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Agenda

• AI Accelerators
• High-Level Synthesis
• Bespoke Accelerator Optimization
• Verification 

• From Python to RTL

• Example Algorithm
• Wakeword verification flow
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AI Accelerators
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Deploying Inferencing Systems, Where and How
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The Cloud A Gateway The Edge
Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Higher specialization/Lower energy

Highest performance and efficiency 
are achieved with specialized ASIC 

implementation running on the edge
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Inference Execution (on-chip) 
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Accelerated AI SoC Eco-system
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General purpose chip developers

Board/system developers

Disaggregated

AI IP developers

Off-the-shelf solution

Bespoke SoC developers

Vertically Integrated

Internal customers

Custom solution
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AI Accelerator Verification Challenges

• CPU, GPU, NPU, TPU
• Verify algorithm implementation runs on IP
• Verify that IP is correctly integrated
• IP is assumed to be correct from the IP provider

• Bespoke accelerator
• Verify the algorithm runs on the accelerator
• Verify the accelerator is correctly integrated
• Verify the accelerator functions correctly
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From Python to Hardware
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Machine Learning Framework

Iterate to find optimal NN 
architecture

Python Verilog

To check accuracy, you need to 
run thousands of inferences 

For Yolo Tiny, RTL simulation can 
run one inference in 28 hours

HW acceleration is difficult this 
early in the design cycle
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A Better Path
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Machine Learning Framework

Iterate to find optimal NN 
architecture

Python Verilog

With this flow, proving 
equivalency between C++ and 
Verilog is much  faster and 
easier

C++

Automated 
conversion 
with HLS
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HLS AI Design Flow
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RTL Synthesis 
and back-end 

tool flows

C++ 
Algorithm

C++
Architected

Implementation 

C++
Quantized 
Algorithm

High-Level
Synthesis



Page 11

High-Level Synthesis
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What is High-Level Synthesis?
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C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC into 
technology optimized synthesizable RTL

High-Level
Synthesis
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High-Level Synthesis Features

• User architectural control
• Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)  
• Memories vs Registers (resource allocation)

• Exploration and implementation by applying constraints
• Not by changing the source code

• Automatic arithmetic optimizations and bit-width trimming
• Bit-accurate types enable mathematical accuracy to propagate to 

outputs

• Multi-objective process-aware scheduling for both FPGA 
and ASIC

• Area/Latency/blend driven datapath scheduling
• Eliminates RTL technology penalty of I.P. reuse
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void func (short a[N], 
for (int i=0; i<N; i++) {
if (cond)
z+=a[i]*b[i];

else

RTL
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High-Level Synthesis Benefits

• Faster design
• Typically, RTL design phase is 2X faster for novice users 10X for experienced users 
• Project start to tape-out can be 4X faster 

• Faster verification
• Algorithm is verified at the abstract level
• Formal and dynamic verification can be used to prove equivalence between C++ and HDL

• Easy technology retargeting, retiming
• RTL can be mapped to new technology library or clock frequency by re-synthesizing
• Simple transition between FPGA and ASIC implementation 
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How does High-Level Synthesis Work?

• HLS automatically meets timing based on the user-specified clock constraints.
• HLS understands the timing and area of the target technology 

and uses this to insert registers when needed.
• Using the right HLS target library is very important!

• HLS closes on timing using:
• Data flow graph analysis
• Resource allocation
• Scheduling
• Resource sharing and timing analysis
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Verification in HLS Flow

Area, Timing & 
Power Optimized

RTL

Catapult 
Design Checker

C++/SystemC 
Design

HLS 
Verification

Find language and 
coding bugs 

without simulation Ensure code/functional 
coverage of HLS Code

Run in a wide 
variety of 

environments

Verify post-HLS RTL 
leveraging existing 

testbench

Catapult 
Coverage  

C++/ SysC/
UVM  

Testbench

Catapult 
HLS
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Accelerator Optimization
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• Neural Network Architecture
• Modifying layers and channels

• Quantization
• Changing the representation of numbers

• Data Movement, Storage
• Alter data caching and access patterns 

Accelerator Optimization
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HLS AI Design Flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Machine Learning 
Framework

Neural Network 
Architecture

Synthesizable 
RTL

RTL Synthesis 
and back-end 

tool flows

C++ 
Algorithm

C++
Architected
Algorithm 

C++
Quantized 
Algorithm

High-Level
Synthesis



Page 20

Neural Network Architecture

• Most Neural Networks are architected for accuracy on servers
• Reducing the number of layers and channels in each layer

• Small impact on accuracy (<1%)
• Large impact on performance and efficiency (>90%)
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Impact of Channel Count on Accuracy
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Dense layer has 500 channels
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Reducing Network Size Example
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Original MNIST network

Optimized MNIST network

MAC operations: 12,353,000
Number of parameters: 4,915,080
Minimum data transfer: 4,941,854 words

Accuracy:     98.75%

MAC operations: 537,410
Number of parameters: 145,977
Minimum data transfer: 150,728 words

Accuracy:     98.46%
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• Fixed point multipliers are about ½ the area of a floating-point multiplier
• Multipliers are proportional to the square of their inputs
• A 64-bit floating point multiplier is about 64 times larger than an 8-bit fixed 

point multiplier
• Data storage and movement scale linearly with size

Quantization: Data Sizes and Operators
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Source: Nvidia, DAC 2017
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Fixed Point Representation
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integer bits fractional bitssign

Any size you want

64-bit Float

32-bit Float

Fixed Point
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• Convert weights and features from floating point to fixed point
• Eliminate unused high-order bits

• Removes constant 0 values from design
• Many neural network values are normalized to near 0

• May only need 4 or 5 integer bits

• Reduce fractional precision and measure impact on accuracy
• Iterative process

Quantizing Neural Networks
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Bitwidth vs. Accuracy
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Accuracy vs. Bit Width, Post-training Quantization
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32 bit floating point accuracy is 98.05

Area/power for 32 bit floating point multiplier is ~20X more than a 10 bit fixed point multiplier 
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• Floating point representations almost never overflow
• 64-bit floating point represents up to 10308

• Using reduced precision means overflows are more likely
• Overflow truncation corrupts the result, and all subsequent calculations

• Saturating math stores the maximum value which can be represented 
when an overflow occurs
• For many neural networks when a number gets large the absolute 

magnitude is not important, just that the number is “large”

Saturating Math
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Saturating Math 
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Saturating math can reduce required representation size by 1 or 2 bits
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• Movement and storage of weights and features impacts performance 
and power
• Reducing numeric representation has a linear effect on storage costs
• For data movement, fully packing the bus with data is optimal

• Buses are typically sized based on powers of two
• For example, 16-bit representation is preferred to 17 bits

• While reducing the size of the representation usually negatively 
impacts accuracy, this can be offset by increasing layers or channels
• This means changing the architecture of the neural network

Data Movement and Storage
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• Convolution algorithms access the input feature map and output 
array multiple times
• Early in the network the input data sets are typically smaller
• Later layers typically have larger input arrays 
• Coordinating cache size with order of operations can optimize PPA

Convolution Order of Operations
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• Minimizing accesses to external memory can 
improve performance and minimize power
• Memories tend to dominate area and power
• Data movement tends to limit performance
• If CNN data sets are too large to fit on-chip, 

careful data management can significantly 
improve design characteris

Caching and Buffering
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Inference Accelerator Layout
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• The CNN will undergo significant modification between the ML 
framework and the hardware design
• This presents unique verification challenges 

Accelerator Optimization
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Verification Challenges
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• Need to verify:
• Individual operators, multipliers, adders, etc.
• Processing elements, Multiply/Accumulate (MAC) operations
• Complete inferences

• Neural Networks are robust to failed individual operations
• A single correct inference does not prove correctness of the implementation  
• A statistically significant number of inferences is required

Verification of Inferencing Systems
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• Performance in logic simulation is prohibitively slow 
(28 hours for one inference in an object recognition algorithm)
• And hardware acceleration is often not available early in the design cycle

• Verify at the abstract level and prove equivalence between 
representations at different design stages
• This can be done between Python and C++, then C++ and RTL

Verification of Inferencing Systems
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Traditional UVM Flow
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Predictor
Keras CNN
(Python)

Compare

UVM tb

Agent Agent
SV/UVM

ML Accelerator

Stimulus
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• Verilog implements modified CNN
• Changes in layers/channels (these can be implemented in the predictor)
• Changes in numeric representation

• Float vs. fixed
• Bit widths 
• Saturation/rounding 

• Cannot directly compare outputs
• If there is a problem, debug is very hard

Traditional UVM Flow
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Verification Landscape
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Prove Equivalence at Each Step
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Python to C++ Consistency 
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Python to C++ 

==

C++ node Comparator

Node by node compare 
Python with C++

Python CNN • Run C++ node in parallel with Python node
• Both nodes use common float types
• Differences should be only order of computation 

rounding error
• Import C++ function into Python

• Several ways to do this: ctypes, CFFI, PyBind11, Cython

• Repeat for subsequent nodes, then layers, then 
complete network
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C++ to Quantized Model Consistency 
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Quantization

C++ float32 CNN

C++ quantized CNN

• Run C++ node in parallel with the quantized node
• Quantized implementation should be identical to 

C++ algorithmic except for data types 
• Verify/debug one thing at a time

• Nodes use different types
• Float vs. fixed point, reduced bit-width (ac data types)

• Differences will exist, and may be large
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C++ to Quantized Model Consistency
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• Quantization errors
• Change in value from the original floating-point number

• Saturation errors
• Values that exceed the range of the representation will saturate

• Accumulated errors 
• As operations are performed on quantized numbers, the 

quantization errors can compound
• Rounding (as opposed to truncating) can reduce this 
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C++ to Quantized Model Consistency
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.
• Ranges from 111.11 (-4.0) to 011.11 (3.75)
• Fractional precision is .25 

Floating point math: 1.377 + 1.377 + 1.377 + 1.377 = 5.508

Fixed point math:  1.377 => 001.10, which is 1.5
001.10 + 001.10 + 001.10 + 001.10 = 110.00 (or 6)  error from floating-point is 0.492
maximum possible error is ½ of fractional precision * number of operations

The signed fixed-point interpretation of 110.00 is -2
Using saturating math, this result would be 3.75

The error in a comparison with the floating-point algorithm would be 1.758, which is a correct implementation
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• Need to run large number of inferences
• Predictions will be different from Python or C++ algorithmic model

• Determine if CNN accuracy is acceptable
• Modify network/layers/channels as needed and repeat 

• One day ML frameworks will support quantized numbers
• Qkeras, Larq, and Hawq are examples of extensions that support quantization
• Currently, works for TPUs, but not expressive enough for bespoke accelerator
• Abstract model must exactly match the Verilog to be implemented

Quantized Model Must be Validated
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C++ Quantized to C++ Architecture Consistency 
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Architecture

C++ Quantized CNN

C++ Architected CNN

• Run Quantized node with Architected node
• Quantized and Algorithmic nodes should differ 

only by order of operation rounding errors
• Nodes use same types 

• Fixed point, reduced bit-width
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Verification – Before HLS 
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Static Design Checks

Coverage Analysis

C++ Architected CNN

Static code analysis and synthesis 
checks. Find coding errors and 
problem constructs   

Determine completeness of test cases.  
Statement, branch and expression 
coverage as well as covergroups, 
coverpoints, bins and crosses 
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C++ to RTL consistency
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Formal

RTL Coverage

UVM

C++ Architected CNN
Using formal techniques, prove 
as much equivalency as possible

Determine remaining verification 
effectiveness through RTL coverage 
metrics

Architected C++ is used 
as a predictor for RTL verification
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Debug – When Things Go Wrong
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• Log all intermediate values to memory or log file
• This includes output from each layer

• Have scripts that can compare intermediate values 
from different model representations
• This identifies the first point of divergence between 

models
• Immediately find layer and node where problem 

resides

• Intermediate values from the Python can be 
recorded to a file for comparison

Model A

Model B
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HVL UVM Flow
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Predictor:
Architected 

C++
Compare

UVM tb

Agent Agent

SV/UVM

SV/UVM

RTL

ML Accelerator
HLS Created 

Verilog

Stimulus
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Wakeword Example
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Wakeword Algorithm
• Monitors audio for keywords, performs some action when recognized

• Like “Hey Google” or “Alexa”

• Runs continuously, so needs to be efficient
• Essential when system is battery powered

• Trained with Tensorflow speech commands data set
• http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz

• From that we selected utterances from “zero” to “nine”
• Like the MNIST digit recognition, but spoken words instead of handwritten

• Base algorithm (the inspiration) came from:
• 'cnn-one-fstride4’ from 'Convolutional Neural Networks for Small-footprint Keyword Spotting': http://www.isca-

speech.org/archive/interspeech_2015/papers/i15_1478.pdf

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators
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Wakeword Algorithm

• Processes one second samples of Pulse Code Modulation audio
• 16,000 16-bit samples per second

• Algorithm is run every 50 ms.
• Add 320 samples to rolling window of PCM audio data

• Processing must complete in 50 ms.
• Audio is preprocessed with an MFCC function
• The resulting spectrogram is used as a feature-map for a CNN

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators
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Wakeword Audio Pre-processing

Audio input Quantization Integer array
(16k x 16 bits)

Spectral Array

MFCC()

Float array
(101 x 20 x 32-bits)

-4   0    4    7

To Neural Network 
as feature map for 

training and inferencing

0.123  0.456   -0.872  0.567

0.324  0.547   0.376   -0.231

0.846  0.183   0.834   0.937

0.625  0.737   0.746   0.827
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Mel Frequency Cepstral Coefficients (MFCC)
• Audio representation format commonly used for feature extraction.
• Mel scale mimics human perception of sound. 
• Widely used in machine learning and speech processing techniques.
• Steps to obtain coefficients:

Audio 
Framing & 
Windowing 
the Signal

Convert to 
Frequency 

Domain 
using DFT

Calculate 
Signal Power

Compute 
Mel-Spaced 
Filterbank

Generate 
Coefficients 
using DCT

Accelerator

https://github.com/ddbourgin/numpy-ml/blob/master/numpy_ml/preprocessing/dsp.py
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Wakeword Neural Network
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conv2d
+bias
+relu

dense
+ bias

dense 
+ bias

dense
+ bias
+relu

mfcc of 1000 ms
audio sample
101x20 words

20x7 kernel
186 channels

17,670x128 
matrix 128x128 matrix 128x10 matrix

soft-
max

Total weights: 2,305,916 words
MAC operations: 4,729,416
MACs/second: 94,588,320 (assuming 50 ms cycle time)

'cnn-one-fstride4’ from 'Convolutional Neural Networks for Small-footprint Keyword Spotting':
http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf

Weights
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Wakeword Profile
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Computational Load

Function Time - ms on RISC-V Percentage
mfcc() 153.97 54.72

conv_2d() 59.05 20.37
dense() 61.18 21.14

Total 273.95 96.23
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Profile for mfcc() Function Percentage

Preemphasis 0.13

Edge_padding 0.14

To_frames 0.27

Power_spectrum 96.88

Sum 0.12

Filter_energies 2.10

DCT 0.27

Cepstral_lift 0.02

Mean 0.02

Delta_mean 0.01

Cast_to_floats 0.01

Log_energy 0.00
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Python to C++ Consistency 
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Python to C++ 

==

C++ node Comparator

Node by node compare 
Python with C++

Python CNN • Run C++ node in parallel with Python node
• Ran 80 samples and compared differences 

at all intermediate points
• 10 different utterances with 8 different CNN variations
• Run time was ~230 seconds or 3:50

• Differences were only found in bottom 4 bits 
of the mantissa
• Used ctypes library to link in C++ functions
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Quantization

• Performed a sweep for all fixed point values for inference and power 
spectrum to determine quantized accuracy
• Power spectrum needed 8-bit floating point representation
• Inference needed 16 bits for the convolution and 13 bits for dense 

layers
• Settled on 16-bit fixed point
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Bitwidth vs. Accuracy - Convolution
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Bitwidth vs. Accuracy - Dense
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Bitwidth (Fixed Point) vs. Accuracy - PS
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Bitwidth (Floating Point) vs. Accuracy - PS

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1



Page 66

C++ to Quantized Model Consistency 
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Quantization

C++ float32 CNN

C++ quantized CNN

• Ran 80 samples concurrently between C++ 
and Quantized C++

• Run time was 1,794 seconds (~1/2 hour)

• Measured line and branch coverage for all functions
• Achieved 100% coverage

• Differences were large, but within expectations
• Compared by assigning floating point representation to quantized 

representation
• Results (excepting saturation) were +/- 0.00024
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• Data movement, buffering, loop unrolling pipelining
• When data is accessed multiple time, copy it to local memories or 

buffers to reduce memory traffic
• Line and frame buffers can hold portions of data being worked on

• New data can be shifted in as older data is no longer needed

• Since data movement is often a limiting factor on performance, 
effective caching and buffering can significantly speed computations

Architecting the Accelerators
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Convolution – Layer 1
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• Spectral Array data elements are referenced 1,302 times each
• The total size of the spectral array is 2020 words, small enough to cache local 

to the accelerator

• Each filter data element is referenced 95 times
• The total size of the filter is 140 words

• Output lines are calculated from a single filter
• Each filter can be read in, used to calculate an output line, then discarded
• This requires a buffer for only one filter 

Convolution - Layer 1
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• Fastest architecture is 140 multipliers
• Filters are held in registers, a portion of the spectral image in registers with 

the remainder in line buffers

• A more efficient architecture has 20 multipliers
• It multiplies one column of the spectral array per clock

• Due to the high-level of data re-use, if data is held locally, this 
function is compute bound

Convolution - Layer 1
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Dense – Layer 2

17,670

Vector from 
convolution

...

...

17,670

128

Weights (~2.2 million values)

... Result Vector (128 values)
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• Elements from the convolution are referenced 128 times
• Each weight element is referenced just once
• Output is just 128 words

• Holding partial sums for the output lines can be done in a small memory or registers
• Each convolution element can be read in and multiplied against 128 weights

• The result can be added to a partial sum array
• The feature and weights can be discarded
• This minimizes memory storage

• This layer is limited by how fast weights and features can be read in
• Weights need to be packed in memory correctly to optimize bus utilization and 

performance

Dense – Layer 2
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• Computations may be limited by the arrival of data
• In this example, dense layer in CNN weights are used once 
• Any more multipliers than the number of data element delivered 

per clock will be wasted

Balancing Communication and Computation
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Hardware Implementation – Dense Layer

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Interleaved 
RAM Banks
for image and
results
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C++ Quantized to C++ Architecture Consistency 
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Architecture

C++ Quantized CNN

C++ Architected CNN

• Ran same 80 test cases 
• 10 audio samples x 8 CNN configurations
• Run time was 1.2 hours

• Fully covered architectural and quantized models
• Differences were limited to +/- 3 LSBs on 

inference and +/- 1 LSB for power spectrum
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C++ to RTL comparison

Predictor:
Architected 

C++
Compare

UVM tb

Agent Agent

SV/UVM

SV/UVM

RTL

ML Accelerator
HLS Created 

Verilog

With Architected C++ proved equivalent to original Python, used it as a predictor for RTL
RTL and C++ matched to the except for the LSB 

Stimulus
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C++ to RTL consistency
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Formal

UVM

C++ Architected CNN
Verified the core algorithms 
(matmul, dense, 2d convolution)

• Architected C++ is used as a 
predictor for RTL verification

• Simulation covered CNN
architecture variations 

• 8 test cases
• softmax was in SW

• 34.4 hours of simulation
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Conclusion

• Moving from Python to RTL in a single step introduces 
a significant verification problem
• Inferencing algorithms do not produce bit-level equivalency when accelerated
• Requires many inferences to verify accuracy of implementation
• Simulation performance is too slow, emulation or FPGA prototypes are usually 

not available

• High-Level Synthesis introduces an intermediate C++ model
• Verify the algorithm at the Python level
• Prove equivalency between subsequent model stages
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Questions or Comments

?? || //
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Thank You

Petri Solanti, Field Applications Engineer,   Petri.Solanti@Siemens.com
Russell Klein, Program Director,                    Russell.Klein@Siemens.com
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