
Pushbutton Complete IP Generation
Freddy Nunez

© Accellera Systems Initiative1

Typical Chip Design
• Hardware of the SoC is designed by HW team

• But used by
• Verification/Emulation team
• Firmware team
• Validation team
• Software team

• How does the software interact with the IPs?
• Through the Hardware Software Interface (HSI)

• Hardware is at the core and software API is around it
• Device drivers (part of the HSI) are tedious to create

• They are written in C and Assembly
2

Introduction to a Typical SoC

3

AP
B

Sl
av

e Sensors

AP
B

Sl
av

e Sensors

CPU AXI /AHB Interconnect Fabric AP
B

Br
id

ge

AP
B

bu
s

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

Pr
og

ra
m

m
ab

le

Sl
av

e

C/C++
Program

Assembly
Slave w/
Memory

Memory

interrupts

Challenges Faced
• Design challenges

• Too much data
• Even small changes in data causes havoc
• Significant source of bugs
• Reusing IP

• Verification/Validation challenges
• Duplication of work across teams
• Rise in complexity of designs
• Inability to create same debug environment for multiple platforms
• Mismatch in specification and implementation

4

Challenges Faced - Cont’d
• SOC design companies

• Increasing demands of design complexity and design performance
• Combining automation with flexibility to accommodate changes in

sub-systems across applications
• Driving down the cost of design for a better ROI
• Shrinking market windows
• Boosting productivity of design teams to meet shorter market

windows

5

An Ideal Solution
• Ease of generation
• Generated code should not be encrypted
• Should provide appropriate error messages
• Ability to reuse IPs

• Customizing the designs
• Configuring the designs

• Easy mechanism for generating IP blocks
• Ability to handle different bus protocols
• Handling metastability of multi clock domain designs
• Design must be functionally safe and secure

6

IDesignSpec GDI™
Graphical Interface &
Interactive Generator

IDS-Batch CLI™
Command Line Generator

IDesignSpec ╪ GDI & CLI Data Flow

7

Register/Memory Specification
SystemRDL

IP-XACT
Agnisys XML YAML JSON RALFCSV Custom XML

Third-Party
Data

RTL
Design
Code

UVM
RAL

Model

C/C++
Headers

HTML, PDF,
Markdown,
and DITA

Documentatio
n

Generated Bus
interfaces
AMBA APB
AMBA AHB
AMBA AHB-Lite
AMBA AXI-Lite
AMBA AXI4 Full
AMBA AXI5-Lite
TileLink
Avalon
Wishbone

Tcl, Python,
and Velocity

Based
Custom
Outputs

Word Excel OpenOffice

Designing IPs

8

Designing IPs - Cont’d
• Addressable Register specification

9

Define
user
registers
’ settings

C Header,
Misra-C,
C Tests,
….
SystemRDL,
Register
Sequences…

Register view:

Spreadsheet view:

Designing IPs in IDS-NG - Cont'd
• Sample specification

10

Param View

Spreadsheet View

Sequence View

Register View

Designing IPs Cont'd
• Addressable Register configuration

11

Designing IPs - Cont'd
• Generated sample code

12
RTL UVM

Designing IPs - Cont'd
• Generated sample code

13
HTMLCHeader

Auto Generating Standard IPs
• IDS-IPGen can also be used to

automatically generate standard IPs
(fully verified and validated) and their
APIs, also provides add-in functionality of
configurability and customizability

14

IDS-IPGen

Memory
map

Generator

Customization

RTL

API

Automatically generated based on Generation Parameters

Generation
Parameters

Auto Generating Standard IPs - Cont'd
• Register specification - Automatically generated by setting

generation parameters

15

Auto Generating Standard IPs - Cont'd
• Generated sample code

16
RTL C sequence

What’s Complete-IP ?
❏ Generating the RTL for the register IP/specification for the addressable

registers

❏ Once a register specification is captured and its RTL generated -

• A synthesizable application logic layer is required to interact with the
addressable registers

• The intended functionality and configuring of the RTL registers in done
using this user logic

❏ The pushbutton Complete-IP helps in capturing this design functionality
(User Application Logic) by using simple templates, which will help in the
overall “completeness” of an IP

17

18

•The orange box depicts the
addressable registers for the IP
•The blue box depicts the user
application logic which the user
creates manually. The aim is to
automate this application logic
creation with the help of predefined
templates

Complete-IP Overview Diagram

User Application Logic Constructs
Over the year on looking at different sort of register IP and its user
hardware logic, it can be said that the user logic mainly constitutes of
the following constructs -

• State machines

• DQ tables

• Assign statements

19

State Machine Design Template
• A construct which makes transitions through a series of states based on

external inputs and the current state of the machine

• Used for designing more complex hardware

• The hardware functionality can be broken down into a collection of states
which determines when the system transitions from one state to another

• Uses can capture these states and align then on different external inputs the
next state as described. Also, outputs at different states can be specified.

• User can also capture the state transitions from the current state to the next
state and all the outputs associated with it

20

Sample State Machine Design

A sample template for capturing FSM 21

DQ Table Design Template
• A flip-flop is the basic storage element in a sequential logic, which is a

fundamental building block of any electronic system

• Thus it becomes more important to give designers some way to make flops to
capture sequential logic

• A template (DQ Table) can be used for the above purpose, where the user can
specify the outputs in one column and specify the assignments on the other
column

22

DQ Table Design Template Cont.

Assign Table Template
• For designing circuits often dataflow modelling is used. Dataflow modelling describes

the flow of data from input to output in hardware.

• The continuous assignment statement is the main construct of dataflow modelling and
can be used to drive(assign) values.

• The introduction of the assign table as below can be used to capture dataflow
modelling.

24
An assign table template

Non Addressable Registers Template
• Creation of application logic requires registers to store certain results, etc. A

table can be incorporated which captures the register names and the width
of the register.

• For making the non addressable registers as output, then a register can be
specified in the table below with direction as out.

25

A sample template to add non-addressable registers

Generated User RTL
• By using the mentioned templates, the user

can generate the RTL as well as the UVM
prediction model for their user logic
interaction with the RTL of the addressable
registers

• And along with it, the UVM prediction
model will be hooked in the environment
automatically for the same

26

Generated UVM Prediction Model
• The signal which corresponds to

the non addressable registers can
be monitored and can be
compared with the UVM model, if
the mismatch occurs then the
model will give generate errors

• Call the predict method in UVM
when there are assignments back
to the IDS
CSR registers (IDS CSR updated
through applogic)

Generated UVM Prediction Model Example

Auto-Generated Tests
General algoritm for test generation
1. Create a list of all outputs from the app logic - app_logic_out_list
2. Create a list of all inputs to IDS generated register logic. Mark all the nets that are pairs

(enable and input).
3. For each item in the above two lists, create a LOGIC CONE that drives the net

a. The graph will have nodes and arrows going in (inputs) and coming out (outputs)
of the node

b. The node will be either combinational or sequential
c. Combinational will simply have a combinational function based on the inputs
d. Sequential will have a clock, reset and some properties that affect the clock

4. For each item, traverse the graph and find how to make the net transition to 1 and 0
5. There will be several solutions; store them in appropriate data structure

Auto-Generated Tests - Cont’d

Auto-Generated Tests - Cont’d

Coverage Report
• We can get code coverage of the design that is created to check whether

all lines of code have been covered or not

32

Benefits

33

• Fully configurable and customizable IPs/addressable registers that can be generated for
varied set of needs

• All the generated files are available as plain text for easy debugging and use by downstream
tools

• Generation of the synthesizable RTL for both the user logic and the addressable register logic

• The complete IP / entire design can further be extended for the verification of the design.

• Supports specification of finite state machines (FSMs), data paths, signals, and other parts of
custom IP blocks in your application logic

• For both standard and customer blocks, IDS-IPGen generates RTL models, UVM verification
models, and on the fly AI based tests that provide high functional and code coverage right
out-of-the-box.

Conclusion

34

• Reduction in time and cost of development
• Focus more on creating the algorithm for your design, and let the tool

handle and ensure the correctness
• Complexity can be handled by using abstraction
• One of the forms of abstraction is reuse
• Reuse is possible if the IPs are customizable and configurable
• Create the complete IP and validate the synthesizable design through

auto-generated tests with optimum code coverage

Questions

35

	Pushbutton Complete IP Generation
	Typical Chip Design
	Introduction to a Typical SoC
	Challenges Faced
	Challenges Faced - Cont’d
	An Ideal Solution
	Slide Number 7
	Designing IPs
	Designing IPs - Cont’d
	Designing IPs in IDS-NG - Cont'd
	Designing IPs Cont'd
	Designing IPs - Cont'd
	Designing IPs - Cont'd
	Auto Generating Standard IPs
	Auto Generating Standard IPs - Cont'd
	Auto Generating Standard IPs - Cont'd
	What’s Complete-IP ?
	Complete-IP Overview Diagram
	User Application Logic Constructs
	State Machine Design Template
	Sample State Machine Design
	DQ Table Design Template
	DQ Table Design Template Cont.
	Assign Table Template
	Non Addressable Registers Template
	Generated User RTL
	Generated UVM Prediction Model
	Generated UVM Prediction Model Example
	Auto-Generated Tests
	Auto-Generated Tests - Cont’d
	Auto-Generated Tests - Cont’d
	Coverage Report
	Benefits
	Conclusion
	Questions

