
A Wholistic Approach to Optimizing Your System 
Verification Flow

Ross Dickson - Lance Tamura - Michael Young

Cadence Design Systems



Agenda

• Introduction

• Reviewing The Verification Flow

• Reviewing Current Solutions
• Hardware, Interfaces, and Extensions

• Why Should We Change?

• A Comprehensive Solution

• Summary and Conclusion



Moore’s Law – Costs, Effort, and Graphs go up 
and to the right
• Verification Costs and Effort

• Track the growth in transistor 
count

• Increase exponentially

• This trend shows no signs of 
ending

Max Roser, Hannah Ritchie Via Wikipedia
https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png

https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png


New Tools Have Always Been the Solution

• Every technology driven increase in complexity has been followed by 
a new tool generation
• Delivering an exponential increase in productivity

• Net result
• Cost and Effort only increase linearly

!



Now with Software

• Software is an increasingly 
important part of our products

• Software complexity at least as 
fast as the transistor count
• Now we have two exponentials

• This trends has also been true for 
decades

IBS Projection: Cost per Node



Stop Focusing on Filling Gaps

• Accept that designing and verifying complex modern systems will 
always take work

• Realize that our industry and conference aren’t likely to go away any 
time soon

• Spend some time looking for the most effective way to get our jobs 
done and most of our time actually doing our jobs



End Keynote, Begin Content



Reviewing The Key Question of the 
Verification and Design Flow

• Design• Development

• Deployment• Verification

Does it 
work?

Does it 
provide 
value?

What 
should the 

system 
do?

How will 
the system 

do it?



Does it Work? The Traditional Approach

• Decompose the system into 
manageable components

• Re-use tests, optimize for runtime

• Generally independent of the 
design and software teams

• Delay system testing until first 
silicon, or “shift left” with 
unrelated tools

TB

SoC

PCIe 

controller

PCIe

VIP

CPU

Bus

GPX Audio

Display 

controller

Camera 

controller

CPU
CPU

CPU
DDR Controller

DMA AcceleratorSRAM

Software

Real World Speaker Microphone

Virtual 

Platform



Does it provide Value?

• Solving customer support is out of scope today



What should the (next) system do? 
Traditionally
• Start with the previous design

• Turn the crank

• Traditionally independent of Verification



How will the system do it?

• Learn more at implementation focused session at one of Cadence’s 
Live Technology and Product shows



Agenda

• Introduction

• Reviewing The Verification Flow

• Reviewing Current Solutions
• Hardware, Interfaces, and Extensions

• Why Should We Change?

• A Comprehensive Solution

• Summary and Conclusion



There is no “one size fits all” engine

SDK OS 
Simulation

•Speed

•HW Detail

Virtual 
Platform

•SW Debug

•HW Detail

Formal 
Analysis

•Great for IP

•No software 
execution

HDL 
Simulation

•HW debug

•Speed

Emulation

•RTL accurate

•HW debug

•Fast Compile

•MHz range

•Cost

Enterprise 
Prototype

•RTL accurate

•Up to 10 MHz

•OK to debug

•After RTL is stable

Prototype 

Board

•10s of MHz

•RTL accurate, but 
capacity may limit 
design content 

•Limited debug

•Long dev time

Better accuracy

Earlier availability



Hardware Verification Focuses on RTL

• HW architectural spec -> implementation-spec -> RTL

• HW verification checks RTL 

• RTL tested vs implementation spec SoC

PCIe 

controller

CPU

Bus

GPX Audio

Display 

controller

Camera 

controller

CPU
CPUCPU DDR 

Controller DMA AcceleratorSRAM

Accelerator

RTL



Limits Of Hardware Verification

• 100% HW verification is almost 
never achieved
• Complexity often overwhelms 

schedule and resources
• Functional coverage may be limited
• RTL line coverage checks that all logic 

is touched – but without context
• RTL code linting can avoid syntax and 

sematic issues

• HW verification does not directly 
check architectural spec for 
correctness/completeness

TB

SoC

USB 

controller

USB

VIP

CPU

Bus

GPX Audio

Display 

controller

Camera 

controller

CPU
CPUCPU

DDR Controller

DMA MODEMSRAM

Speaker Microphone



Addressing Complexity Using Hardware 
Assisted Verification Platforms
• There are many opinions on 

what role hardware assisted 
verification platforms play in the 
verification and design lifecycle

• Given the costs and expenses, it 
must be front and center in our 
planning

• Because it’s the only thing fast 
enough to run the software

• And the only practical way to run 
large designs



Expanding HW Platforms with Interfaces

• DUTs are usually tested along with peripherals

• Transactors for non-synthesizable testbenches

• HW or Virtual Interfaces to representative devices

Virtual Interface ServerDUT

PCIe

USB

Eth

Physical Machine

Physical Machine

Transactor

Transactor

Transactor

Virtual Machine

Virtual MachineN
e

tw
o

rk

Physical Interface

Physical Interface

Physical Interface

Virtual Interface

Virtual Interface

Virtual Interface



HW Platforms Used For SW Development 
• HW Speed is essential, both for runtime and platform development

• Simulation -> Emulation -> Hybrid -> FPGA

• Usages include
• Driver and Firmware Development and Test

• Performance measurement

• Assumes HW is correct 
• Aim is to test SW

• Often accidentally catch important bugs

Software

DUT

PCIe

USB

Eth



Virtual Platforms for SW Development

• Assumes the HW is someone else’s problem

• Assumes architectural spec matches the RTL

• Usage not generally considered Verification

Virtual 

Platform

Software



Hybrid HW / Virtual Platforms

• Assume part of the HW is already verified
• Offload the verified portion (such as the CPU) to a virtual platform

• Usage include both Software Development and Hardware Verification
• Higher performance improves upon HW for SW Development

• RTL rather than models enables actual verification and ensures correlation

PCIe

USB

Eth

Virtual 

Platform

CPU

RAM



Cadence Verification Full Flow

* Cadence® Joint Enterprise Data and AI (JedAI) Platform



A Verification Based Wholistic Approach

• Unify your existing verification solutions

• Expand the scope of your verification calendar

• Use existing verification solutions for co-development “shift left”



Agenda

• Introduction

• Reviewing The Verification Flow

• Reviewing Current Solutions
• Hardware, Interfaces, and Extensions

• Why Should We Change?

• A Comprehensive Solution

• Summary and Conclusion



Bug detection as early as possible
B

u
g 

d
et

ec
ti

o
n

 r
at

e

IP 
Verification

SoC
Verification

HW/SW
Development

System Validation /
Certification & Production

Reduce risk & cost 

Find customer-level bugs 

as early as possible in the 

development phase

Simulation catches 

most IP-level bugs

Acceleration / Emulation

catches most SoC-level bugs

Emulation / Prototyping

catches most HW/SW level bugs

Production / Live System Test

catches most customer level bugs



Shift Left vs Up and To The Right

• View cumulative defects over 
time rather than rate

• All improved flows are about 
discovering more defects earlier

• The slope also implies 
acceleration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Early Early Mid Late Mid Late Very Late

% of Defects Discovered Over Time

Baseline Improved Optimal



Can We Achieve Acceleration through 
Parallelism?
• Acceleration prediction as defined by Amdahl's Law

• How much of a speedup one could get for a given parallelized task
• Amdahl's Law is a statement of the maximum theoretical speed-up
• The actual speed-ups are always less than the theoretical speed-up

• How it works
• F is the fraction of a program execution that is sequential
• 1-F is the fraction of a program that can be parallelized
• P is the degree of parallelization

F 1 - F

100% or total time

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

(𝐹 + (1 − 𝐹)/𝑃)



Its Important to Address the Right Problem

• We are all engineers and can all understand Amdahl’s Law

• Too many verification engineers forget about Amdahl’s Law or apply 
too narrowly 10% 90%

10%

Theoretical max

Test Bench DUT

1

(10%+(1−10%)/1024)
≈ 9.91

SoC

PCIe 

controller

CPU

Bus

GPX Audio

Display 

controller

Camera 

controller

CPU
CPUCPU DDR 

Controller DMA AcceleratorSRAM



What Have we Learned from Virtual Platforms

• Most hardware “defects” found when running software on a platform 
are actually defects in the specification, often incompleteness

• It’s not fast enough

• You must verify the spec and not just the RTL



A Fundamental Disconnect

• Hardware engineers assume that the goal of Verification is
• That each line of RTL works correctly
• That the RTL implements the specification correctly

• Software engineers
• Don’t believe in the existence of lines of RTL
• Assumes the Spec has been evaluated for correctness and sufficiency

• And that the HW is correct and consistent 

• Problems arise when:
• The spec is incomplete
• The spec is interpreted differently by different people

• Running SW exposes these differences (often unintentionally)



Example of Spec Error

• Spec for a device
• When the blue button is pressed turn on

• When the green button is pressed perform the operation

• When the red button is pressed turn off

• After some period of inactivity turn off

• Potential problems (exceptions):
• What happens when you push the blue button but not off?

• What happens when you push the red button while the operation is ongoing?

• What happens when you push the green button again?

ERROR !!



Is System Level Design part of Verification?

• Only it if wasn’t done during the Design phase

• Software is increasingly important to our products

• Software runs on the system, not one component

• We must have a system level design, even if minimal, in order to 
verify that the software will run

Verification Deployment

DesignDevelopment



Agenda

• Introduction

• Reviewing The Verification Flow

• Reviewing Current Solutions
• Hardware, Interfaces, and Extensions

• Why Should We Change?

• A Comprehensive Solution

• Summary and Conclusion



Doesn’t the Portable Stimulus Standard
(PSS) solve this?

• Accellera standard 
• Single representation of stimulus and 

test scenarios

• Describe Test Intent and Design 
Behaviors
• Use-cases, data flows
• Legal scenario space, resources, 

configurations 

• Deliver Test Portability
• Vertical reuse: From IP to SoC
• Horizontal reuse: from Simulation to 

Emulation to Post Silicon



Now put all the parts together

• Acknowledge all aspects of verification
• Validate that the Architectural Spec is sufficient and consistent

• Validate that the Implementation Specs are complete and correct

• Validate that the RTL is correct

• Validate that the software is designed to the same specs

• Validate at both unit and system levels

• Apply the right tool to the right job
• Migrate assets from one tool to the next to avoid rework



Virtual Machine

A Unified Congruent Wholistic Flow
Combining The Best of All Tools

SoC

PCIe 

controller

CPU

Bus

GPX Audio

Display 

controller

Camera 

controller

CPU
CPUCPU DDR 

Controller DMA AcceleratorSRAM

PCIe

USB

Eth

Virtual Platform

M
U

X

Transactor

Virtual Interface

Physical Interface

Physical Machine Software



Summary and Conclusion

• The scope of Verification continues to increase

• Verification is part of a product design flow that must include design

• Hardware is necessarily central to defining a verification flow

• Traditional verification is never done

• Software development isn’t verification, but can expose defects

• Traditional HW verification isn’t necessarily system verification

• You need a unified congruent wholistic approach

Verification Deployment

DesignDevelopment

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

% of Defects Discovered Over Time

Series1 Series2 Series3

RTL≠

IBS Projection: Verification Cost per Node



Questions
Ross Dickson - Lance Tamura - Michael Young

Cadence Design Systems



Backup


