(2023

DESIGN AND VERIFICATION™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

VIRTIO BASED GPU MODEL
Pratik Parvati
Lead Engineer

q'\
Vayavya

Labs Pvt. Lid.

SYSTEMS INITIATIVE

CONTENT

O 1 The Problem 02 Host GPU accelerated 03 The Solution — Virtio

MOdEI . Devices, Drivers.

VirtlO transport layer.

04 virtio-pu U5 Device operation 06 pemo

)) Controlq, cursor
Devices, Drivers q 9

Virglrenderer.

acceller?)

SSSSSS S INITIATIVE

WHAT IS THE PROBLEM WE ARE TRYING TO
ADDRESS?

* GPUs are essential components of modern computer systems.

* GPUs are widely used in various fields like Scientific Computing, Image
Processing, Data Analysis etc.

e Unlike CPU, GPU is optimized for Parallel instruction operation.
* Challenges involved in modeling a full blown GPU.

()

SYSTEMS INITIATIVE

A SAMPLE BLOCK DIAGRAM WITH GPU

Simulation
Environment

ARM DSP Crypto
GPU
[I-Cache] [D-Cache] MCU A/V : RTL Design
interface
)

PHY Interface

"
4 N\

()

SYSTEMS INITIATIVE

HOW DO WE MODEL GPU

* Cons with Full-blown SystemC model

* GPUs requires data structures that are more rigid than on conventional
processors (CPU).
* Designed exclusively for high performance computing applications.
* GPUs have hundreds to thousands of processing elements.

 AMDs Radeon HD 6000 series of GPUs contain more than 1000 processing elements on a
single GPU die.

 Demands parallel simulators as sequential simulators are slow.

* Synchronization overhead by simulating the parallel components of the GPU
architecture independently using multiple simulation threads.

2093

accellem b b b DESIGN AND VERIFICATIOMN ™
L - COMFEREMNCE AND EXHIBITION

e ' ' ' | UNITED STATES

SOME GRAPHICS TERMS

* Pixels - Rectangular grid, arranged in rows and columns on the screen.
 Vertices - Co-ordinates of an objects like lines, curves and polygon.

* Primitives - Building blocks containing lines, curves and polygon, which can
be combined to create more complex graphical images.

e Shader — Program that rests on GPU, that transforms set of inputs to
output as per an algorithm.

» Texture Mapping - Texture mapping applies an image to the faces of our
geometry and adds realism to the scene.

* OpenGL - Software interface to the graphic hardware

* MESA drivers — Graphics library, is an open source implementation of
OpenGL, Vulkan, and other graphics API specifications

()

SYSTEMS INITIATIVE

INTRODUCTION TO VIRTIO

* VirtlO stands for virtual input & output and was developed by Rusty Russell.
 VirtlO is an abstraction layer over a host’s devices in para-virtualized hypervisor.

IIHIHHH!IIHHI

IO Bus
» Offloading the majority of the work to the host.
* Speeds up VM operation over more traditional "emulated"
devices.

Request

Response

:
O
]

4

e VirtlO is a HSI standardized interface

Traditional NIC Modeling approach

R 2023
| . i DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

HOST-GPU ACCELERATED MODEL

Simulation
Environment

AR
M

[Cathe] [

& GPU
D-

Cache]

DSP Crypto
MCU AN
interface

PHY Interface

[SATA

)

[HDMI]

LPDDR]
X

()

RTL Design

 GPU is modelled on top of

vitio interface.

* Virtio-gpu driver compatible

device.

e Virtio-gpu driver is treated as

embedded software on CPU.

* Exploits Host CPU and GPU

resources.

SYSTEMS INITIATIVE

Why VirtlO?

* Straightforward: VirtlO devices use normal bus mechanisms of interrupts
and DMA.

* Efficient: VirtlO devices consist of rings of descriptors for both input and
output.

e Standard: VirtlO makes no assumptions about the environment in which it
operates.

» Extensible: VirtlO devices contain feature bits which are acknowledged by
the guest operating system during device setup.

* Improved host and guest performance.

e Exports a common set of emulated devices and make them available
through common API.

()

SYSTEMS INITIATIVE

VirtlO Devices

e Support different kinds of devices (network, block, video, GPU...)

~s

P

Guest VirtlO Transport Layer
* The frontend component is the 5 | Device | VirtlO

guest side of the virtio interface. Driver ‘ Frontend

* Exposed to the emulated environment using PCl, Memory Mapping I/0, Channel 1/0O.

* The backend component is the

host side of the virtio interface.
Host OS

* VirtlO Transport Layer is a Virtlo Device
channel between front -end { Backend Model

and back -end

accellery -

SYSTEMS INITIATIVE

VirtlO Devices Cont..

* Device IDs are used to identify different types of virtio devices.

* All VirtlO devices have a Vendor ID of Ox1AF4, and have a DevicelD between

0x1000 and 0x103F. Offset (Hex) Name
* All devices have a common “header” block of registers. | 0o Device Features
 The Guest Features register is used by the guest VM to o ouest Features
i) 08 Queue Address
communicate the features that the guest VM driver .
0C Queue Size
supports.. _ . OE Queue Select
 The Device Status field is used by the guest VM to 10 a .
. _ ueue Notify
communicate the current state of the guest VM driver. [, S Gt
13 ISR Status

()

SYSTEMS INITIATIVE

VirtlO Drivers

* The front-end driver is the device
driver installed in the guest OS.

* Accepts I/O requests from the user
process and transfer 1/O requests to
back-end driver.

* The back-end driver resides in the
hypervisor and is responsible for
accessing the physical device.

* Accepts I/O requests from front - end
driver and perform I/O operation via

physical device.

acﬂellera i) DESIGN AND VERIEICATION
. .
. = CONFERENCE AND EXHIBITION
.
.

Virtio front-end drivers

SYSTEMS INITIATIVE

VirtlO Transport Layer: VirtQueue

 Virtqueue is a queue of guest’s buffer that host consumes, either by
reading them or writing to them.

 Virtqueues are shared in guest physical memory - driver and device access
the same page in RAM.

* The descriptors/buffer can be chained.
* Driver to device notifications via doorbell method.
e Device to driver notification via interrupt.

* Virtqueue interface -

* add_buf: expose buffer to other end.
* kick: update after add_buf.
e get_buf: get the next used buffer.

()

SYSTEMS INITIATIVE

VirtlO Transport Layer: VRIng

* Vring is a memory mapped region between Host process (Device
model) and guest OS.

* Vring is the memory layout of the VQs abstraction.
* Holds the actual data being transferred.
* A virtio device contains one or more VQs.

* \VQs has three types of VRings (or areas):
e Descriptor ring (descriptor area)
* Available ring (driver area)
e Used ring (device area)

()

SYSTEMS INITIATIVE

VirtlO Transport Layer: Desc Area

* Virtio Buffers: Guest drivers (front-end) communicate with hypervisor
(back-end) drivers through buffer.

* Guest provides one or more buffers representing the request.
struct Buffers[QueueSize]

{
uinté4_t Address; // 64-bit address of the buffer on the guest machine.

uint32 t Length; // 32-bit length of the buffer.
uintlée t Flags; // 1l:linked buffer index; 2: Buffer is write-only.

// 4. Buffer contains additional buffer addresses.
uintlé_t Next; // If flag is set, contains index of next buffer in chain.

¥

* These buffers are added to virtual queues in memory.

- R h 2023
acce/lera | '] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

Virtio Transport Layer: Avail and Used Area

* Avail Area: References to available descriptors in the descriptor ring.

struct Available

{
uintl6_t Flags; // 1: Do not trigger interrupts.

uintlé_t Index; // Index of the next ring index to be used.
uintl6_t Ring[QueueSize]; // List of available buffer indexes from the Buffers array

}
* Used Area: References to used descriptor entries on the descriptor

ring.
struct Used
{
uintle_t Flags; // 1: Do not notify device when buffers are added to available ring.
uintlé_t Index; // Index of the next ring index to be used. (Last used ring buffer index+1)
struct Ring[QueueSize]
{
uint32_t Index; // Index of the used buffer in the Buffers array above.
uint32_t Length; // Total bytes written to buffer.
}
uintl6_t AvailEvent; // Only used if VIRTIO_F_EVENT_IDX was negotiated
}

- R E 2023
accellers) - - _ o R

VirtlO Transport Layer:Data Exchange

Y Y ,
: struct buffer{ :
: | Desc area (collection of buffers) I
; |
I I
; Y acr_len | flags _|ne [
| . 0x100 0x100 W|N 1 |
|
| 0x200 0x100 W 1 ‘\ |
| . 0x300 Ox100 W 0 |
: last avail idx :
: \ last used idx 1
I 7 0 I
\ 7 0
i 0 \ 0 idx i
6 2 1 6 1,
: Avail area Used area :
1 [
| |
5 2
5 2!
' < '
| |
I 4 3 \ |
: idx 4 3 :

acceller?)

SYSTEMS INITIATIVE

Guest user space

Guest kernel space

--

Notification

Virtio device model
2

5 b
1

: t

Hypervisor (KVM etc)

@ Allocate/create buffer.
@ Populate descriptor entry.
@ Update avail index.

@ Send notification to device.

@ Process the descriptors.
@) send interrupt to driver.

upt

Process

Host kernel space

2023

DESIGN AND VERIEICATION™

Virtio-GPU

Operate in 2D mode and in 3D (virgl) mode.
3D mode will offload rendering ops to the host gpu.

Supports two VQs
e Controlg: queue for sending control commands.
e Cursorg: queue for sending cursor updates.

Feature bits
* VIRTIO _GPU_F _VIRGL (0): virgl 3D mode is supported.
 VIRTIO _GPU _F EDID (1): EDID is supported.

Configuration layout
* events_read signals pending events to the driver.
* events_clear clears pending events in the device.
* num_scanouts specifies the maximum number of scanouts supported by the device.

- R R 2023
acce/lera | .] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

Virtio-GPU - Device Operation

* Create a framebuffer and configure scanout

* Create a host resource using VIRTIO_GPU_CMD_RESOURCE_CREATE_2D.

* Allocate a framebuffer from guest ram, and attach it as backing storage to the
resource just created, using

VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING.
* Use VIRTIO_GPU_CMD_SET SCANOUT to link the framebuffer to a display
scanout.

e Update a framebuffer scanout

* Use VIRTIO_GPU_CMD_TRANSFER _TO_ HOST 2D to update the host resource
from guest memory.

* Use VIRTIO_GPU_CMD_RESOURCE_FLUSH to flush the updated resource to
the display.

()

SYSTEMS INITIATIVE

Device Operation: controlg

CMD_SET_SCANOUT

5

Set the scanout
parameters for a

CMD_GET_DISPLAY_INFO CMD_RESOURCE_FLUSH

7

Flush a scanout

CMD_RESOURCE_UNREF

Retrieve the

Create a 2D . resource

current output single output d

configuration. resource on Request data. Destroy a resource
the host.

CMD_TRANSFER_TO
_HOST_2D

CMD_RESOURCE_

CMD_GET_EDID DETACH_BACKING

Retrieve the EDID
data for a given
scanout.

Assign backing
pages to a resource.

Transfer from
guest memory to
host resource.

Detach backing
pages from a
resource.

- R 2023
ECEEIler a | *) ECVND VERIEICATION

Device Operation: cursorq

* VIRTIO _GPU_CMD _ UPDATE CURSOR : Update cursor.
* VIRTIO_GPU_CMD _MOVE_CURSOR: Move cursor.

()

SYSTEMS INITIATIVE

Virglrenderer

* Virglrenderer is a virtual 3D GPU library that

* enables a virtualized operating system to use the host GPU to accelerate 3D
rendering.

* Mesa handing commands are channeled through virtio-gpu on the
guest to the host.

* The host gets the raw state (Gallium state) and translates it into an
OpenGL form using virglrenderer.

* It is then run as regular OpenGL on the host system.

()

SYSTEMS INITIATIVE

Virglrenderer Contd..

| f

Host Process
Kernel
V|r [10_gpu d eV|ce
Guest Host

SYSTEMS INITIATIVE

DEMO

- R h 2023
accellera |] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

THANK YOU

- R h 2023
acce/lera | '] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

	Slide 1: VIRTIO BASED GPU MODEL
	Slide 2: CONTENT
	Slide 3: WHAT IS THE PROBLEM WE ARE TRYING TO ADDRESS?
	Slide 4: A SAMPLE BLOCK DIAGRAM WITH GPU
	Slide 5: HOW DO WE MODEL GPU
	Slide 6: SOME GRAPHICS TERMS
	Slide 7: INTRODUCTION TO VIRTIO
	Slide 8: HOST-GPU ACCELERATED MODEL
	Slide 9: Why VirtIO?
	Slide 10: VirtIO Devices
	Slide 11: VirtIO Devices Cont..
	Slide 12: VirtIO Drivers
	Slide 13: VirtIO Transport Layer: VirtQueue
	Slide 14: VirtIO Transport Layer: VRing
	Slide 15: VirtIO Transport Layer: Desc Area
	Slide 16: Virtio Transport Layer: Avail and Used Area
	Slide 17: VirtIO Transport Layer:Data Exchange
	Slide 18: Virtio-GPU
	Slide 19: Virtio-GPU - Device Operation
	Slide 20: Device Operation: controlq
	Slide 21: Device Operation: cursorq
	Slide 22: Virglrenderer
	Slide 23: Virglrenderer Contd..
	Slide 24
	Slide 25

