
Next Frontier in Formal Verification
Ping Yeung, Rajesh Rathi, Vaibhav Kumar,

Puneet Anand, Ravindra Aneja

Introductions : Ravindra Aneja (Synopsys)

Ravindra Aneja is Director, Applications Engineering at Synopsys, responsible for formal
verification solutions. He has 25+ years of technical marketing and application engineering
experience in functional verification domain which includes simulation, hardware
acceleration, emulation, assertion based formal verification and clock domain crossing
verification. Before Joining Synopsys, Ravindra worked at Atrenta, Mentor Graphics, 0-In Design
Automation, IKOS Systems and Interra Inc.

Ravindra is co-chair of DAC Front-end engineering track TPC.

Introductions : Ping Yeung (NVIDIA)

Ping Yeung, Ph.D. is a Senior Manager at Nvidia. He was part of the team that developed and
introduced Assertion-Based Formal Verification to the electronic design industry. He has over 25
years of experience, including positions at 0-In, Synopsys, Mentor Graphics, and Siemens EDA. He
has published 30+ papers and holds 7 patents in the CDC and formal verification area.

Introductions : Rajesh Rathi (Google)

Rajesh Rathi is currently working at Google as a formal verification engineer. He has 16 years
of experience doing both simulation and formal verification at companies such as Samsung
and Broadcom.

Introductions : Vaibhav Kumar (NXP)

Vaibhav has graduated from Dayalbagh Educational Institute in conjunction with University of
Maryland. He has overall 15+ years of experience in SoC verification, validation, emulation and IP
verification. Currently he manages team of 15+ IP verification engineers based out at NXP Austin
and India.

He drives overall verification methodology adaption for various verification initiatives in Digital IP
group at NXP. He has publications and interest in areas of formal verification & functional safety.

Introductions : Puneet Anand (Qualcomm)

Puneet Anand leads the formal verification effort for the Qualcomm GPU organization, across
North America, India & Europe. He is keenly focused on deploying traditional and advanced FPV
and formal app-based solutions.

He spent last few years working on GPU & ML ASICs DV and Formal Verification. At his previous
job at Meta, he was leading Formal Verification for the Inference/Training, Video Transcoding and
Connectivity ASICs, as well as leading Simulation DV for Cache subsystem.

Outside of work, his personal interests are Reading, playing and watching Tennis, volunteering as
a Level 3 Official in his kids’ Swim team and a Jr. FLL robotics Coach.

Formal Verification - Motivation

• Growing trend to look for better verification solutions
• Current flows not scaling
• Complexity continues to grow
• Time to market pressure continues to mount

• Background
• UVM based Simulation environment
• FPGA prototyping/Emulation
• Etc.

Does not scale, controllability challenges
Too late and expensive to find bugs

Formal Addresses these Verification Challenges

Factors Driving Formal Adoption
• Availability of easy-to-use Formal Apps

• Control path and data path
• Security, Safety, low power
• Coverage closure
• Signoff

• Continuous capacity and performance improvements in formal verification
products, example: Synopsys VC Formal

• Leveraging AI/ML techniques for faster performance and actionable feedback to
the users to manage complexity

• Simulation like coverage-based signoff criteria

Synopsys Confidential Information

Synopsys VC Formal Apps :
Targeted for Specific Problems

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC

Property
Verification

ML FPV

Functional
Safety

FuSa

Sequential
Equivalence

ML SEQ

Security
Verification

ML FSV

Low Power

FLP

Testbench
Analyzer

ML FTA

Auto
Checks

AEP

X-Propagation
Verification

FXP

Register
Verification

ML FRV

Coverage
Analyzer

FCA

Connectivity
Checking

CC

Datapath
Validation

DPV

1 2 3 4 5 6 7 8

v1 6 111 226 230 347 24 242 593

v2 15 173 291 294 441 28 259 607

0
100
200
300
400
500
600
700

B ug Hu nt i ng I mp roveme nt f or # Cover s a n d
A ss er t s

2X Faster Run Time

20.12 21.09-
SP2-1

21.09-
SP2-2

21.09-
SP2-3

Elapsed Time(H) 1023 471 379 135

1023

471

379

135

0

200

400

600

800

1000

1200

EL
AP

SE
 T

IM
E

(H
O

U
RS

)

RELEASE

R un T ime I mpr ove ment

7.5 X

R1 R2 R3 R4

• Up to 7.5X faster TAT

• Faster proofs with new
engines

• Release-over-release
improvement

• Bug Hunting specific
performance
improvements

• Automated cover
properties generation

• Custom orchestration
for expert users

VC Formal: Performance Improvements

Leverage AI/ML for Faster Convergence

ML for Performance and Debug

• 10X performance speed-up through
RMA

• More robust RMA across RTL changes

• ML-based clustering inconclusive
properties

Simulation Like Signoff Criteria

• Generate coverage for verified properties

• Merge it with simulation coverage

• Add waivers for non-functional logic

Data Path Validation

• Unique formal engines to provide conclusive answers to math
problems

• Widespread used in CPU/GPU/AI/ML designs

• Bring-in traditional model checking features into data path validation
world

• Coverage
• Vacuity, witness, SVA style properties
• Visibility into engines performance

New Avenues and Pushing the Envelope

• End-2-end property verification

• Data path validation

• Security and safety verification

• Sequential equivalence for most advanced clock gating designs

Formal Signoff
with End-to-End Checking Methodology

Ping Yeung, Nvidia

Agenda
• Formal Verification Usage Levels
• End-to-End Checking Methodology
• End-to-End Checkers
• Abstraction Techniques and Modeling
• Testcases

• Parameterized Multi-cast Crossbar Design
• Request Coalescer Unit
• NOC Configurable Cache Controller

Formal Verification Usage Levels
Level 5

System Deadlock
Cache Coherence
Sys-Level Security

System Arch.
VerificationLevel 4

Block
Sign-Off

Load/Store Unit
Warp Sequencer
Cache Controller
Multi-Lane Aligner
MAC Rx Block

Exhaustive: Formal Sign-Off

AUTO
MODE

Level 1

Auto Checks
X-propagation
Unreachability

Auto FormalAUTO
MODE

Level 2

Connectivity
Register checks
Clock gating
Sequential LEC

Formal Apps

Shift Left; Formal Bug Hunting
RTL Assertions
Arbiter
FIFO
Handshake
Bus Protocol

SVA
PSL
OVL

Level 3

ABV Formal
SVA
PSL
OVL

ABV Formal
SVA
PSL
OVL

White-box approach Black-box approach (ideally)

Block-Level Formal Signoff
Different from traditional Assertion-based Verification
• Black-box approach; use end-to-end checkers; does not depend on RTL
• Divide-and-conquer with multiple formal testbenches

Early deployment
• Identify incomplete or ambiguous specifications early in the design cycle,
• Provide clear value to the project team because they map directly to the functional specification
• Find more bugs and verify the block while the designer is coding the RTL

Exhaustiveness
• Replace simulation entirely and do a formal signoff of the block,
• Find deep or unaware corner case issues

Reusability
• Reuse the formal testbench with updated RTL to quickly confirm a fix or find new issues

Level 4

Block
Sign-Off

Formal Signoff Bugs Found
Project 1
• Engage before RTL coding
• Coding I/Fs + end-to-end checkers when

designers coding RTL
• Signoff before top-level simulation
• Found simple + complex issues

Project 2
• Reused block with additional functionalities
• Coding I/Fs + end-to-end checkers when

designers updating RTL
• Concurrent with existing simulation
• Found complex issues

Project 3
• Updated block with standard interfaces
• Formal VIP + end-to-end checkers
• Found complex issues

Planning Implementation Closure

Agenda
• Formal Verification Usage Levels
• End-to-End Checking Methodology
• End-to-End Checkers
• Abstraction Techniques and Modeling
• Testcases

• Parameterized Multi-cast Crossbar Design
• Request Coalescer Unit
• NOC Configurable Cache Controller

End-to-End Checking Methodology
Task Planning Implementation Closure

Management Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute,
vendor resources

Management
• Need a team of formal experts and engineers

• Formal experts with years of experience required for formal planning
• Formal engineers required for formal testbench implementation
• Careful partnering of formal engineers with design team members

• Need compute resources and vendor expertise
• Server farm environment for formal coverage and final signoff
• Vendor expertise to address some difficult properties

End-to-End Checking Methodology
Task Planning

Management Formal expertise
Schedule & milestones

Block Identify and Evaluate

Function Describe and Prioritize

Complexity Decompose and Map

Block
• Identify blocks for E2E formal
• Evaluate to determine effort
Function
• Describe E2E functionality
• Prioritize them based on importance/risk
Complexity
• Decompose, divide-and-conquer
• Map them to one or more formal TBs

End-to-End Checking Methodology
Task Planning Implementation

Management Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Block Identify and Evaluate Capture Interfaces

Function Describe and Prioritize End-to-End Checkers

Complexity Decompose and Map Abstraction Techniques

End-to-End Checking Methodology
Task Planning Implementation Closure

Management Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute,
vendor resources

Block Identify and Evaluate Capture Interfaces Validate Constraints

Function Describe and Prioritize End-to-End Checkers Conclusiveness

Complexity Decompose and Map Abstraction Techniques Formal Coverage

End-to-End Checking Methodology Milestones
Task Planning Implementation Closure

Management Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute, vendor
resources

Block Identify and Evaluate Capture Interfaces Validate Constraints

Function Describe and Prioritize End-to-End Checkers Conclusiveness

Complexity Decompose and Map Abstraction Techniques Formal Coverage

70%

20%

0%

0%

100%

80%

50%

10%

100%

100%

100%

100%

Agenda
• Formal Verification Usage Levels
• End-to-End Checking Methodology
• End-to-End Checkers
• Abstraction Techniques and Modeling
• Testcases

• Parameterized Multi-cast Crossbar Design
• Request Coalescer Unit
• NOC Configurable Cache Controller

End-to-End Checkers
Developing formal-friendly reference model could be as big an effort as
writing RTL

RTL Block

Output Handshake

Datapath Models

Control
path

checks

Data
path

checks

Input Handshake

Control Models

Interface Handshake

Abstraction Models

End-to-End Checker

Formal Testbench Configurations

Output Handshake

Control
path

checks

Data
path

checks

Input Handshake

RTL Block
Control

path
checks

Data
path

checks
RTL Block

Internal I/F

Internal I/F
Output

Control
path

checks

Input

RTL Block

Formal TB = DUT
√ Match formal TB to whole DUT
√ Well defined input/output interfaces
× May have high complexity

Formal TB = (DUT – Interfaces)
√ Useful to bypass complex interfaces
√ Reduce design/proof depth
× Undocumented interfaces

Formal TB = (partial DUT)
√ Divide-and-conquer approach
√ Reduce design/formal complexity
× Incomplete functionality

Abstraction Techniques
Abstraction Technique Design Complexity Formal Efficiency

Case splitting Multiple runs with different
cases reducing design
complexity per run/case

Reduce COI, reduce state
space per run/case

Cut-point/ Black box Eliminate logic driving cut-
points/inside blackbox

Reduce COI, state space;
controlled with constraints

Abstraction Techniques
Abstraction Technique Design Complexity Formal Efficiency

Case splitting Multiple runs with different
cases reducing design
complexity per run/case

Reduce COI, reduce state
space per run/case

Cut-point/ Black box Eliminate logic driving cut-
points/inside blackbox

Increase flexibility but
controlled with constraints

Reset abstraction n.a. Reduce access depth

Counter abstraction n.a. Reduce the length of
counting

Abstraction Modeling 1
Abstraction Model Design Complexity Formal Efficiency

Symmetric data
elements

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Reduce COI and state space
with symmetry

Abstraction Modeling 1
Abstraction Model Design Complexity Formal Efficiency

Symmetric data
elements

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Reduce COI and state space
with symmetry

RTL model Abstraction model

element_type [SIZE-1:0] element;

element [addr] = wr_data;
rd_data = element [addr];

element_type abs_element;

if (addr == sym_addr) abs_element = wr_data;
if (addr == sym_addr) rd_data = abs_element;

$stable (sym_addr)

Abstraction Modeling 2
Abstraction Model Design Complexity Formal Efficiency

Memory abstraction Represent one location instead
of the full size of the memory

Reduce COI and state space
with symmetry

RTL memory: reg [WIDTH-1:0] mem [DEPTH-1:0];
abstraction memory: reg [WIDTH-1:0] mem;
assume property: (sym_addr < DEPTH) ##1 $stable(sym_addr)
abstraction write: if (wr && (wr_addr == sym_addr)) mem <= wr_data;
abstraction read: if (rd && (rd_addr == sym_addr)) rd_data = mem;

Abstraction Modeling 3
Abstraction Model Design Complexity Formal Efficiency

FIFO Eliminate logic before cut-
points; add abstraction model Reduce the depth of the FIFO

wire [LOG_DEPTH-1:0] sym_depth;
assume property: (sym_depth > 1 && sym_depth < DEPTH) ##1 $stable(sym_depth)
abstraction model: if (wr_ptr == sym_depth) wr_ptr <= 0;

else wr_ptr <= wr_ptr + 1;

Abstraction Modeling 4
Abstraction Model Design Complexity Formal Efficiency

Data independence
(Wolper Coloring)

Eliminate all storage elements;
add Wolper FSMs Reduce COI with pattern

The rules for generating and verifying the Wolper sequence are:

1. If the first 1 is seen, next one should be 1

wolper_1st_1_seen_next_1: (first_one && !second_one && input_valid) |-> (colored_input == 1'b1)

2. If two 1’s are seen, only 0’s should be seen

wolper_2nd_1_seen_forever_0: (second_one && input_valid) |-> (colored_input == 1'b0)

Abstraction Modeling Summary
Abstraction Modeling Design Complexity Formal Efficiency

Symmetric data elements
Eliminate multiple dimensional data
elements; add single dimension abstraction
model

Reduce COI and state space with
symmetry

Memory abstraction Represent one location instead of the full
size of the memory

Reduce COI and state space with
symmetry

FIFO Eliminate logic before cut-points; add
abstraction model Reduce the depth of the FIFO

Data independence
(Wolper Coloring)

Eliminate all storage elements; add Wolper
FSMs Reduce COI with pattern

Tagging Represent one tag instead of the complete
linked list Reduce COI

Formal Sign-off
• Methodology

• End-to-End Checkers
• Constraints to control the interfaces
• Abstractions to achieve convergence
• Coverage to measure completeness

• Am I done?
• Are my Checkers complete?
• Are my Constraints weak enough?
• Is my Complexity strategy complete?
• Is my Coverage goal met?

Implement
constraints

Run formal verification

Am I done?

Add abstractions
and/or fix constraints

Implement
checkers

Agenda
• Formal Verification Usage Levels
• End-to-End Checking Methodology
• End-to-End Checkers
• Abstraction Techniques and Modeling
• Testcases

• Parameterized Multi-cast Crossbar Design
• Request Coalescer Unit
• NOC Configurable Cache Controller

Parameterized Multi-cast Crossbar Design
• 8x8 Crossbar design

• Each client can send request to 1+ targets
• Each target has an arbiter to decide which

request gets forwarded based on priorities

• Abstraction Deployed
• Symbolic variables used to select a client/target

and implemented all of the checkers for the
symbolic client and target pair.

• Formal explore all possible values for the
symbolic variables

FIFO0client_0

target_0

C0 C1 C6 C7

T0 T6 T7T1

client_1

target_1

client_6

target_6

FIFO3client_7

target_7

8x8 Multicast Crossbar

39

Control Path and Data Path Checkers
Multi-cast Crossbar Design:
• Control path end-to-end checkers:

• An arbitration checker (a combination of two checkers) for the arbitration scheme
• A consistency checker to ensure no spurious grant is given to a client
• Performance checkers to ensure operations are performed in each cycle when the

conditions are met.

• Data path end-to-end checkers:
• Data integrity checkers to ensure correct transfer

• from read data input port to buffer
• from buffer to store output port.
• data is not corrupted, duplicated, reordered, or dropped.

• Wolper coloring technique: doesn’t require data storage

Parameterized Multi-cast Crossbar Design
• Design used in the "Break the Testbench"

challenge at DAC 2015.
• Attendees were invited to insert functional bugs

• All 73 inserted RTL bugs
• Exposed by one or more checkers
• Excellent exercise to demonstrate that end-to-end

checking is a comprehensive methodology.

• Abstraction Deployed
• symbolic variables used to select a client/target and

implemented all of the checkers for the symbolic client
and target pair.

• Formal explores all possible values for the symbolic
variables

FIFO0client_0

target_0

C0 C1 C6 C7

T0 T6 T7T1

client_1

target_1

client_6

target_6

FIFO3client_7

target_7

8x8 Multicast Crossbar

41

End-to-End Checking Methodology
Task Planning Implementation Closure

Management Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute,
vendor resources

Block Identify and Evaluate Capture Interfaces Validate Constraints

Function Describe and Prioritize End-to-End Checkers Conclusiveness

Complexity Decompose and Map Abstraction Techniques Formal Coverage

inconclusives

Summary
• Block-level Formal Signoff with End-to-End Checking Methodology

• End-to-End Checkers
• Abstraction Techniques and Modeling
• Comprehensive for block-level formal signoff

• Major benefits
• Reduce time to First Bug: Shift-Left “Avoidable Bugs”
• Reduce time to Last Bug: Eliminate “Inevitable Bugs”

• Acknowledgement
• The support of the whole Nvidia Formal Team in Gurugram, India.

Q&A

Datapath Formal Verification of
Crypto Accelerators and Multipliers using VC Formal

Rajesh Rathi, Google Inc
Manish Harnur, Google Inc

Agenda

• Motivation
• FP32 Multiplier C-to-RTL
• Galois Field Multiplier C-to-RTL
• Cryptographic accelerator AES C-to-RTL
• AES with obfuscation RTL-to-RTL
• Conclusion

Motivation

• DPV enables delivering higher design quality
• Impractical to verify datapath designs with huge state space exhaustively

with simulation
• DPV proves absence of bugs

• DPV can be more efficient than simulation
• In case of AES, simulation reduced the stimuli to a manageable subset and

still able to get high confidence in verification
• Simulation has overheads of testbench development, stimulus generation

and coverage closure

FP32 Multiplier C-to-RTL Equivalence

• Off-the-shelf C model from SoftFloat
• Proof did not converge in 24 hours with standard solvers

• Expected to converge easily

• Likely that the tool struggled to find common points between spec
and impl
• Upon inspection, our design implementation is non-standard

FP32 Multiplier - Convergence Strategy
● Used assume - guarantee
● Prove product of mantissa with HDPS engine.

● Then use that as an assumption to prove the rest of
the logic with standard solvers.

● Proof converged within 5 minutes

lemma impl.partial_prod[47:0](2) == {1'b1, impl.io_x(2)[22:0]}) * ({1'b1, impl.io_y(2)[22:0]}

assume impl.partial_prod[47:0](2) == {1'b1, impl.io_x(2)[22:0]}) * ({1'b1, impl.io_y(2)[22:0]}

lemma z_check = spec.z(1) == impl.mul_out(2)

FP32 multiplier
implementation

Galois Field Multiplier

• Math building block used in our security designs
• Two designs

• First design: two inputs of 128 bits each and output of 128 bits
• Second design: two inputs of 64 bits each and output of 64 bits

• In-house C reference models
• Coded independently and completely different from each other
• Both coded without any attempt to be similar to the RTL impl

Galois Field Multiplier - Convergence

• 128-bit design converged easily within minutes
• 64-bit design did not converge even after running for 24h

• Upon inspection, we found only a few common points between C (spec) and RTL
(impl)

• Avoided recoding the C model to avoid introducing bugs to a known good
C model (or needing to verify changes)

• Focused on achieving convergence through standard techniques
• Case split
• Different solvers for different proofs

• Proof times in the range of couple of minutes to 45 minutes

AES Basics

.

.

.

.

128-bit
plaintext

128-bit
ciphertext

Round
#1

Round
#2

Pre-
Round

Last
Round

key (128, 192 or 256 bits)

Key
Expansion

encryption/decryption

Key Size
(bits)

Exp Key
Size (bits)

No. of
Rounds

128 1408 10

192 1664 12

256 1920 14

AES Block Implementation

• Not practical to verify
the entire design end-
to-end

• Verify the 2 datapath
blocks standalone

aes_top

encryption /
decryption

control and
other logic

control and
other logic

din dout

key_expa
nsion

key

fifo fifo
Cipher

AES Cipher Implementation

• Single stage implementation
with data recycling

• End-to-end verification
• Simple control logic that should

lend well to DPV tool
• Obfuscation techniques require

end-to-end testing

encryption /
decryption

control logic

din[127:0]
dout[127:0]

key

AES DPV - Divide and Conquer

• RTL expands the key for all rounds before the encryption/
decryption begins

• Looked at several C models from openssl (open source software
library)
• Some did the key expansion at each round
• Picked the model that was similar to the RTL: performed the key expansion

for all rounds beforehand

AES Key Expansion C-to-RTL Equivalence

key (128, 192 or 256 bits)

key_expansion
RTL (impl)

impl.key_exp

spec.key_exp

key_expansion
C model (spec)

● Proofs converged easily

Cipher C-to-RTL Equivalence

• Proofs did not converge even after
running for 24 hours
• Likely due to huge state space of the

expanded_key (1408/1664/1920 bits)
• Exhaustive exploration of entire

state space of expanded_key is not
required, only a subset
• 2^128 of 2^1408
• 2^192 of 2^1664
• 2^256 of 2^1920

Cipher C-to-RTL - Convergence Strategy

• Include the C model for key expansion
• Feed output of key_expansion C model

to both C model and RTL of Cipher
• Significant reduction of state space
• Proofs converged

• shortest time of 1h for 128-bit encryption
• longest time of 7h for 256-bit decryption

Obfuscation for Countermeasures

• A hacker can use side channel analysis to extract secrets such as key
• RTL provides a way to obfuscate the internal data as a countermeasure to side

channel attacks
• Final output of encryption or decryption with obfuscation should not change

din

key

obfuscate = OFF

obfuscate = ON

encrypt/decrypt

encrypt/decrypt

dout

Cipher with obfuscation

• Verification intent: Obfuscation should not corrupt encrypted or
decrypted output

• C-to-RTL equivalence
• C model has no concept of obfuscation
• Enabled obfuscation on RTL implementation
• C-to-RTL did not converge even when run for 24 hours

• RTL-to-RTL equivalence
• More common points between spec and impl; hence greater chances of

convergence
• Spec is RTL with obfuscation disabled; Impl is RTL with obfuscation enabled

AES with Obfuscation RTL-to-RTL Equivalence

• RTL-to-RTL equivalence results
• Encryption (for all sizes of key) converged in 1 hour or less
• Decryption did not converge (for any size of key) even after running for

several days with standard solvers

• Tried various solutions to converge decryption but no success
• Synopsys provided a customized solver

• Proof converged for decryption with 256-bit key in 12 hours

Results

• DPV found corner case bugs which would have been hard to find
with simulation. Some example bugs found in FP32 multiplier:
• Bug in normalization and rounding logic
• Bug in logic that handles the special cases of Denormal

• Full proofs on Galois field multiplier and AES gave us higher
confidence
• Help meet higher industry standards

Conclusion

• Formal on datapath blocks enabled us to deliver high design quality
and more efficiently than simulation

• Achieved proof convergence through
• Standard techniques such as case split, assume-guarantee
• Careful choice of reference model such that more common points between

spec and impl
• Deployed RTL-to-RTL equivalence where applicable

• Custom solvers for a specific datapath can yield faster convergence

Q&A

Vaibhav , Sr Manager, NXP Austin

Gautam, Sr Manager, NXP Noida

Gaurav, Sr Manager, NXP Noida

How Formal is enabling automotive SoCs to
comply to various metrics of Safety & Security

• Safety : Motivation for Safety solution
• FuSa basics/Problem statement
• Fault injection plan
• Formal and fault injection tool usage

• Security : SOC with distributed architecture
• Problem Statement for securtiy
• Challenges : Formal & Simulation
• Solution and Implementation

Table of contents :

PROBLEM STATEMENT

MOTIVATION
Design Process:

- Functional Safety is a fundamental requirement in the automotive systems to guarantee a tolerable level of risks in
accordance with ISO 26262

- Based on FMEA/FMEDA process, IPs should define, implement and comply to the relevant ASIL level safety
mechanism
• This includes the Fault Campaign: identifying fault injection and diagnostic points, and converging on diagnostic

coverage metrics
Challenge:

- Verify safety mechanisms comply with the ASIL-D metrics
• Executing on fault campaign
• Fault injection via normal simulation method could be too cumbersome and time consuming
• Closing diagnostic coverage on last few percentage points could be overwhelmingly time consuming, and

manual effort is prone to errors
Approach/Value:

- Presenting an optimized flow by combining fault simulation and formal analysis with Z01X and VC Formal, which was
used on a memory controller IP

- Faster overall flow and reduction in manual effort for fault analysis

68

MAIN IDEA
Shift Left:

- Partitioning the design appropriately and excluding standardized safety elements (ECC, lockstep modules, etc.)
- Leveraging the tools’ strengths to maximize the ROI

• Ordering the formal analysis and fault injection tools such that they can use each other’s capabilities to the
maximum advantage

- User automation makes the flow more efficient
• Making it more repeatable & portable for several input vectors and across IPs

Tool capabilities:
- Z01X gives the base of fault simulation

• Testability analysis: grade and reorder tests to provide higher coverage sooner
• Concurrent fault simulation: simulate 1000’s of faults in a single simulation
• Compute farm job management: coordinate distributed jobs to amplify fault capacity

- VC Formal FuSa improves the flow by analyzing the design & the fault space
• Structural analysis: reduce the fault space by finding safe faults
• Formal analysis: further reduce fault space and provide formal proofs of detectability

- Unified Fault Database provides a common platform for the tools
• Seamless interaction of Z01X and VC Formal FuSa, sharing fault definitions and results
• Merge results and generate reports

69

FAULT CLASSIFICATION: DETERMINING THE EFFECT OF ANY FAULT
Observation Points

Non-Safety Related

F1
Diagnostic Point

Safety Mechanism

F2 ?

F3

F4

Safety Related

F1 – Safe
F2 – Assumed Dangerous
F3 – Dangerous Detected
F4 – Dangerous Undetected

Based on user specification

The devil is in the “details”…

If a fault was not observed and/or detected (F2), it
can be:
1. A safe fault
2. A dangerous fault which did not propagate

due to insufficient stimulus / safety hole

70

STANDARD FAULT FORMAT FOR FUNCTIONAL SAFETY

• Faults grouping example

Fault Injection Results of
Safety Mechanisms

Dangerous
Diagnosed

Dangerous Not
Diagnosed

Safe fault

Dangerous
Assumed

Unreachable faults that are design
dependent

UU, UT, UB, UR status

Unreachable faults that are
Test dependent
NN, NC, NO, NT

Faults observed or potentially
observed but undetected or

potentially detected

Faults observed and detected

All other faults

Safe Unobserved

F1

F2

F4

F3

F2

F1

71

Fault campaign tool flow

FAULT CAMPAIGN FLOW

Fault Compiler

Reporting

Fault Database

Structural Analysis

Fault Coverage &
Debug GUI

Controllability,
Detectability,
Observability

User Fault
Definitions

1

32 4

Fault Simulation Formal Analysis

Cone of
Influence

Fault
Campaign

Report
5

DC – Diagnostic Coverage of the Safety Mechanism(s)
FSAFE – Percentage of faults which cannot violate the Safety Goal
FME(D)A – Failure Mode Effect (Diagnostic) Analysis

FMEA
FMEDA

estimated

FMEDA
measured

ISO 26262
Work Product

DC, FSAFE back-annotation

72

FAULT INJECTION PLAN
- Faults :

All hierarchical ports and internal variables in the design will be considered as fault injection points
- Observation point :

All outputs to be considered as observation points
- Fault monitors :

Sitting outside IP : faults will be monitored by central fault monitoring unit
Various safety mechanism supported in IP

- Exclusions :
All clocks are assumed monitored
Lockstep have no shared physical redundancy thus independent fault injection could be done

- Faults to be covered :
Plan to cover both stuck at & transient faults
Single Point Fault Injections are primary mode of fault injection

- Only valid multi point fault injection is single stuck at & single transient fault

73

SOLUTION AND IMPLEMENTATION

START SAFETY ANALYSIS EARLY

Synopsys Z01X Environment Ready

Synopsys VC Formal Environment Ready

Shift Left

Shift Left

Flow 1

Flow 3

Flow 2

VCF (Formal Structural Observability (COI))

VCF (Formal Control + Observe + Detect)

Analysis and Convergence
Z01X
FCC

Tool step:

75

RESULTS

EVIDENCE (FLOW COMPARISON)

Faults (NA) SA DM DU DA DN DI

0 167050 75000 50745 326 21784 15095

VCF (Formal Structural Observability (COI))

VCF (Formal Control + Observe + Detect)

Analysis and Convergence

Z01X

FCC

Faults (NA) SA DM DU DA DN DI

0 5730 154877 132997 2054 21402 12940Flow 1

Faults (NA) SA DM DU DA DN DI

0 166078 78651 51746 630 19172 13549Flow 2

Flow 3

| 72 + 5 + 48 hrs* |

| 52 hrs* |

| 7+36 hrs* |

Fault Status Groups
SA "Safe"
DM "Dangerous Missing Stim"
DU "Dangerous Unobserved"
DA "Dangerous Assumed"
DN "Dangerous Not Diagnosed"
DI "Dangerous Diagnosed"

Tool step:

Faults
status at
end of each
flow

*Times measured for Synopsys Z01X and Formal Analysis only

77

Fault Status Groups
SA "Safe"
DM "Dangerous Missing Stim"
DU "Dangerous Unobserved"
DA "Dangerous Assumed"
DN "Dangerous Not Diagnosed"
DI "Dangerous Diagnosed"

FLOW COMPARISON : FAULT SCOPING – SYNOPSYS Z01X
(FLOW1) VS SYNOPSYS VC FORMAL + Z01X (FLOW2)

2%

47%

40%

1%
6%

4%

FLOW1
SA DM DU DA DN DI

50%

24%

16%

0%
6%

4%

FLOW2
SA DM DU DA DN DI

SA improved from 2% to 50%

• Reduction in overall fault simulation time (by more than 7X)
• Improved productivity by reducing manual debug and analysis efforts

78

ADVANTAGES

ANALYSIS OF COVERAGE RESULTS – FSAFE, DC

Coverage {
FS1 = "(SA) / (NA + SA + DM + DU + DA + DN + DI)";
FS2 = "(SA + DM) / (NA + SA + DM + DU + DA + DN + DI)";
FS3 = "(SA + DM + DU) / (NA + SA + DM + DU + DA + DN + DI)";
DC1 = "(DI) / (NA + DM + DU + DA + DN + DI)";
DC2 = "(DI) / (NA + DU + DA + DN + DI)";
DC3 = "(DI + DA) / (NA + DA + DN + DI)";

}

Coverage Flow 2%

FS1 50.35

FS2 74.20

FS3 89.89

DC1 8.27

DC2 15.92

DC3 41.41

SA "Safe"
DM "Dangerous Missing Stim"
DU "Dangerous Unobserved"
DA "Dangerous Assumed"
DN "Dangerous Not Diagnosed"
DI "Dangerous Diagnosed"

DC – Diagnostic Coverage of the Safety Mechanism(s)
FSAFE – Percentage of faults which cannot violate the Safety Goal

Further analysis on DM, DU, DA, DN fault status groups

• DM : faults for which propagation is structurally blocked for given stimulus

• Solutions: apply formal convergence techniques, add stimulus for simulation, and/or
document why they are safe

• DU : faults which started propagating, but did not make it to Observation or Detection
points

• Solutions: debug the faults, add stimulus, apply formal techniques, and/or document
why they are safe

• DA : simulation issues

• Rerun Synopsys Z01X with revised settings

• DN : faults which are dangerous but not diagnosed

• May need to revisit the Safety Mechanisms

FS1/DC1 : current status

FS2/DC2 & FS3/DC3 : potential status after
analyzing and reclassifying DM and DU

80

SUMMARY (SHIFT LEFT)

- Fault simulation, formal analysis and common fault database are all critical pieces of ASIL fault campaign

- Reducing fault injection scope by efficient use of Synopsys VC Formal FuSa with Z01X leads to significant performance
enhancement and thus reducing manhour effort.

- Synopsys VC Formal FuSa impact on functional safety fault campaign
- Quick setup and high ROI

- COI structural analysis reduced fault space by 50%, resulting in
• Reduction in overall fault simulation time (by more than 7X)
• Improved productivity by reducing manual debug and analysis efforts

- Formal analysis : proofs for detection without simulation in some cases

Using both tools in ways suggested in presentation leads to converge efficiently on our design for safety compliance
which was further augmented by flow automation making it repeatable & portable

81

SECURITY : SOC WITH DISTRIBUTED
ARCHITECTURE

Typical SoC with Distributed Security Architecture

Unsecured
Initiator/Source A

Secure Destination
Security RoT

Non Secure
Destination

SoC

Unsecured
Initiator/Source B

Unsecured
Initiator/Source C

Secure Destination

Secure Destination

Secure Destination

Non Secure
Destination

Secured
Initiator/Source D

• Security RoT (Root of Trust) – Owner of Keys

• Secure Destination – Security relevant block,
consumer of RoT keys

• Secure Initiator/Source – Security block which can
read/write security critical information from Secure
Destinations.

• Unsecured Initiator – A functional block which is not
expected to have access to secure info / destination

• Non-Secure Destination – A function blocks which
requires no Security Info (e.g. RoT Keys) to perform
its functionality.

Typical SoC with Distributed Security Architecture with potential leakages
Potential Security Leakages can be because of :

1. Security Key being distributed to a Non-Secure
Destination -

2. Non-Secured Initiator getting access to a Secure
Destination -

3. Secure Destination getting accessed via an
INDIRECT path from a Non-Secure Destination

Typical reasons of Security Leakages :

1. Unintentional security hole created while
implementing a non-security functionality of SoC
(e.g., test, debug, safety etc.)

2. Remnant logic from re-use of previous design.

3. Bad design practice which can open up access to a
Secure Block, unintentionally. e.g., Multiple
hierarchies of muxes.

4. SoC Specific Logic which doesn’t fall under any
specific verification scope and gets missed all
together in functional verification.

Unsecured
Initiator/Source A

Secure Destination
Security RoT

Non Secure
Destination

SoC

Unsecured
Initiator/Source B

Unsecured
Initiator/Source C

Secure Destination

Secure Destination

Secure Destination

Non Secure
Destination

Secured
Initiator/Source D

PROBLEM STATEMENT

SoC Security Leakage Problem Statement
Problem :
How to deterministically identify the potential leakage of Security critical info in a SoC with
distributed security architecture ?

Details :
Security leakage due to logical bugs are difficult to identify and need manual RTL analysis. The
process can be iterative, inconclusive and prone to errors. No metric is yet available which can give
confidence on the sign-off of such security leakages.

EDA tool solutions are still in nascent stage to solve this problem at SoC Level.

A security leakage can lead to :
• Unintentional leakage of Secure info (e.g., Root Keys) to an unsecure logic problem.
• Protection override of security asset by incorrect un-secure source/signal.

CHALLENGES : FORMAL & SIMULATION

Current Challenges with respect to Security Verification:

With Simulation :
- Negative verification is an important aspect of Security Verif Signoff. This is typically an open-

ended requirement for SoC Verif Engineer, to develop all negative scenario tests.
- Dynamic testcases may expose only limited security leakage on SOC, based on a Verif Engineer’s

understanding of Design

With Formal:
- Setting up the accurate SOC design on Formal tool is a known challenge (due to convergence).
- Constraining SoC Design to identify negative scenarios beyond functional specs is a challenge.
- No metric to know the required logical cone for identifying negative security scenarios on SoC

(a.k.a identification of 'ghost logic' which can impact /compromise the security).
- Detailed design knowledge required for a new user to differentiate between secure paths and

non secure paths.

SOLUTION AND IMPLEMENTATION

• FSV is leveraged to develop a PoC SoC Security Verif Flow to identify a sub-set of security leakage causes commonly seen in
SoCs, having distributed security architecture:

Solution evaluated using FSV :

Unsecured
Initiator/Source A

Secure Destination
Security RoT

Non Secure
Destination

SoC

Unsecured
Initiator/Source B

Unsecured
Initiator/Source C

Secure Destination

Secure Destination

Secure Destination

Non Secure
Destination

Secured
Initiator/Source D

Overview of Flow :

• Identify the set of Secure Initiators

• Identify the set of Secure Destinations

• Identify the security critical signals

• Set the hierarchy to restrict the tool’s
analysis of the design.

• Run the tool to identify any potential
leakages

Note: Custom scripts are used in the flow to
pass the required info (mentioned in the above
steps) to the tool

Solution evaluated using FSV : (contd)

By user

RESULTS

Results:
• The SoC with 8 master and 14 slaves (approx. 50 million gates) was put through

FSV set-up for identifying security leakages on specific signals.
• The design was able to converge FSV in 3 hours.
• 2 signals were identified to be security critical at Initiator , converging on 4

destinations.
• The tool was able to successfully capture the unintended destination, indicating

the leakage.

Inputs by User

Runs from each iteration

Results of each iteration

Analysis on results from each iteration

ADVANTAGES

• Verification Flow to identify any Logic in SoC which can result in unintended leakage of the security
sensitive info.

• Identifying security vulnerabilities due to incorrect usage of security critical signals at SOC level.

• Reduced probability of verification miss, due to design being over and under constrained by leveraging
guided user inputs & FSV black boxing.

• Faster and more elaborate than directed testcase.

• Reusable, can be leverage across multiple different security architectures.

• Easy to use by new user , even with limited design knowledge.

Total Runtime : 3-4hrs (typically depends upon the depth of design hierarchies and)

Advantages :

GOING AHEAD

• Plan is to optimize the number of inputs provided by user .

• CC app utilization should be identified to dump out the number of possible path between one
source to destination.

- Paths can be fed as an expected path inputs to FSV .

• Addition of defining the number of iterations by user for unintended leakage paths to help user in
debugging.

• Analysis to improve the runtime.

• Temporal flow view-based design picturization of complete leakage path.

Going Ahead

Thank You

Robust GPU signoff using Comprehensive
Formal Verification

Qualcomm GPU
Formal Verification Team

Agenda

• Introduction

• Defining the Success Criteria

• FPV for End to End formal sign off

• Functional and Performance Verification

• Example : Reusable ECC ABVIP

• Datapath Verification

• More App based Verification

• Example – Checker library for PPA optimization

• Case Study - SEQ Methodology for RTL Optimization

FV for GPU at Qualcomm

• Formal Verification is an integral part of Overall Verification Strategy
for Qualcomm GPUs.

• Essential to make the Adreno GPU as the most power efficient mobile
GPU (with world class peak performance)

• Design and Verification closure on aggressive PPA goals

Complementing Simulation and Emulation

Simulation

Formal

Emulation

•Unreachability
•Register Verification

•Sequential
Equivalence for clock
gating, power
optimizations

• Connectivity
• Security
• Protocol

• FPV
• DPV

Core
Functions

Top
level

EfficiencyPower

Defining the Success Criteria

SUCCESS

Find (high impact) bugs faster

Bug hunting
Special checkers

Deadlocks

Save resources in
simulation

Coverage closure
PPA optimizations

Close blocks
exhaustively

End-to-End formal

DPV

Key focus on functionality of
complex functional blocks

2/3/2023

FPV for End-to-End signoff

End to End formal signoff
• Extensive use across cache sub-system verification (L0/L1/L2)
• Features:

• Sub-unit Testbenches, Unit level testbenches and Reusable properties

Read and write paths, pre-fetch, mis-fetch, LOAD paths

Modes including buffer, cache modes

Read/write address overlap

Coverage across all cache lines

Buffers overlap

Forward progress

Deadlocks

FPV for Performance Verification
• Forward progress checkers helpful in

• Deadlock verification
• Performance verification

• Observed behavior : miss request
on one client can halt another client if
the corresponding Outstanding request
fifo for first one is full.
• Reason : In the Request fifo in the
pipeline, the two clients are coupled
together
• Resolution : to check osd_fifo_wfull before
client req is written in req

Cache DUT L2

Cmd Req

Client
0

Read Return Data

Cmd Req

Client
1

Read Return Data

Read Data

Cmd Req

More FPV
• Concurrent graphics operation blocks with heavy control logic

(Operations list)

Forward progress

Parallel operations

Shared resources execution

Architectural improvements

ECC ABVIP (Assertion IP)

Reusable IP deployment

AXI/AHB/internal protocols

ABVIPs

FIFOs

Arbiters

RAM i/f

ECC proofkit

Commonly used interfaces (valid/ready, srrdy/rrdy)

• Forward progress
• deadlocks

Custom blocks for arbitration/ traffic scheduling

2/3/2023 Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

Example: ECC proofkit

• Memory writes generate syndrome, reads compare stored syndrome
• Interrupts generated for SEC and DED

ECC Feature overview

SPF (Single Point Fault)
LF (Latent Fault)

• Large state space
• Depth x Width combinations
• ByteEn supported or not
• Single / Dual / Triple port
• Bypass

• Verifying data integrity
• Lack of coverage/confidence could be a showstopper for

Automotive Safety

Scope of ECC

2/3/2023 Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

ECC Formal Verification Proof-Kit

• friendly to formal tool
• classic divide-and-conquer strategy employed in formal verification

Small design (loading 1 ECC
memory wrapper at a time)

• Single-bit error should always be detected and corrected
• Double/Multi-bit error should always be detected
• In case of no error (injected between memory write and read)

• Data should remain intact
• Error shouldn’t be reported as detected/corrected

Simple properties to
describe and code

• Covers complete state space, ensures complianceExhaustive coverage

• Lightweight memory model used for formalMemory model abstraction

2/3/2023 Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

Solution - PART I
• Sequential Logic Equivalence

◦ “simple memory model” vs. “memory model with ECC wrapper around”
◦ No error injected between write and read
◦ Prove that “Read Data outputs are always same between LHS and RHS”
◦ Prove that “Error is never reported as detected/corrected”

Proof of Data Integrity (without error injection)

2/3/2023 Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

Solution – PART II

• Sequential Logic Equivalence
◦ “simple memory model” vs. “memory model (with 1 or 2 bits flipped) with ECC wrapper around”
◦ Mimics corruption or error injected between write and read

• 1 or 2 bits are inverted at memory Read Data out bus
• either/both of main and syndrome memory

◦ Prove that “Read Data outputs are always same between LHS and RHS if only single bit flipped” – single bit error correction
◦ Prove that “Error is always reported – either as corrected/detected according to 1 or 2 errors injected”
◦ Additional custom properties/assertions on top of SEQ-mapped comparison of output signals

Proof of ECC functionality Correctness (with error injection)

Datapath Verification

Datapath Verification
• Extensive use of Synopsys VC Formal DPV solution for exhaustive verification of

• Adders, multipliers, special formats, operations

Arithmetic blocks in shader unit

• IEEE 754 compliant
• Non-standard Floating point and fixed point
• Float2fix, fix2float

Data format converters

• Challenging advanced C++ constructs
• Rewrite of C++ code for DPV support compatibility

Compression/decompression engines logic

Pervasive use across GPU of arithmetic heavy blocks

More about DPV
20+ arithmetic blocks verified

Used from more than 8 years

Found 100s of RTL and Model bugs

Saved 2-4 man months of effort per project

Completely replace Simulation TB for ALU, format converters

• Compression engine
• Decompression engine

More complex blocks

App based formal applications

• Miscellaneous use across
GPU of app based formal:

Xprop

Bus protocol

Connectivity

Security

Sequential Equivalence

CGC

UNR

Checker Library for PPA
optimization

2/3/2023

Checker Library for Memory PPA optimizations
• Late design changes in RTL around Memories/Cache of Power, Performance and Area optimization (PPA) are

challenging to verify.

• Requirement is to quickly check the new with minimum setup time
• Need to reduce the re-verification time.
• No dedicated mem controller entity , as the newly implemented logic is scattered around the design.

• Type of potential changes are like -
• Memory splitting
• Memory access removal by changing the control path
• Memory access removal-based workload analysis

MEM
128X128

MEM-1
32X128

MEM-1
32X128

MEM-1
32X128

MEM-1
32X128

D
e
c
o
d
e
r

Data-
Merging

MEM
128X128

Bypass controller

MEM
128X128

Bypass Enable Mem. Splitting Mem. Bypass

Checkers
• Checkers specific to each scenario can be developed guaranteeing correctness of

each scenario
• In some cases, checkers can also verify the effectiveness of the transformations

• Read access removal : Is there any scenario still exists where same address is enabling the memory ?

• Checkers can be bound to memory control related logic though defined interface
• Can be used in both simulation and formal verification
• Can be configured to allow flexibility in usage

• Property based verification by modelling assertion custom checkers around memories as Handshake, Spurious , Data Integrity
and Forward progress checks

2/3/2023

Illustration of implementation

Data Intf of design

Control Intf

Part of design top hierarchy

Data Intf
dout

• Design-under-test will be module from top design hierarchy which captured all transformation.
• Properties are configurable/parameterized through TB
• Abstraction for faster turnaround-

• Symbolic address abstraction
• FIFO full abstraction
• Optional : Reset abstraction for WR/RD pointer if depth/size is bigger.

2/3/2023

• Symbolic Address Abstraction
• Use of Symbolic Address
• Replace DPETHXWIDTH memory with 1XWIDTH

• FIFO Full Abstraction
• Cut point fifo full
• Reset abstract WR and RD pointers
• Add constraints on full

Technique of implementation (Abstractions)

SEQ Methodology for RTL
Optimization

Boosting RTL PPA optimization verification
• Design and Verification closure of aggressive area/timing and power goals is challenging

due to increase in design-complexity and Time to Market constraints.

• To address PPA(Power-Performance-Area) RTL fixes are MUST , but hard to explore multiple
“whatif” ideas at early design cycle due to DV dependency.

• Combinational Equivalence is not efficient as incremental design revisions include
sequential(register) changes.

• Formal Sequential Logic Equivalence is the only way to validate temporal PPA changes for
new/legacy blocks across design cycle to enable a “LEFT-SHIFT” in verification process.

SEQ Verification Methodology

RTL PPA Exploration

Original RTL

Modified RTL

T
I
M
I
N
G

A
R
E
A

P
O
W
E
R

SEQ FLOW

Specification RTL Implementation
RTL

Formal Tool ElaborationFormal Tool Elaboration

Clock/Reset/Auto Map
enabled in FV

Manual Map
(if needed)

Formal Sequential Equivalence

Equiv
alent

Fix
Setup/constraints

Counter Example
Debug

Fix IMPL RTL

Metrics Check Released

SEQ Formal Methodology for RTL PPA exploration

• Multiple “What-if” PPA exploration easily verified in few hours by SEQ Working
flow

• No need of multiple days of DV regression for multiple incremental RTL changes

• Exhaustive and ease-of-use methodology with complete coverage of the design

• PPA changes implemented in parallel to functional changes without additional
regular DV impact

More to be done!
• More End to end FPV across new as well as legacy blocks

• Multiple projects, running in parallel need innovative solutions for efficient
formal closure.

• Ingenious equivalence solutions
• Reduce simulation test count by proving various sub-configurations equivalent

• ABVIP developments for leaf cells, protocols, blocks
• Promote wider reuse across formal and with simulation.

• SEQ + FPV blended flows for full closure

Q&A

