
Page 1

Verification of Inferencing Algorithm Accelerators
Russell Klein
Petri Solanti

Page 2

Agenda

• AI Accelerators
• High-Level Synthesis
• Bespoke Accelerator Optimization
• Verification

• From Python to RTL

• Example Algorithm
• Wakeword verification flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 3

AI Accelerators

Page 4

Deploying Inferencing Systems, Where and How

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

The Cloud A Gateway The Edge
Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Higher specialization/Lower energy

Highest performance and efficiency
are achieved with specialized ASIC

implementation running on the edge

W
he

re
Ho

w

Page 5

Inference Execution (on-chip)

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Slow Performance Fast

H
ig

h
En

er
gy

 E
ffi

ci
en

cy

 L
ow

 E
ne

rg
y

CPU

GPU

TPU/NPU

Custom

Page 6

Accelerated AI SoC Eco-system

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

General purpose chip developers

Board/system developers

Disaggregated

AI IP developers

Off-the-shelf solution

Bespoke SoC developers

Vertically Integrated

Internal customers

Custom solution

Page 7

AI Accelerator Verification Challenges

• CPU, GPU, NPU, TPU
• Verify algorithm implementation runs on IP
• Verify that IP is correctly integrated
• IP is assumed to be correct from the IP provider

• Bespoke accelerator
• Verify the algorithm runs on the accelerator
• Verify the accelerator is correctly integrated
• Verify the accelerator functions correctly

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 8

From Python to Hardware

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Machine Learning Framework

Iterate to find optimal NN
architecture

Python Verilog

To check accuracy, you need to
run thousands of inferences

For Yolo Tiny, RTL simulation can
run one inference in 28 hours

HW acceleration is difficult this
early in the design cycle

Page 9

A Better Path

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Machine Learning Framework

Iterate to find optimal NN
architecture

Python Verilog

With this flow, proving
equivalency between C++ and
Verilog is much faster and
easier

C++

Automated
conversion
with HLS

Page 10

HLS AI Design Flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Machine Learning
Framework

Neural Network
Architecture

Synthesizable
RTL

RTL Synthesis
and back-end

tool flows

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

Page 11

High-Level Synthesis

Page 12

What is High-Level Synthesis?

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC into
technology optimized synthesizable RTL

High-Level
Synthesis

Page 13

High-Level Synthesis Features

• User architectural control
• Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)
• Memories vs Registers (resource allocation)

• Exploration and implementation by applying constraints
• Not by changing the source code

• Automatic arithmetic optimizations and bit-width trimming
• Bit-accurate types enable mathematical accuracy to propagate to

outputs

• Multi-objective process-aware scheduling for both FPGA
and ASIC

• Area/Latency/blend driven datapath scheduling
• Eliminates RTL technology penalty of I.P. reuse

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

void func (short a[N],
for (int i=0; i<N; i++) {
if (cond)
z+=a[i]*b[i];

else

RTL

Page 14

High-Level Synthesis Benefits

• Faster design
• Typically, RTL design phase is 2X faster for novice users 10X for experienced users
• Project start to tape-out can be 4X faster

• Faster verification
• Algorithm is verified at the abstract level
• Formal and dynamic verification can be used to prove equivalence between C++ and HDL

• Easy technology retargeting, retiming
• RTL can be mapped to new technology library or clock frequency by re-synthesizing
• Simple transition between FPGA and ASIC implementation

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 15

How does High-Level Synthesis Work?

• HLS automatically meets timing based on the user-specified clock constraints.
• HLS understands the timing and area of the target technology

and uses this to insert registers when needed.
• Using the right HLS target library is very important!

• HLS closes on timing using:
• Data flow graph analysis
• Resource allocation
• Scheduling
• Resource sharing and timing analysis

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 16

Verification in HLS Flow

Area, Timing &
Power Optimized

RTL

Catapult
Design Checker

C++/SystemC
Design

HLS
Verification

Find language and
coding bugs

without simulation Ensure code/functional
coverage of HLS Code

Run in a wide
variety of

environments

Verify post-HLS RTL
leveraging existing

testbench

Catapult
Coverage

C++/ SysC/
UVM

Testbench

Catapult
HLS

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 17

Accelerator Optimization

Page 18

• Neural Network Architecture
• Modifying layers and channels

• Quantization
• Changing the representation of numbers

• Data Movement, Storage
• Alter data caching and access patterns

Accelerator Optimization

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 19

HLS AI Design Flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Machine Learning
Framework

Neural Network
Architecture

Synthesizable
RTL

RTL Synthesis
and back-end

tool flows

C++
Algorithm

C++
Architected
Algorithm

C++
Quantized
Algorithm

High-Level
Synthesis

Page 20

Neural Network Architecture

• Most Neural Networks are architected for accuracy on servers
• Reducing the number of layers and channels in each layer

• Small impact on accuracy (<1%)
• Large impact on performance and efficiency (>90%)

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 21

Impact of Channel Count on Accuracy

0

10

20

30

40

50

60

70

80

90

100

050100150200250300350400450500

Accuracy vs. Channels

Channels

Ac
cu

ra
cy

Based on MNIST LeNet
Dense layer has 500 channels

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 22

Reducing Network Size Example

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Original MNIST network

Optimized MNIST network

MAC operations: 12,353,000
Number of parameters: 4,915,080
Minimum data transfer: 4,941,854 words

Accuracy: 98.75%

MAC operations: 537,410
Number of parameters: 145,977
Minimum data transfer: 150,728 words

Accuracy: 98.46%

Page 23

• Fixed point multipliers are about ½ the area of a floating-point multiplier
• Multipliers are proportional to the square of their inputs
• A 64-bit floating point multiplier is about 64 times larger than an 8-bit fixed

point multiplier
• Data storage and movement scale linearly with size

Quantization: Data Sizes and Operators

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Source: Nvidia, DAC 2017

Page 24

Fixed Point Representation

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

integer bits fractional bitssign

Any size you want

64-bit Float

32-bit Float

Fixed Point

Page 25

• Convert weights and features from floating point to fixed point
• Eliminate unused high-order bits

• Removes constant 0 values from design
• Many neural network values are normalized to near 0

• May only need 4 or 5 integer bits

• Reduce fractional precision and measure impact on accuracy
• Iterative process

Quantizing Neural Networks

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 26

Bitwidth vs. Accuracy

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Wake word Algorithm

Page 27

Accuracy vs. Bit Width, Post-training Quantization

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Integer Bits

Fr
ac

tio
na

l B
its

32 bit floating point accuracy is 98.05

Area/power for 32 bit floating point multiplier is ~20X more than a 10 bit fixed point multiplier

Page 28

• Floating point representations almost never overflow
• 64-bit floating point represents up to 10308

• Using reduced precision means overflows are more likely
• Overflow truncation corrupts the result, and all subsequent calculations

• Saturating math stores the maximum value which can be represented
when an overflow occurs
• For many neural networks when a number gets large the absolute

magnitude is not important, just that the number is “large”

Saturating Math

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 29

Saturating Math

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Saturating math can reduce required representation size by 1 or 2 bits

Page 30

• Movement and storage of weights and features impacts performance
and power
• Reducing numeric representation has a linear effect on storage costs
• For data movement, fully packing the bus with data is optimal

• Buses are typically sized based on powers of two
• For example, 16-bit representation is preferred to 17 bits

• While reducing the size of the representation usually negatively
impacts accuracy, this can be offset by increasing layers or channels
• This means changing the architecture of the neural network

Data Movement and Storage

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 31

• Convolution algorithms access the input feature map and output
array multiple times
• Early in the network the input data sets are typically smaller
• Later layers typically have larger input arrays
• Coordinating cache size with order of operations can optimize PPA

Convolution Order of Operations

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 32

• Minimizing accesses to external memory can
improve performance and minimize power
• Memories tend to dominate area and power
• Data movement tends to limit performance
• If CNN data sets are too large to fit on-chip,

careful data management can significantly
improve design characteris

Caching and Buffering

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Inference Accelerator Layout

Page 33

• The CNN will undergo significant modification between the ML
framework and the hardware design
• This presents unique verification challenges

Accelerator Optimization

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 34

Verification Challenges

Page 35

• Need to verify:
• Individual operators, multipliers, adders, etc.
• Processing elements, Multiply/Accumulate (MAC) operations
• Complete inferences

• Neural Networks are robust to failed individual operations
• A single correct inference does not prove correctness of the implementation
• A statistically significant number of inferences is required

Verification of Inferencing Systems

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 36

• Performance in logic simulation is prohibitively slow
(28 hours for one inference in an object recognition algorithm)
• And hardware acceleration is often not available early in the design cycle

• Verify at the abstract level and prove equivalence between
representations at different design stages
• This can be done between Python and C++, then C++ and RTL

Verification of Inferencing Systems

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 37

Traditional UVM Flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Predictor
Keras CNN
(Python)

Compare

UVM tb

Agent Agent
SV/UVM

ML Accelerator

Stimulus

Page 38

• Verilog implements modified CNN
• Changes in layers/channels (these can be implemented in the predictor)
• Changes in numeric representation

• Float vs. fixed
• Bit widths
• Saturation/rounding

• Cannot directly compare outputs
• If there is a problem, debug is very hard

Traditional UVM Flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 39

Verification Landscape

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

10,000

100,000

1,000

100

10

1

0.1

C++
Algorithmic

C++
Architecture

uesta

VeloceIn
fe

re
nc

es
 p

er
 h

ou
r

Do as much verification as
possible here

Verify equivalency with prior
stage implementations during
refinement

Calendar time

C++
Quantized

Page 40

Prove Equivalence at Each Step

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Machine Learning
Framework

Neural Network
Architecture

Synthesizable
RTL

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

== == == High-Level
Synthesis

Page 41

Python to C++ Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Python to C++

==

C++ node Comparator

Node by node compare
Python with C++

Python CNN • Run C++ node in parallel with Python node
• Both nodes use common float types
• Differences should be only order of computation

rounding error
• Import C++ function into Python

• Several ways to do this: ctypes, CFFI, PyBind11, Cython

• Repeat for subsequent nodes, then layers, then
complete network

Page 42

C++ to Quantized Model Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Quantization

C++ float32 CNN

C++ quantized CNN

• Run C++ node in parallel with the quantized node
• Quantized implementation should be identical to

C++ algorithmic except for data types
• Verify/debug one thing at a time

• Nodes use different types
• Float vs. fixed point, reduced bit-width (ac data types)

• Differences will exist, and may be large

Page 43

C++ to Quantized Model Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

• Quantization errors
• Change in value from the original floating-point number

• Saturation errors
• Values that exceed the range of the representation will saturate

• Accumulated errors
• As operations are performed on quantized numbers, the

quantization errors can compound
• Rounding (as opposed to truncating) can reduce this

Page 44

C++ to Quantized Model Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

.
• Ranges from 111.11 (-4.0) to 011.11 (3.75)
• Fractional precision is .25

Floating point math: 1.377 + 1.377 + 1.377 + 1.377 = 5.508

Fixed point math: 1.377 => 001.10, which is 1.5
001.10 + 001.10 + 001.10 + 001.10 = 110.00 (or 6) error from floating-point is 0.492
maximum possible error is ½ of fractional precision * number of operations

The signed fixed-point interpretation of 110.00 is -2
Using saturating math, this result would be 3.75

The error in a comparison with the floating-point algorithm would be 1.758, which is a correct implementation

Page 45

• Need to run large number of inferences
• Predictions will be different from Python or C++ algorithmic model

• Determine if CNN accuracy is acceptable
• Modify network/layers/channels as needed and repeat

• One day ML frameworks will support quantized numbers
• Qkeras, Larq, and Hawq are examples of extensions that support quantization
• Currently, works for TPUs, but not expressive enough for bespoke accelerator
• Abstract model must exactly match the Verilog to be implemented

Quantized Model Must be Validated

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 46

C++ Quantized to C++ Architecture Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Architecture

C++ Quantized CNN

C++ Architected CNN

• Run Quantized node with Architected node
• Quantized and Algorithmic nodes should differ

only by order of operation rounding errors
• Nodes use same types

• Fixed point, reduced bit-width

Page 47

Verification – Before HLS

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Static Design Checks

Coverage Analysis

C++ Architected CNN

Static code analysis and synthesis
checks. Find coding errors and
problem constructs

Determine completeness of test cases.
Statement, branch and expression
coverage as well as covergroups,
coverpoints, bins and crosses

Page 48

C++ to RTL consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Formal

RTL Coverage

UVM

C++ Architected CNN
Using formal techniques, prove
as much equivalency as possible

Determine remaining verification
effectiveness through RTL coverage
metrics

Architected C++ is used
as a predictor for RTL verification

Page 49

Debug – When Things Go Wrong

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

• Log all intermediate values to memory or log file
• This includes output from each layer

• Have scripts that can compare intermediate values
from different model representations
• This identifies the first point of divergence between

models
• Immediately find layer and node where problem

resides

• Intermediate values from the Python can be
recorded to a file for comparison

Model A

Model B

Page 50

HVL UVM Flow

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Predictor:
Architected

C++
Compare

UVM tb

Agent Agent

SV/UVM

SV/UVM

RTL

ML Accelerator
HLS Created

Verilog

Stimulus

Page 51

Wakeword Example

Page 52

Wakeword Algorithm
• Monitors audio for keywords, performs some action when recognized

• Like “Hey Google” or “Alexa”

• Runs continuously, so needs to be efficient
• Essential when system is battery powered

• Trained with Tensorflow speech commands data set
• http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz

• From that we selected utterances from “zero” to “nine”
• Like the MNIST digit recognition, but spoken words instead of handwritten

• Base algorithm (the inspiration) came from:
• 'cnn-one-fstride4’ from 'Convolutional Neural Networks for Small-footprint Keyword Spotting': http://www.isca-

speech.org/archive/interspeech_2015/papers/i15_1478.pdf

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz

Page 53

Wakeword Algorithm

• Processes one second samples of Pulse Code Modulation audio
• 16,000 16-bit samples per second

• Algorithm is run every 50 ms.
• Add 320 samples to rolling window of PCM audio data

• Processing must complete in 50 ms.
• Audio is preprocessed with an MFCC function
• The resulting spectrogram is used as a feature-map for a CNN

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 54

Wakeword Audio Pre-processing

Audio input Quantization Integer array
(16k x 16 bits)

Spectral Array

MFCC()

Float array
(101 x 20 x 32-bits)

-4 0 4 7

To Neural Network
as feature map for

training and inferencing

0.123 0.456 -0.872 0.567

0.324 0.547 0.376 -0.231

0.846 0.183 0.834 0.937

0.625 0.737 0.746 0.827

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 55

Mel Frequency Cepstral Coefficients (MFCC)
• Audio representation format commonly used for feature extraction.
• Mel scale mimics human perception of sound.
• Widely used in machine learning and speech processing techniques.
• Steps to obtain coefficients:

Audio
Framing &
Windowing
the Signal

Convert to
Frequency

Domain
using DFT

Calculate
Signal Power

Compute
Mel-Spaced
Filterbank

Generate
Coefficients
using DCT

Accelerator

https://github.com/ddbourgin/numpy-ml/blob/master/numpy_ml/preprocessing/dsp.py

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 56

Wakeword Neural Network

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

conv2d
+bias
+relu

dense
+ bias

dense
+ bias

dense
+ bias
+relu

mfcc of 1000 ms
audio sample
101x20 words

20x7 kernel
186 channels

17,670x128
matrix 128x128 matrix 128x10 matrix

soft-
max

Total weights: 2,305,916 words
MAC operations: 4,729,416
MACs/second: 94,588,320 (assuming 50 ms cycle time)

'cnn-one-fstride4’ from 'Convolutional Neural Networks for Small-footprint Keyword Spotting':
http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf

Weights

Page 57

Wakeword Profile

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 58

Computational Load

Function Time - ms on RISC-V Percentage
mfcc() 153.97 54.72

conv_2d() 59.05 20.37
dense() 61.18 21.14

Total 273.95 96.23

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 59

Profile for mfcc() Function Percentage

Preemphasis 0.13

Edge_padding 0.14

To_frames 0.27

Power_spectrum 96.88

Sum 0.12

Filter_energies 2.10

DCT 0.27

Cepstral_lift 0.02

Mean 0.02

Delta_mean 0.01

Cast_to_floats 0.01

Log_energy 0.00

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 60

Python to C++ Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Python to C++

==

C++ node Comparator

Node by node compare
Python with C++

Python CNN • Run C++ node in parallel with Python node
• Ran 80 samples and compared differences

at all intermediate points
• 10 different utterances with 8 different CNN variations
• Run time was ~230 seconds or 3:50

• Differences were only found in bottom 4 bits
of the mantissa
• Used ctypes library to link in C++ functions

Page 61

Quantization

• Performed a sweep for all fixed point values for inference and power
spectrum to determine quantized accuracy
• Power spectrum needed 8-bit floating point representation
• Inference needed 16 bits for the convolution and 13 bits for dense

layers
• Settled on 16-bit fixed point

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 62

Bitwidth vs. Accuracy - Convolution

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Page 63

Bitwidth vs. Accuracy - Dense

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Page 64

Bitwidth (Fixed Point) vs. Accuracy - PS

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Page 65

Bitwidth (Floating Point) vs. Accuracy - PS

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Page 66

C++ to Quantized Model Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Quantization

C++ float32 CNN

C++ quantized CNN

• Ran 80 samples concurrently between C++
and Quantized C++

• Run time was 1,794 seconds (~1/2 hour)

• Measured line and branch coverage for all functions
• Achieved 100% coverage

• Differences were large, but within expectations
• Compared by assigning floating point representation to quantized

representation
• Results (excepting saturation) were +/- 0.00024

Page 67

• Data movement, buffering, loop unrolling pipelining
• When data is accessed multiple time, copy it to local memories or

buffers to reduce memory traffic
• Line and frame buffers can hold portions of data being worked on

• New data can be shifted in as older data is no longer needed

• Since data movement is often a limiting factor on performance,
effective caching and buffering can significantly speed computations

Architecting the Accelerators

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 68

Convolution – Layer 1

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

20

101

Spectral Array
20x101Fi

lte
r (

x
18

6)

7

Filter
20x7

Results
186 x 95 x 1

Page 69

• Spectral Array data elements are referenced 1,302 times each
• The total size of the spectral array is 2020 words, small enough to cache local

to the accelerator

• Each filter data element is referenced 95 times
• The total size of the filter is 140 words

• Output lines are calculated from a single filter
• Each filter can be read in, used to calculate an output line, then discarded
• This requires a buffer for only one filter

Convolution - Layer 1

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 70

• Fastest architecture is 140 multipliers
• Filters are held in registers, a portion of the spectral image in registers with

the remainder in line buffers

• A more efficient architecture has 20 multipliers
• It multiplies one column of the spectral array per clock

• Due to the high-level of data re-use, if data is held locally, this
function is compute bound

Convolution - Layer 1

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 71

Dense – Layer 2

17,670

Vector from
convolution

...

...

17,670

128

Weights (~2.2 million values)

... Result Vector (128 values)

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm
Accelerators

Page 72

• Elements from the convolution are referenced 128 times
• Each weight element is referenced just once
• Output is just 128 words

• Holding partial sums for the output lines can be done in a small memory or registers
• Each convolution element can be read in and multiplied against 128 weights

• The result can be added to a partial sum array
• The feature and weights can be discarded
• This minimizes memory storage

• This layer is limited by how fast weights and features can be read in
• Weights need to be packed in memory correctly to optimize bus utilization and

performance

Dense – Layer 2

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 73

• Computations may be limited by the arrival of data
• In this example, dense layer in CNN weights are used once
• Any more multipliers than the number of data element delivered

per clock will be wasted

Balancing Communication and Computation

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 74

Hardware Implementation – Dense Layer

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Interleaved
RAM Banks
for image and
results

Page 75

C++ Quantized to C++ Architecture Consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Architecture

C++ Quantized CNN

C++ Architected CNN

• Ran same 80 test cases
• 10 audio samples x 8 CNN configurations
• Run time was 1.2 hours

• Fully covered architectural and quantized models
• Differences were limited to +/- 3 LSBs on

inference and +/- 1 LSB for power spectrum

Page 76

C++ to RTL comparison

Predictor:
Architected

C++
Compare

UVM tb

Agent Agent

SV/UVM

SV/UVM

RTL

ML Accelerator
HLS Created

Verilog

With Architected C++ proved equivalent to original Python, used it as a predictor for RTL
RTL and C++ matched to the except for the LSB

Stimulus

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 77

C++ to RTL consistency

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Formal

UVM

C++ Architected CNN
Verified the core algorithms
(matmul, dense, 2d convolution)

• Architected C++ is used as a
predictor for RTL verification

• Simulation covered CNN
architecture variations

• 8 test cases
• softmax was in SW

• 34.4 hours of simulation

Page 78

Conclusion

• Moving from Python to RTL in a single step introduces
a significant verification problem
• Inferencing algorithms do not produce bit-level equivalency when accelerated
• Requires many inferences to verify accuracy of implementation
• Simulation performance is too slow, emulation or FPGA prototypes are usually

not available

• High-Level Synthesis introduces an intermediate C++ model
• Verify the algorithm at the Python level
• Prove equivalency between subsequent model stages

Restricted | © Siemens 2023 | Russell Klein | Verification of Inferencing Algorithm Accelerators

Page 79

Questions or Comments

?? || //

Page 80

Thank You

Petri Solanti, Field Applications Engineer, Petri.Solanti@Siemens.com
Russell Klein, Program Director, Russell.Klein@Siemens.com

mailto:Petri.Solanti@Siemens.com
mailto:Russell.Klein@Siemens.com

