
VIRTIO BASED GPU MODEL
Pratik Parvati

Lead Engineer

CONTENT

02 Host GPU accelerated

Model

05 Device Operation
• Controlq, cursorq

• Virglrenderer.

01 The Problem

04 VirtIO-GPU
• Devices, Drivers

03 The Solution – Virtio

• Devices, Drivers.

• VirtIO transport layer.

06 Demo

WHAT IS THE PROBLEM WE ARE TRYING TO
ADDRESS?
• GPUs are essential components of modern computer systems.

• GPUs are widely used in various fields like Scientific Computing, Image
Processing, Data Analysis etc.

• Unlike CPU, GPU is optimized for Parallel instruction operation.

• Challenges involved in modeling a full blown GPU.

A SAMPLE BLOCK DIAGRAM WITH GPU

USB

GPU

DSP

MCU

Crypto

A/V
interface

Interconnect

NVM

SRAM
Analog

RF

DMA

ETH

SATA HDMI LPDDRx

PCIe

I-Cache D-Cache

ARM

PHY Interface

RTL Design

Simulation
Environment

HOW DO WE MODEL GPU

• Cons with Full-blown SystemC model
• GPUs requires data structures that are more rigid than on conventional

processors (CPU).
• Designed exclusively for high performance computing applications.

• GPUs have hundreds to thousands of processing elements.
• AMDs Radeon HD 6000 series of GPUs contain more than 1000 processing elements on a

single GPU die.

• Demands parallel simulators as sequential simulators are slow.

• Synchronization overhead by simulating the parallel components of the GPU
architecture independently using multiple simulation threads.

SOME GRAPHICS TERMS
• Pixels - Rectangular grid, arranged in rows and columns on the screen.

• Vertices - Co-ordinates of an objects like lines, curves and polygon.

• Primitives - Building blocks containing lines, curves and polygon, which can
be combined to create more complex graphical images.

• Shader – Program that rests on GPU, that transforms set of inputs to
output as per an algorithm.

• Texture Mapping - Texture mapping applies an image to the faces of our
geometry and adds realism to the scene.

• OpenGL - Software interface to the graphic hardware

• MESA drivers – Graphics library, is an open source implementation of
OpenGL, Vulkan, and other graphics API specifications

INTRODUCTION TO VIRTIO
• VirtIO stands for virtual input & output and was developed by Rusty Russell.

• VirtIO is an abstraction layer over a host’s devices in para-virtualized hypervisor.

• Offloading the majority of the work to the host.
• Speeds up VM operation over more traditional "emulated"

devices.

• VirtIO is a HSI standardized interface

Host NIC

Host
Request

Response

virtio_net

VM

NIC

Processor

Host Interface/Interconnet

DRAM

D
M
A

Rx
FIF
O

D
M
A

Network Interface

Traffic
Generator

Receiver

Tx
FIFO

Serial Network Link

IO Bus

Traditional NIC Modeling approach

HOST-GPU ACCELERATED MODEL

• GPU is modelled on top of
vitio interface.

• Virtio-gpu driver compatible
device.

• Virtio-gpu driver is treated as
embedded software on CPU.

• Exploits Host CPU and GPU
resources.

USB

RTL Design

Simulation
Environment

GPU

DSP

MCU

Crypto

A/V
interface

Interconnect

NVM

SRAM
Analo
g RF

DMA
ETH

SATA HDMI
LPDDR

x

PCIe

I-
Cache

D-
Cache

AR
M

PHY Interface

virtio

Why VirtIO?

• Straightforward: VirtIO devices use normal bus mechanisms of interrupts
and DMA.

• Efficient: VirtIO devices consist of rings of descriptors for both input and
output.

• Standard: VirtIO makes no assumptions about the environment in which it
operates.

• Extensible: VirtIO devices contain feature bits which are acknowledged by
the guest operating system during device setup.

• Improved host and guest performance.

• Exports a common set of emulated devices and make them available
through common API.

VirtIO Devices

• Support different kinds of devices (network, block, video, GPU...)

• Exposed to the emulated environment using PCI, Memory Mapping I/O, Channel I/O.

• The frontend component is the
guest side of the virtio interface.

• The backend component is the
host side of the virtio interface.

• VirtIO Transport Layer is a
channel between front -end
and back -end

Device
Driver

VirtIO
Frontend

VirtIO
Backend

Host OS

Guest
OS

VirtIO Transport Layer

VRing

Device
Model

VirtIO Devices Cont..

• Device IDs are used to identify different types of virtio devices.

• All VirtIO devices have a Vendor ID of 0x1AF4, and have a DeviceID between
0x1000 and 0x103F.

• All devices have a common “header” block of registers.

Offset (Hex) Name

00 Device Features

04 Guest Features

08 Queue Address

0C Queue Size

0E Queue Select

10 Queue Notify

12 Device Status

13 ISR Status

• The Guest Features register is used by the guest VM to
communicate the features that the guest VM driver
supports.

• The Device Status field is used by the guest VM to
communicate the current state of the guest VM driver.

VirtIO Drivers

• The front-end driver is the device

driver installed in the guest OS.

• Accepts I/O requests from the user

process and transfer I/O requests to

back-end driver.

• The back-end driver resides in the

hypervisor and is responsible for

accessing the physical device.

• Accepts I/O requests from front - end

driver and perform I/O operation via

physical device.

virtqueues

Virtio front-end drivers

Device Emu/Sim

Guest VM

Host Environment(Qemu, KVM etc..)

Virtio back-end drivers

VirtIO Transport Layer: VirtQueue

• Virtqueue is a queue of guest’s buffer that host consumes, either by
reading them or writing to them.

• Virtqueues are shared in guest physical memory - driver and device access
the same page in RAM.

• The descriptors/buffer can be chained.

• Driver to device notifications via doorbell method.

• Device to driver notification via interrupt.

• Virtqueue interface -
• add_buf: expose buffer to other end.
• kick: update after add_buf.
• get_buf: get the next used buffer.

VirtIO Transport Layer: VRing

• Vring is a memory mapped region between Host process (Device
model) and guest OS.

• Vring is the memory layout of the VQs abstraction.

• Holds the actual data being transferred.

• A virtio device contains one or more VQs.

• VQs has three types of VRings (or areas):
• Descriptor ring (descriptor area)

• Available ring (driver area)

• Used ring (device area)

VirtIO Transport Layer: Desc Area

• Virtio Buffers: Guest drivers (front-end) communicate with hypervisor
(back-end) drivers through buffer.

• Guest provides one or more buffers representing the request.

• These buffers are added to virtual queues in memory.

struct Buffers[QueueSize]
{
uint64_t Address; // 64-bit address of the buffer on the guest machine.
uint32_t Length; // 32-bit length of the buffer.
uint16_t Flags; // 1:linked buffer index; 2: Buffer is write-only.

// 4: Buffer contains additional buffer addresses.
uint16_t Next; // If flag is set, contains index of next buffer in chain.

}

Virtio Transport Layer: Avail and Used Area

• Avail Area: References to available descriptors in the descriptor ring.

• Used Area: References to used descriptor entries on the descriptor
ring.

struct Available
{
uint16_t Flags; // 1: Do not trigger interrupts.
uint16_t Index; // Index of the next ring index to be used.
uint16_t Ring[QueueSize]; // List of available buffer indexes from the Buffers array

}

struct Used
{
uint16_t Flags; // 1: Do not notify device when buffers are added to available ring.
uint16_t Index; // Index of the next ring index to be used. (Last used ring buffer index+1)
struct Ring[QueueSize]
{
uint32_t Index; // Index of the used buffer in the Buffers array above.
uint32_t Length; // Total bytes written to buffer.

}
uint16_t AvailEvent; // Only used if VIRTIO_F_EVENT_IDX was negotiated

}

VirtIO Transport Layer:Data Exchange

addr len flags next

0x100 0x100 W|N 1

0x200 0x100 W 1

0x300 0x100 W 0

0

2
0

Desc area (collection of buffers)

Avail area
Used area

last avail idx

idx

last used idx

idx

Virtio driver

Virtio device model

Guest user space

Guest kernel space

Host user space

Process

Notification

Host kernel space Hypervisor (KVM etc)

Interrupt

1
struct buffer{

….
};

2

3

4

1 Allocate/create buffer.

2 Populate descriptor entry.

3 Update avail index.

4 Send notification to device.

5 Process the descriptors.

6 Send interrupt to driver.

5 6

Virtio-GPU

• Operate in 2D mode and in 3D (virgl) mode.

• 3D mode will offload rendering ops to the host gpu.

• Supports two VQs
• Controlq: queue for sending control commands.
• Cursorq: queue for sending cursor updates.

• Feature bits
• VIRTIO_GPU_F_VIRGL (0): virgl 3D mode is supported.
• VIRTIO_GPU_F_EDID (1): EDID is supported.

• Configuration layout
• events_read signals pending events to the driver.
• events_clear clears pending events in the device.
• num_scanouts specifies the maximum number of scanouts supported by the device.

Virtio-GPU - Device Operation

• Create a framebuffer and configure scanout
• Create a host resource using VIRTIO_GPU_CMD_RESOURCE_CREATE_2D.
• Allocate a framebuffer from guest ram, and attach it as backing storage to the

resource just created, using
VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING.

• Use VIRTIO_GPU_CMD_SET_SCANOUT to link the framebuffer to a display
scanout.

• Update a framebuffer scanout
• Use VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D to update the host resource

from guest memory.
• Use VIRTIO_GPU_CMD_RESOURCE_FLUSH to flush the updated resource to

the display.

Device Operation: controlq

Retrieve the EDID
data for a given
scanout.

CMD_GET_EDID

Create a 2D
resource on
the host.

CMD_RESOURCE_CREATE
_2D

Retrieve the
current output
configuration.

CMD_GET_DISPLAY_INFO

Assign backing
pages to a resource.

CMD_RESOURCE_
ATTACH_BACKING

Set the scanout
parameters for a
single output.

CMD_SET_SCANOUT

5

Transfer from
guest memory to
host resource.

CMD_TRANSFER_TO
_HOST_2D

Flush a scanout
resource
Request data.

CMD_RESOURCE_FLUSH

Detach backing
pages from a
resource.

CMD_RESOURCE_
DETACH_BACKING

Destroy a resource

CMD_RESOURCE_UNREF

6

7

8

9

Device Operation: cursorq

• VIRTIO_GPU_CMD_UPDATE_CURSOR : Update cursor.

• VIRTIO_GPU_CMD_MOVE_CURSOR: Move cursor.

Virglrenderer

• Virglrenderer is a virtual 3D GPU library that
• enables a virtualized operating system to use the host GPU to accelerate 3D

rendering.

• Mesa handing commands are channeled through virtio-gpu on the
guest to the host.

• The host gets the raw state (Gallium state) and translates it into an
OpenGL form using virglrenderer.

• It is then run as regular OpenGL on the host system.

Virglrenderer Contd..

Guest Host

Application

virgl

virtio_gpu driver

Mesa

Kernel
Host Process

virtio_gpu device

virglrenderer

GPU Driver

GPU Hardware

DEMO

THANK YOU

	Slide 1: VIRTIO BASED GPU MODEL
	Slide 2: CONTENT
	Slide 3: WHAT IS THE PROBLEM WE ARE TRYING TO ADDRESS?
	Slide 4: A SAMPLE BLOCK DIAGRAM WITH GPU
	Slide 5: HOW DO WE MODEL GPU
	Slide 6: SOME GRAPHICS TERMS
	Slide 7: INTRODUCTION TO VIRTIO
	Slide 8: HOST-GPU ACCELERATED MODEL
	Slide 9: Why VirtIO?
	Slide 10: VirtIO Devices
	Slide 11: VirtIO Devices Cont..
	Slide 12: VirtIO Drivers
	Slide 13: VirtIO Transport Layer: VirtQueue
	Slide 14: VirtIO Transport Layer: VRing
	Slide 15: VirtIO Transport Layer: Desc Area
	Slide 16: Virtio Transport Layer: Avail and Used Area
	Slide 17: VirtIO Transport Layer:Data Exchange
	Slide 18: Virtio-GPU
	Slide 19: Virtio-GPU - Device Operation
	Slide 20: Device Operation: controlq
	Slide 21: Device Operation: cursorq
	Slide 22: Virglrenderer
	Slide 23: Virglrenderer Contd..
	Slide 24
	Slide 25

