
Static Sign-Off Best Practices
Learnings and Experiences from Industry Use Cases

Vikas Sachdeva, Senior Director of Product
Strategy and Worldwide Business Development

The Verification Challenge

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

The Verification Challenge

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

The Verification Challenge

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

Verification Methodologies – Dynamic
Verification
• Compute design behavior for user specified testcases

• Check the computed behavior for failures

• Examples: Simulation and Emulation

Verification Methodologies – Formal
Verification
• Uses the tools to mathematically analyze the space of possible

behavior of a design

• Example: Equivalence checking, Formal Property Verification

Source: Formal Verification – An essential Toolkit

Verification Methodologies – Static
Verification
• Utilizes search and analysis techniques

• Checks for design failures under all possible testcases

• Examples: STA, Lint, CDC etc.

Comparing Simulation, Formal & Static Sign-
Off

3 Verification Methodology Metrics

Comparing Simulation, Formal & Static Sign-
Off – On verification metrics

Learnings and Experiences from Google’s
Cloud Based Sign-Off Methodology

TPU – Custom Hardware for Machine
Learning Source: https://www.realintent.com/google-static-

sign-off-methodology-results/

Google ASIC Methodology – Main Challenges

Source: https://www.realintent.com/google-static-sign-off-methodology-results/

Clocking is the Primary Challenge in ASIC
Design

Google Static Sign-Off Best Practices – #1
Static Checks First

Google Static Sign-Off Best Practices - #2
Breadth of Static Sign-Off Checks

Google Static Sign-Off Best Practices - #3
Continuous Static Checks

Impact of Google’s Static Sign-Off
Methodology
• More bugs were found by continuous approach

• Nightly static runs

• Automatic dashboard updates

• Automatic bug filing

• Reduced late-stage RTL changes
• Higher quality RTL reduces risk of expensive iterations

• Saves ECO efforts

• Better Schedule Control
• Reduced violation noise as the most pressing signoff challenge

Learnings and Experiences from Nvidia’s
Sign-Off Methodology

Static Signoff Tools: When and Where

Module Creation

• Lint

• Formal Lint

Functional Block

• Lint

• CDC

• RDC

Assembled Design

• Multi-Clock CDC

• RDC

Gate-Level Chip

• CDC

CDC=Clock Domain Crossing
RDC=Reset Domain Crossing

Problems Solved – Catching Problems Others
May Miss, Earlier

Lint

• Find RTL problems
before simulation
or synthesis

• Find bugs not
found otherwise

CDC

• Catch tricky
problems that
escape best
efforts of design
guidelines, golden
IP, and
simulations

RDC

• Catch another
class of subtle
problems that
could cause
perplexing silicon
bugs

Successes – Anecdotes From The Trenches

• Using Lint means we don’t find RTL problems at synthesis or
equivalence checking.
• Simple: dangling inputs, multi-driven nets

• Corner Cases: parallel case, bounds check, arithmetic overflow checks

• Subtle: Self-Determined Expressions

• CDC
• Block RTL CDC helps guarantee safe interface design.

• CDC after Assembly helps catch that inter-block pipelining registers were
inserted on the correct clock domain.

• Full-Chip Gate CDC is a final check, including DFT, ECOs, etc.

Best Practices – Automation and Enforcement

• Static Sign-Off is not optional!

• Provide push-button flows to create environment, run tool, analyze
report, apply waivers.

• Automatically determine Pass/Fail status, post to dashboard.

• Run the tools regularly at prescribed points: at check-in, regressions,
project milestones.

• Static Sign-Off is NOT a designer running the tool in a GUI and telling
the chip manager it passed. Needs rigor in tool application and result
tracking.

Best Practices – Very Early and Late

• Finding problems earlier
dramatically lowers the cost to fix
them.

• But, design completeness and
correctness evolve over time.

• Also, the design environment (e.g.,
constraints) evolves over time.

• There’s no one best time to run
SSO. Need to run at every stage.

Cost to Fix

Completeness

Design Evolution

Cost to Fix Completeness

Key Static Signoff Application Capabilities

• This is the reason the tool exists.

• Does it cover everything that it can?

• Is it conservative (not optimistic)?

Coverage and
Correctness.

• Noise is the bane of static analysis!

• Minimal false violations, compact reports, root cause reporting.Very High SNR

• Key to “automation and enforcement”.

• Implementation tools set a good example: Tcl, design object
access, useful attributes, etc.

Programmability
and Debuggability

Learnings and Experiences from Samsung’s
Sign-Off Methodology

Where are We with Design Complexity

• 30% design size increase on
average YoY

• More IPs are integrated in SOC

• Design cycle is shrinking

< Logic Size Increase in SOC >

Design Size

How are We Doing on Functional Verification

• Deep bug-hunting by strengthening
IP level formal verification

• Simulation with multi-cores

• Simulation acceleration using
Emulation

• Early SW development using Hybrid
Emulation

How About Static Verification and RTL Sign-
Off
• Non-manageable design size with current static tools

• 30~40 hours runtime & 1TB memory footprint at SOC level CDC → NOT
practical!

• Excessive review & debug time/resources
• 500k CDC paths to review → 90 man-weeks

• Wasting effort to review too many false negatives

Hierarchical CDC for SOC
• Flat analysis vs Hierarchical analysis

• Abstracting IP or block level information as “metadata”

• Using lower level metadata for upper level CDC analysis

Hierarchical CDC for SOC
• Abstracting IP information for block level CDC

• Abstracting block information for SOC level CDC

• Reduction for runtime (30h→3h) and review man-hours (100%→30%)

We Still Have Challenges!
• Stiff learning curve for formal verification

• Industry Standard Formal Verification Methodology (such as UVM) may be required
• Better support for resolving inconclusive assertion is wanted

• Still suffering from excessive debug time & effort
• Smart technology to reduce false negative (99% in CDC review) is wanted
• Can we leverage Machine Learning?

• Insufficient tool capacity for multi-billion gate SOCs
• Can we apply Divide-n-Conquer to all static verification?
• Hierarchical formal or Emulation for formal?

• We believe we have a lot to improve!!!

Hailo’s Static Signoff Methodology for Edge AI
Processor

Hailo’s RTL Static Sign-Off flow

• Bottom-up flow used for full
chip runs

• Lint is run at block & full chip
level

• CDC static sign-off done at
block & full-chip level

Static Signoff Challenges for Hailo’s Edge AI
Processor

• Pressured time-frame for RTL freeze

• Had to sign-off in most efficient manner

• Unfamiliarity with the tool at project start

• Complex clock structure & knowledge was scattered

Handle Challenges with Efficient Static Tools

Huge amount of
compute elements

Static Sign-Off
Tool Impact

Design
Challenge

Fast performance

Many repeating
identical components

More layers => solves
complex problems

Eliminates duplicate
violations, reduces noise

Highly efficient
shelling flow

Scales well with
complexity

High Locality

Paulo Alto Networks – Advanced X-Propagation
Methodology to identify X-initialization source

errors

Initial Methodology: Analysis During
Simulation Only
• Earlier methodology only

involved X-propagation
analysis during simulation

• Risked missing issues as
dynamic analysis limited by
test patterns

• Coverage limited by the test
runs

Methodology Advancement: Adding X-
Propagation Static Sign-off

Exhaustive and High Performance

Samsung – Using the right mix of static and
dynamic verification for CDC Sign-Off

CDC Metastability

• Metastability on CDC paths can lead to
• Unpredictable results

• Unpredictable delays

• Synchronizers are used to squelch
metastability, but ...

Correlation Loss

• Converging synchronizers cause correlation loss

• CDC Structural verification does report
reconvergences and other design problems but …

• Structural CDC analysis is not enough for:
• Identifying functional impact of reconvergences

• Validating the correctness of synchronizations under
metastability stress in synchronizers

• Detecting problems due to signal skews on
synchronizer paths

Dynamic CDC & Traditional In-House Jitter
Models
• In Dynamic CDC, reconvergences and other specific CDC problems are

checked during functional simulation

• Historically handled by in-house metastability injection model for
synchronizers, but …

• Traditional in-house metastability injection models are not accurate or
may cause false injections

In-House Models Have Shortcomings

• In-house models have several
shortcomings
• Inject metastability even when only

sync drivers changed

• Inject metastability incorrectly even
when pulse is wide enough

• Do not catch metastability due to short-
pulse or combo-glitch

• Handle clock-gating inadequately

Typical Inhouse Metastability-Injection Model

TxClk

RxClk

SyncOut

RxClk

Sig1 (not changing)

Sig2 - Changing

Inhouse Metastability-Injection Models
may not be accurate

Dynamic CDC and Automated Models

Dynamic CDC and Automated Models

Handled both in traditional model

and new automated dynamic CDC

model

Only automated model can handle

this, not the traditional model

Only automated model can handle

this, not the traditional model

Traditional CDC Flow
• Conventional CDC Static Signoff Flow

has no link between Static Signoff
and functional verification

• CDC signoff is done independently
with certain assumptions

• Functional verification is done
independently with certain
assumptions

• No minimal link between CDC signoff
& functional verification
• May lead to silicon issues falling

through the cracks

Samsung Dynamic CDC Flow in Conjunction
with Static CDC Flow
• We run Dynamic CDC

verification flow together
with Static CDC sign-off flow

• The first step to run
Conventional simulation
without any link to CDC

• This is to ensure simulation
regressions are clean without
any metastability effects

Samsung Dynamic CDC Flow in Conjunction
with Static CDC Flow

Samsung Dynamic CDC Flow in Conjunction
with Static CDC Flow

Bugs Revealed in Case Studies

• When metastability is
not modeled in
simulations
• Design appears to work

correctly

• When metastability is
modeled in simulations
• Read operation failure is

observed in simulations

Bugs Revealed in Case Studies
• When design is

simulation without
metastability models
• Design appears to work

correctly

• When metastability is
modeled in simulations
• Combo glitch is captured

and propagates in the
design which leads to
FSM malfunction

Bugs Revealed in Case Studies

• When metastability is not
modeled in simulations
• Design appears to work

correctly

• When metastability is
modeled in simulations
• Unexpected short pulses

are detected that are
missed leading to design
failures

Use Right Mix of Static and Dynamic
Verification for CDC Signoff

• Strengthened metastability modeling compared to conventional
synchronizer models

• CDC database for static sign-off is re-used for Dynamic CDC
verification – No additional effort required

• Problems are detected that pure functional simulation does
not reveal

• We recommend running dynamic CDC flow together with static
CDC signoff for complete coverage of CDC failures

Fujitsu – 30% Reduction In Logic Simulation
TAT Using Automatic Formal Techniques

Static Approach is Required for Efficiency
• SOC logic scale has become large and complex

• 100s of IPs in SOCs

• 100s of Clock Domains

• Huge amount of verification is needed

➢ Bugs are missed in the design process

• Static approach is essential in early debug and for quality improvement

Design
Logic
Sim

Lab Test

Bug

Bug

30% Reduction in Simulation TAT Using
Automated Formal Techniques

Use Effective Static Tools For Efficiency

• Static approach is essential for robust sign-off
• Early RTL sign-off and CDC sign-off are iconic examples

• Complex High-end Computer and Networking SOCs require systematic static
sign-off

• Effective static tool introduction itself became systematic sign-off
methodology

SK Hynix – Advanced Reset Design and
Verification Methodology

Our Reset Design Challenge

• Multiple primary resets

• Primary resets feed large
number of synchronizers
(secondary resets)

• Numerous combinations
and interactions of primary
and secondary resets and
their clamping logic

Our Reset Verification Challenge

• Verification of multiple
interactions of primary
and secondary resets
and their clamping
logic

• Primary resets used in
multiple complex
waveform scenarios

Reset Sequence Case1

Reset Sequence Case2

Reset Sequence Case N

Traditional Approaches and Limitations

• Dynamic verification using simulation

• Verification by running regressions tests on FPGA

• Limitations
• Requires a large number of test benches to over all our reset cases

• Requires large number of CPU and Human resources

Static Analysis Based Reset Sign-Off
Methodology

• Only primary resets needed to be defined

• All possible waveform scenarios covered in
one run

• Specifying all real scenarios and waveforms
enabled comprehensive sign-off

• We recommend using static methodologies
for Reset Signoff

Start

Identify
Independently

Asserted Resets

Specify
Reset

Scenarios

Define
Synchronizers,

Clamp cells

Analyze Reset
Metastability

Issues

Analyze Reset
Glitch Issues

Analyze Reset
Correlation Issues

Reset
SignOff

Renesas – Efficient functional sign-off by
automatic assertion generation for RTL building

blocks

The Verification Challenge
• System-level validation is complex, slow, and

incomplete, pushing up HW design cost

• Systematic functional sign-off is an underserved
imperative

• Vast gap between low-level RTL checks and system-
level functional RTL sign-off

• Must Bridge the Gap!

• System-level validation is very hard due to
• 3rd-party IP, Distributed design team, Legacy RTL in SOC

assembly

• Stimulus automation has been the focus so far
• Constraint random, Formal, PSS, UVM..

• But, Manually-Guided Checkers are Slow, Unstable,
and Insufficient

• Researching, planning, coding, reviewing, debugging..

• Need automation in checker generation also!

RTL Lint

Auto-
Formal

System-
level

End-to-end
Functional
Validation

GAP

Sign-off Confidence

Verification Process Steps

V
e

ri
fi

ca
ti

o
n

 C
o

n
fi

d
e

n
ce

Fast, Automatic, Mechanical Slow, Manual, Complex

Low-level

DUT
Rich

Stimulus
Poor

Checking

Less Sign-off Confidence

manual
checker

manual
checker

• System-level validation is complex, slow, and
incomplete, pushing up HW design cost

• Systematic functional sign-off is an underserved
imperative

• Vast gap between low-level RTL checks and system-
level functional RTL sign-off

• Must Bridge the Gap!

• System-level validation is very hard due to
• 3rd-party IP, Distributed design team, Legacy RTL in SOC

assembly

• Stimulus automation has been the focus so far
• Constraint random, Formal, PSS, UVM..

• But, Manually-Guided Checkers are Slow, Unstable,
and Insufficient

• Researching, planning, coding, reviewing, debugging..

• Need automation in checker generation also!

RTL Lint

Auto-
Formal

System-
level

End-to-end
Functional
Validation

GAP

Sign-off Confidence

Verification Process Steps

V
e

ri
fi

ca
ti

o
n

 C
o

n
fi

d
e

n
ce

Fast, Automatic, Mechanical Slow, Manual, Complex

Low-level

DUT
Rich

Stimulus
Poor

Checking

Less Sign-off Confidence

manual
checker

manual
checker

Auto-Inferred Building-Block Property
Checking (AIPC)

Library of Assertion Templates

• Most designs have primitive building-blocks
• Counter, FSM, FIFO, Stack, FF-Sync, RAM, Shift-Reg etc.

• Advanced Functional Static Analysis successfully
automatically infers such building-blocks in RTL

• Generate white-box assertions based on Simple
Assertion Template for each building-block type

• Bind these assertions to RTL using co-generated bind
files without user effort

• AIPC method allows uniform safety and coverage
criteria to be created across a variety of
implementations

Success✔ X Failure or Absent Coverage

Counter

Synchronizer

Counter

✔

X

✔

✔ ✔

Property

Counter

Property

FSM

Property

FF-Sync

Property

FIFO
…

Instantiation

AIPC Assertion Library

GUI Snapshots

Full and Instant Automation

Multi-Purpose Use for RTL Verification

Verification Flow with AIPC

Summary: Static Signoff Best Practices

Static Sign-Off Key to Shifting Left

Early RTL
X

Block-Level
10X

Chiplet
100X

Emulation
10,000X

Full-Chip
1,000X

Shift-Left
Fixes are 10X more
expensive at each stage

Static Sign-Off Best Practices

• Bugs found early are less costly
to fixStart Early

• Detecting new issues
immediately, before check-ins

Include in
Continuous Regression

• Distribution of engineering effort
Keep it

Hierarchical

• Avoids missed errors with Multi-
Mode CDC

Ensure
It’s Complete

• Complete Static signoff includes
RDC, X-Verification & DFT

Deploy Beyond
CDC, STA, Lint

1

2

3

4

5

Questions?

Source: istockphoto

Guidelines (1)

• Please keep the default font size for main lines at 28pt (or 26pt)
• And use 24pt (or 22pt) font size for the sub bullets

• Use the default bullet style and color scheme supplied by this
template

• Limited the number of bullets per page.

• Use keywords, not full sentences

• Please do not overlay Accellera or DVCon logo’s

• Check the page numbering

Guidelines (2)

• Your company name and/or logo are only allowed to appear on the
title page.

• Minimize the use of product trademarks

• Page setup should follow on-screen-show (4:3)

• Do not use recurring text in headers and/or footers

• Do not use any sound effects

• Disable dynamic slide transitions

• Limit use of animations (not available in PDF export)

Guidelines (3)

• Use clip-art only if it helps to state the point more effectively (no
generic clip-art)

• Use contrasting brightness levels, e.g., light-on-dark or dark-on-light.
Keep the background color white

• Avoid red text or red lines

• Use the MS equation editor or MathType to embed formulas

• Embed pictures in vector format (e.g. Enhanced or Window Metafile
format)

Questions

• Finalize slide set with questions slide

	Slide 1: Static Sign-Off Best Practices Learnings and Experiences from Industry Use Cases
	Slide 2: The Verification Challenge
	Slide 3: The Verification Challenge
	Slide 4: The Verification Challenge
	Slide 5: Verification Methodologies – Dynamic Verification
	Slide 6: Verification Methodologies – Formal Verification
	Slide 7: Verification Methodologies – Static Verification
	Slide 8: Comparing Simulation, Formal & Static Sign-Off
	Slide 9: 3 Verification Methodology Metrics
	Slide 10: Comparing Simulation, Formal & Static Sign-Off – On verification metrics
	Slide 11: Learnings and Experiences from Google’s Cloud Based Sign-Off Methodology
	Slide 12: TPU – Custom Hardware for Machine Learning
	Slide 13: Google ASIC Methodology – Main Challenges
	Slide 14: Clocking is the Primary Challenge in ASIC Design
	Slide 15: Google Static Sign-Off Best Practices – #1 Static Checks First
	Slide 16: Google Static Sign-Off Best Practices - #2 Breadth of Static Sign-Off Checks
	Slide 17: Google Static Sign-Off Best Practices - #3 Continuous Static Checks
	Slide 18: Impact of Google’s Static Sign-Off Methodology
	Slide 19: Learnings and Experiences from Nvidia’s Sign-Off Methodology
	Slide 20: Static Signoff Tools: When and Where
	Slide 21: Problems Solved – Catching Problems Others May Miss, Earlier
	Slide 22: Successes – Anecdotes From The Trenches
	Slide 23: Best Practices – Automation and Enforcement
	Slide 24: Best Practices – Very Early and Late
	Slide 25: Key Static Signoff Application Capabilities
	Slide 26: Learnings and Experiences from Samsung’s Sign-Off Methodology
	Slide 27: Where are We with Design Complexity
	Slide 28: How are We Doing on Functional Verification
	Slide 29: How About Static Verification and RTL Sign-Off
	Slide 30: Hierarchical CDC for SOC
	Slide 31: Hierarchical CDC for SOC
	Slide 32: We Still Have Challenges!
	Slide 33: Hailo’s Static Signoff Methodology for Edge AI Processor
	Slide 34: Hailo’s RTL Static Sign-Off flow
	Slide 35: Static Signoff Challenges for Hailo’s Edge AI Processor
	Slide 36: Handle Challenges with Efficient Static Tools
	Slide 37: Paulo Alto Networks – Advanced X-Propagation Methodology to identify X-initialization source errors
	Slide 38: Initial Methodology: Analysis During Simulation Only
	Slide 39: Methodology Advancement: Adding X-Propagation Static Sign-off
	Slide 40: Exhaustive and High Performance
	Slide 41: Samsung – Using the right mix of static and dynamic verification for CDC Sign-Off
	Slide 42: CDC Metastability
	Slide 43: Correlation Loss
	Slide 44: Dynamic CDC & Traditional In-House Jitter Models
	Slide 45: In-House Models Have Shortcomings
	Slide 46: Dynamic CDC and Automated Models
	Slide 47: Dynamic CDC and Automated Models
	Slide 48: Traditional CDC Flow
	Slide 49: Samsung Dynamic CDC Flow in Conjunction with Static CDC Flow
	Slide 50: Samsung Dynamic CDC Flow in Conjunction with Static CDC Flow
	Slide 51: Samsung Dynamic CDC Flow in Conjunction with Static CDC Flow
	Slide 52: Bugs Revealed in Case Studies
	Slide 53: Bugs Revealed in Case Studies
	Slide 54: Bugs Revealed in Case Studies
	Slide 55: Use Right Mix of Static and Dynamic Verification for CDC Signoff
	Slide 56: Fujitsu – 30% Reduction In Logic Simulation TAT Using Automatic Formal Techniques
	Slide 57: Static Approach is Required for Efficiency
	Slide 58: 30% Reduction in Simulation TAT Using Automated Formal Techniques
	Slide 59: Use Effective Static Tools For Efficiency
	Slide 60: SK Hynix – Advanced Reset Design and Verification Methodology
	Slide 61: Our Reset Design Challenge
	Slide 62: Our Reset Verification Challenge
	Slide 63: Traditional Approaches and Limitations
	Slide 64: Static Analysis Based Reset Sign-Off Methodology
	Slide 65: Renesas – Efficient functional sign-off by automatic assertion generation for RTL building blocks
	Slide 66: The Verification Challenge
	Slide 67: Auto-Inferred Building-Block Property Checking (AIPC)
	Slide 68: AIPC Assertion Library
	Slide 69: GUI Snapshots
	Slide 70: Full and Instant Automation
	Slide 71: Multi-Purpose Use for RTL Verification
	Slide 72: Verification Flow with AIPC
	Slide 73: Summary: Static Signoff Best Practices
	Slide 74: Static Sign-Off Key to Shifting Left
	Slide 75: Static Sign-Off Best Practices
	Slide 76: Questions?
	Slide 77: Guidelines (1)
	Slide 78: Guidelines (2)
	Slide 79: Guidelines (3)
	Slide 80: Questions

