
Hardware/Software Interface Formats
A Discussion

Richard Weber, Jamsheed Agahi, Josh Rensch, Eric Sherk

Agenda

• Introduction
• Non-authoring languages
• Custom purpose-built HSI authoring solutions
• General purpose-built HSI authoring solutions
• Q&A

Introduction

• Goal: work smarter, not harder

• Problem:
• More work than time or people
• Conflicting needs
• Many languages
• Standards are complex

• Comparative and subjective discussion

Jamie, Lead Engineer

Non-authoring languages
UVM RAL and PSS

Non-authoring languages – UVM RAL

• Standard base class library and API
• Verification view of the address map
• Strengths
• Uniform methodology
• Front- and back- door access
• Addressmap hierarchy & threads
• Test generation
• VIP reuse

Non-authoring languages – UVM RAL

• Weakness - not suitable for authoring
• Low abstraction level
• Limited view generation capability

Non-authoring languages – Portable Stimulus

• Packed struct
• Standardized struct
• Fields of register
• Structure only, no behavior

Non-authoring languages
IP-XACT

IP-XACT, a standard structure for packaging, …

• XML Schema Definition (XSD)
• component, design, …

• Semantic Consistency Rules (SCR)
• overlapping registers, multiple drivers, …

• Tight Generator Interface (TGI)
• API provided by IP-XACT Design Environment

• Bus interfaces
• Ports
• Registers
• Parameters
• Views
• Files

“Electronic IP Data Sheet”

• IP instances
• Parameter values
• Interconnect

“Electronic IC Data Sheet”

XML

DatabaseGenerators

IP-XACT development

• IP-XACT 1.0 December 2004
• IP-XACT 1.1 June 2005
• IP-XACT 1.2 April 2006
• IP-XACT 1.4 March 2008
• IEEE Std. 1685-2009 December 2009
• IEEE Std. 1685-2014 June 2014
• IEEE Std. 1685-2022 September 2022

IP-XACT Purpose

• IP-XACT is
• for IP interchange between IP providers and consumers
• for interchange between tools
• documentation of physical interfaces
• documentation of software interfaces

• IP-XACT is NOT
• an authoring format
• another model of hardware behavior

IP-XACT HSI Structure

• MemoryMap
• Container for AddressBlocks

• AddressBlock
• Container for register data – registerfile or registers
• Memory
• Memory containing virtual register data

• Registerfile
• Container for register data

• Register
• Container for fields

IP-XACT HSI Features

• Offsets of registers and register containers
• Positions of fields
• Software access behavior for fields
• Reset values for fields
• Volatile
• New in 2022 working backdoor or HDL paths
• New in 2022 mode dependent software access behavior

Custom HSI Authoring Solutions

Jamie, Lead Engineer

Custom HSI Authoring Solutions

• company, team, project specific
• general purpose language
• custom data structure
• limited input and output processing
• high maintenance
• limited scalability
• limited sharing
• limited reuse

Jamie, Lead Engineer

Spreadsheet Example

Partial
IPXACT
Example

General Purpose-built HSI Authoring Solutions

Jamie, Lead Engineer

General Purpose-built HSI Authoring Solutions

• generalized solution
• languages developed for HSI Authoring
• Standards – SystemRDL 2.0
• Proprietary – CSRSpec

• industry standard input and output formats
• reuse
• maintenance
• consistency across multiple views/organizations
• RTL, documentation, DV, software

Jamie, Lead Engineer

General Purpose-built HSI Authoring Solutions

• CSRSpec and SystemRDL 2.0 common characteristics
• human readable
• structured
• “programming constructs”
• portable
• reusable
• “look” like a hardware language

SystemRDL 2.0
Example

CSRSpec
Example

General Purpose-built HSI Authoring Solutions

• CSRSpec vs. SystemRDL 2.0 properties

CSRSpec SystemRDL 2.0

addressmap addrmap

register reg

field field

memory mem

group regfile

port signal

General Purpose-built HSI Authoring Solutions

• CSRSpec vs. SystemRDL 2.0 objects
Item CSRSpec SystemRDL 2.0

syntax property title = “cool title”; name = “cool title”;

properties over 280 (like title above) over 85 (like name above)

types boolean, integer, number, reference, string boolean, integer, number, reference, string

field types configuration, constant, status, interrupt,
counter, writedata

configuration, constant, status, interrupt,
counter

bus supported none *

user-defined
properties

none supported

* possible via UDP which then becomes a “proprietary” solution

General Purpose-built HSI Authoring Solutions

• CSRSpec vs. SystemRDL 2.0 other differences

Item CSRSpec SystemRDL 2.0

property assignment static static and dynamic

constraint objects none supported

byte accessible bus
wide registers

supported not supported

field and signal array supported not supported

field alias supported not supported

General Purpose-built HSI Authoring Solutions

If you hand a good spec to three providers, you’ll get three
variations back in return.

The way you know your spec is worthwhile is that you can live
with the differences between them.

If it’s worth caring about, it’s worth writing down.

- Seth Godin (https://seths.blog/2022/07/a-good-spec/)

https://seths.blog/2022/07/a-good-spec/

Lessons Learned

Jamie, Lead Engineer

Questions ?

Attribution

• “Jamie” Photo by Mapbox on Unsplash

https://unsplash.com/@mapbox?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/iSYdI8padLM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

