and modifying seed values or constraints can be a time-

consuming process, especially for a complex design. 



 
 

2. Repetitive: This process requires multiple iterations, as it involves modification in the Testcases until the 

coverage goal is achieved. 

3. Limited coverage: The conventional approach may not provide complete coverage for all possible scenarios and 

may not detect all bugs. 

4. Increased complexity: When dealing with complex designs and tight deadlines, this approach can become even 

more challenging for a verification engineer 

 

B. Concept of Smart Stimuli 

Now comes onto the solution part. The Smart Stimuli generator proposes a novel approach to address the 

challenges associated with functional coverage as discussed earlier. This proposed method leverages a single 

testcase with smart stimuli generator to eliminate the need for multiple testcases. The stimuli generator is capable of 

generating new datapath based on the inputs, constraints and coverage information from the previous datapath. The 

implementation of this approach is illustrated in Fig.3. 

 

 
Fig.3: Sequence Implementation 

 

  Below is the overview of how Smart Stimuli Generator operates: 

1. Randomize Coverage Variable: The initial step of smart stimuli generator involves analyzing the 

functional coverage requirements of the design such as coverage bin information and identifying the 

variables that need to hit those bins, those variables will be called as coverage variables. The user will 

serve this data as an input to Randomize Coverage Variable block, which initiates the first phase(i.e., 

execution of Datapath) of simulation. Following this, the variables are re-randomized for the second phase 

based on the results obtained in the first phase. For example, if the coverage result of the first phase is 

determined to be 20%, then this block will generate a new unique value for the coverage variables. This 

newly generated value is utilized in the second phase of simulation. The uniqueness of this block lies in its 

ability to generate distinct values for the variables each time it is invoked. 

 

2. Datapath Run: The smart stimuli generator uses a functional datapath that actively exercises the defined 

coverage bins. The user will be responsible to provide the functional datapath to target the cover bins. 

This block operates by obtaining inputs from the Randomize Coverage Variable block, specifically the 

coverage variable that are assigned to target those bins. Its primary purpose is to run the functional 

datapath with the coverage variable configuration. 
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3. Collect Coverage: The Collect Coverage block serves the purpose of gathering the coverage data by 

utilizing the get_coverage() task. This task can be called in a hierarchical manner to obtain coverage 

information for a specific covergroup or cover bin like below: 

Grp_Coverage = top.dut….IP0.covergroup_inst.get_coverage(); 

Or 

Bin_Coverage = top.dut….IP0.covergroup_inst.bin_inst.get_coverage(); 

The task returns the coverage data specifically for that covergroup or cover bin.  

 

4. Feedback Loop: The smart stimuli generator employs a feedback loop that remains active throughout the 

simulation. This loop continuously evaluates the coverage results obtained from the Collect Coverage 

block and determines whether the coverage goal has been achieved or not. Based on this evaluation, it 

directs the execution either back to the first step i.e., Randomize Coverage Variable for further coverage 

exploration, or proceeds to the Report block for final reporting and analysis. 

 

5. Report: The Report block uses to generate the final results and produce a report in the form of report.xls 

file that summarize the overall simulation. This block generates a log that provides comprehensive 

coverage details, including the number of iteration and the coverage percentage for the specified cover bin 

or covergroup. Additionally, the Report.xls files present a graphical representation of the number of 

iteration versus the coverage percentage, offering a visual overview of the coverage progress. 

 

  Here are the advantages of Smart Stimuli generator: 

 Auto repetitive process of running datapath with new constraints until 100% coverage achieved in a single 

simulation 

 Eliminate the need for post-simulation coverage merging, results analysis and testcase modification 

 Enables addition of more scenarios in verification plan, expanding coverage of design 

 Save time and efforts in writing multiple Testcases 

This approach can significantly accelerate the SoC verification, particularly when dealing with critical protocols 

such as Q-channel, LPI and Power Map Testcases. 

The conventional approach to functional coverage typically begins after completing the initial verification or 100% 

testcases pass rate. However, the proposed approach revolutionizes this process by enabling the functional coverage 

in the early stages of verification as it requires only the bins information and the datapath to achieve the coverage 

goal. Consequently, it helps in detecting the early bugs in the design. 

 

 

III.   IMPLEMENTATION AND PRACTICAL CONSIDERATION 

The successful implementation of the smart stimuli generator approach involves several key consideration and 

steps. Let’s explore these aspects based on the following points: 

 

1. Dynamic Constraint Generation: To leverage the smart stimuli generator, it is essential to provide coverage 

bins   information. This information guides the generator in generating the constraints of the coverage 

variable for each iteration. The generator uses the techniques such as constrained-random testing, directed 

testing or a combination of both to generate diverse and comprehensive values for coverage variables that 

target on specified coverage bins. By defining the coverage bins, the generator can prioritize and generate the 

specific constraints for comprehensive coverage. Below constraint used by the stimuli generator to randomize 

the variable with the knowledge of coverage bins and the foreach loop has been used to avoid repetition of 

same values. 

 



 
 

 
 

2. Coverage Goal: Defining the coverage goal is an important step in implementing the smart stimuli generator 

approach. The coverage goal specifies the desired coverage level that needs to be achieved for the given 

design or functional requirements. The generator will continuously run the datapath until it accomplishes the 

coverage goal, ensuring through verification. 

 

 

3. Datapath Information: Providing accurate and complete datapath information is crucial for the smart stimuli 

generator. This includes specifying the relevant signals, registers and components that need to be exercised 

during the verification process to target the bins. This generator will provide the constraints for the datapath 

and ensuring the appropriate coverage is achieved. 

 

 

IV.   IMPACT ON THE VERIFICATION PROCESS 

The smart stimuli generator has a significant impact on the verification process. It improves the overall efficiency 

and effectiveness of verification efforts. Below are the major impacts of the approach: 

 

1. Reduction in Turnaround Time: Unlike traditional approaches that require multiple simulation and 

subsequent analysis, the smart stimuli generator approach achieves coverage goal with a single simulation. 

This reduction in turnaround time accelerates the verification process, allowing for faster design cycles and 

quicker time-to-market. 

 

2. Enhanced Functional Coverage: The smart stimuli generator approach ensures thorough verification by 

achieving 100% coverage for covergroups or coverpoint. It systematically generates testcases that exercise all 

the critical functional requirements or features, leaving no gaps in coverage. This comprehensive coverage 

minimizes the risk of undetected bugs and improves overall design reliability. 

 

3. Proactive Bug Hunting: The smart stimuli generator approach promotes a proactive bug hunting 

methodology. By continuously running the datapath until the coverage goals are achieved. This proactive 

approach ensures the potential issues are addressed early, preventing them from causing more significant 

problems downstream in the development process. 

 

4. Streamlined Verification flow: The approach streamlines the verification flow by eliminating the need for 

post-simulation coverage mixing, results analysis and extensive testcase modification. This streamlining 

reduces manual intervention and improving overall productivity 

 

5. Emulation Scope: Another significant impact of the smart stimuli generator approach is its compatibility 

with emulation platform. The approach can be effectively implemented on emulation environments, 

particularly when there is a synthesizable functional coverage available. By leveraging the power of 

emulation, the turnaround time for achieving complete coverage can be further improved. 
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V.   CASE STUDIES AND RESULTS 

A. Case Study 

 1. Implementation on SoC 

     The smart stimuli generator has been tested on a set of DMAs in SoC, shown if Fig.4. 

 

 
Fig.4: Smart Stimuli Gen Application on SoC 

 

The above figure shows the application of smart stimuli on SoC. The smart stimuli generate various constraints 

for AWLEN and AWSIZE for the DMA to create diverse flavors of Write transaction and try to accomplish the 

coverage goals. Below are the cover points of coverage. 

 

 

The DMA datapath has been written to create a transfer from DMA to DDR0/1 by using the AWLEN & AWSIZE 

constraints generated by the stimuli generator. The initial datapath runs with the random constraints of AWLEN and 

AWSIZE. At the end of DMA datapath, the coverage percentage of the given cover group collected by the sequence 

using get_coverage(); task and then stimuli generator creates new constraints of AWLEN & AWSIZE for the next 

iteration of DMA transfer. The smart stimuli generator never repeats the same constraints which is already covered. 

Fig.5 show the flow of smart stimuli generator. 

AXI BUS 



 
 

 

 
Fig.5: Smart Stimuli Generator Flow 

Fig.6 shows the coverage increment with the number of iterations. In this way, we can achieve the 100% coverage 

for any covergroup or coverpoint in a single simulation by using smart stimuli generator  

 

 

 

 

 

 
Fig.6: Coverage Waveform 

 

 2. Bug Detected 

During our experiment utilizing the smart stimuli generator approach to cover the functional coverage of SRAM 

addresses, an important bug was detected. The coverage bins for the SRAM address were defined as follows: 

No. of Iterations 

AWLEN=100% 

AWSIZE=100% 

AWLENxAWSIZE=100% 

TOTAL 

COV=100% 

DMA 



 
 

 

During one of the datapaths, the generator produced the boundary address for the mem_wrapper, which resulted 

in a failure. This issue revealed a problem in the SRAM design, specifically with the handling of boundary accesses. 

If we had followed the conventional approach then this crucial bug might have been missed. 

The detection of this bug highlights the effectivenessof the smart stimuli generator approach in uncovering 

design flaws that could otherwise remain undtected. 

 

B. Results 

The smart stimuli generate a Report.csv after achieving the coverage goal which runs with a script to generate 

Report.xls at the end of simulation. This Report.xls comprises the coverage report of all cover points along with the 

corresponding number of iteration required to achieve complete coverage.  Fig.7(a) illustrate the Report generation 

flow and Fig.7(b) Coverage Graph in Repot.xls. Fig.8 shows results in log. 

 

     
         Fig.7(a): Report Generation flow                                                Fig.7(b): Coverage vs Iteration graph in Report.xls 
 

 



 
 

 
Fig.8: Coverage log 

 

 

VI.   CONCLUSION 

The Smart Stimuli Generator approach is a powerful tool for engineer working in the design and verification of 

complex electronic systems. In addition to its time-saving benefits like simulation time, automatic datapath 

generation, one simulation for complete coverage, less machine cycle used etc. can accelerate the overall SoC 

verification process. This approach also improves the overall quality of the design by enabling the coverage 

expansion through addition of more scenarios, which can identify and address any issue in the design. Below table 

shows the advantages of the proposed approach over conventional approach. 

 
TABLE I 

COMPARISON OF CONVENTIONAL APPROACH AND SMART STIMULI APPROACH  

Tasks Convention approach Using Smart Stimuli Generator 

Testcase volume 36 Blocks x 6 DMAs  288 Tests One testcase per block. Overall only 36 tests 
(~88% Testcases pruned) 

Machine time Average runtime per test – 8hrs 
288 x 8  2304hrs  
Max 72 Simulator licenses needed to 
complete all tests in a day 

Average runtime with Smart Stimuli 
generator is 12hrs.  Overall machine time 36 
x 12  432 hrs 
Max 18 licenses required to complete all tests 
in a day 
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