CONFERENCE AND EXHIBITION

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

A Methodology for Power and Energy Efficient Systems Design

Mohammed Fahad Siemens EDA

SIEMENS

Ć

Agenda

- Power and Energy as Key Metrics
- RTL Power Analysis Need, the Challenges and a comprehensive methodology
- The proposed methodology
- Brief discussion about the key elements of the proposed methodology
- Power and Energy Reporting in PowerPro
- Summary

DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION

UNITED STATES SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

Power is everywhere...

F

Mobile

Processing

Networking

Automotive

The Need for an Energy Conscious Design Strategy

De-carbonization of compute Infrastructure

Power and Energy becoming a key design consideration

Speed/Timing Critical

Desktop Personal Computing-Mainly MH/GH race

Power & Timing Critical

Design Complexities Making Power and Timing Critical

Power & Energy Critical

Complex AI/Big Data Application Processors

Compute Technology Trend

SYSTEMS INITIATIVE

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

RTL Power/Energy

The benefits of a fast and accurate RTL Power Analysis Flow

(

RTL Power Analysis, Why and Where?

RTL Power - The Challenges

Difficult Tool Setup

- Provide inputs like waveform, physical information etc
- Calibration for Power Estimation

Power Analysis and Large TAT

 May require deeper analysis of reports to understand the problems and fix them, often late in the design cycle

Late Consideration of Power

- Lack of time to find and fix power issues
- Discovering problems late will delay schedules

2-05-28 | DVCon- China | Siemens Digital Industries Software | Where today meets tomorrow.

RTL Power -The Essential ingredients of the Required Methodology

Support Structural Checking when Vectors are not ready yet

Helps clean inputs and provide power coverage insight

Helps quick Power/Energy trending and tracking in regression

Helps inspect the Power and Energy profile for optimization opportunities

stricted P Siements 2022 | 202

05-28 | DVCon- China | Siemens Digital Industries Software | Where today meets tomorrow.

Methodology for Power/Energy Exploration and Optimization

SYSTEMS INITIATIVE

Regression Ready Framework Power/Energy Analysis and Optimization

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

Early Power Checking using EDCs

Cturret unel Derrow Linting for Co

Structural Power Linting for Catching Low Hanging Power Issues Early-on

svs.

Early Design Checks

Structural Analysis of RTL to reveal power issues upfront

- Can be run without vectors
- Runs extremely fast
- Performs structural analysis of the RTL to find potential issues that can impact power downstream
- EDC metrics can be used to qualify IPs for lowpower

Ungated	9	81.82
Memories		%
Ungated Macros	1	50 %
Ungated Memory	49	100 %
Inputs	Input(s)	
Ungated	8	
Operator Inputs	Input(s)	
Ungated Flops	613	59.8 %
Ungated MUX	9 MUX	
Inputs	Inputs	
Not	728	71.02
Combinationally		%
Enabled Flops		
Floating Memory	1	0.09
Data Outputs	Output(s)	%
Memory	11	73.33
Redundant	Input(s)	%
Toggle Inputs		
Constant CGICs	3	17.65
		%
Functionally	4	23.53
Redundant CGICs		%
Structurally	2	11.76
Redundant CGICs		%

Coverage Checks

Desian Checks

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

Input Qualification

Cleanup the inputs, otherwise it is Garbage-in-Garbage-out

Power Setup and Input Quality Check

Ensure first-time right power estimates with data integrity checking

- Correct setup leads to correct power estimates !
 - Incorrect setup and deficient inputs can lead wrong power estimates, longer TAT
- Did I provide the correct setup?
 - Setup can be wrong unintentionally, leading to incorrect power numbers
- Quality of input determines the quality of output
 - Data integrity checks (DICs) ensure that the input provided is not deficient
 - Quality checks at each step (Libraries, SPEF, Waveform)

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

Power Analysis

Comprehensive Power Analysis

Complete portfolio for Power Analysis, from early RTL to Gate, IP to SoC

Accurate RTL and Gate-level Power Estimation

- RTL Power Accuracy
- within 15% of layout
- Gate Power Accuracy within 3% of layout
- Ability to use RTL stimuli to perform Gate-level Power Analysis

Averaged Power and Time-based Power

- Averaged Power
- Time-based Power (Cycle-Accurate)
- Supported switching activity formats: QWAVE, FSDB, SAIF, STW

• Detailed Reports and Intuitive Debug

- Summary Power, Hierarchical Power
- Power by Component/Category
- Power by Clock Domain
- Intuitive GUI with cross-probing, querying, filtering etc

accellera SYSTEMS INITIATIVE

Averaged and Time-based Power Analysis RTL, Gate and RTL-stimulus-on-Gate

Power Inspection Reports

- Power Inspection
 - New set of reports to visualize, inspect and determine gating opportunities for Flops/Memories
 - Clock-Tree visualization for holistic view of gaters in the design and their effectiveness
 - Fan-out profile per clock root/ICG along with toggle profile for detailed analysis
 - Detailed Flop and Memory reports to analyze and find potential solutions for gating

Power Inspection									
Clock Tree Power Inspection	21.65%	63.35 uW							
Flop Power Inspection	51.22%	111.29 uW							
Memory Power Inspection	12.34%	24.46 uW							
Glitch Power Inspection	18.85%	41.37 uW							

UNITED STAT

Metric		Category: Si	ignals	V DB T	Title: Cl	lock Tree	Power Inspection	n Report 🗸 🗸																		
) Modu	.e: Enter mo Lumn None	odule name • Scope: En	nter scope v) (==	V Recurs	sive Hei Enter Val	.ght: [0-n] ue	⊙ I 🤅	Enter	Filter (Press C	trl+space for	hint)														
S Domai	n Clock Roo	ot CGIC	CGIC Output T	TD RICGE(%)	AICGE (%) WICGC	RTL Descriptio	n Drive Type	Depth	Fanout Flop	s Fanout M	iemc Fan	out Latches Fanout CG	ICs Fanout B	Box Flop Data	T. 0% Flop Activ	vity 0-20%	20-40%	40-60%	60-80% 8	80-100% 1	.00% Flop	D Leakage	Flop Intern	a Flop Switchi	ng Flop Total Power(n
01	clk	data_inst1.cgInst_2234	0	100 %	100 %	3840320	Inferred	Leaf	1	64	0	0	0	0	0.004976	31.25 %	68.75	÷0 ۽	0 %	0 % 0) % ()	\$ 0.00	6676	2.65	0	2.66
2	clk	count_inst.cgInst_2233	0.368869	63.11 %	63.11 %	151484	Inferred	Leaf	1	4	0	0	0	0	0.086455	0 %	100 %	0 %	0 %	0 % 0) 🐐 🛛 0	\$ 0.00	0642	23.56	2.03	23.56
_ 3	clk	ecc_inst.cgInst_2232	0.03803	96.2 %	96.2 %	461784	Inferred	Leaf	1	8	0	0	0	0	0.172323	0 %	100 %	0 %	0 %	0 % 0) % ()	\$ 0.00	1269	20.44	0.186318	20.44
□ 4	clk	two_tap_row_b.cgInst_223	10.104058	89.59 %	89.59 %	430088	Inferred	Leaf	1	8	0	0	0	0	0.075194	12.5 %	87.5 %	0 %	0 %	0 % 0	0 % 0	\$ 0.00	1203	16	0.273405	16
5	clk	two_tap_row_b.cgInst_223	(0.999983	0 %	0 %	16	Inferred	Leaf	1	16	0	0	0	0	0.061919	25 %	75 %	0 %	0 %	0 % 0	0 % 0	\$ 0.00	1933	120.78	6.24	120.78
6	clk	data_inst1.cgInst_2229	0	100 %	100 %	3840320	Inferred	Leaf	1	64	0	0	0	0	0.004976	31.25 %	68.75	÷0 ۹	0 %	0 % 0	0 % 0	\$ 0.00	6676	2.65	0	2.66
07	clk	two_tap_row_a.cgInst_222	80.036697	96.33 %	96.33 %	462424	Inferred	Leaf	1	8	0	0	0	0	0.039705	12.5 %	87.5 %	0 %	0 %	0 % 0	0 \$ 0	\$ 0.00	1186	6.43	0.061032	6.43
8	clk	two_tap_row_a.cgInst_222	0.999983	0 %	0 %	16	Inferred	Leaf	1	16	0	0)1	1938	99.52	3.11	99.52
9	clk	decode_row.cgInst_2226	0.840663	15.93 %	15.93 %	38244	Inferred	Leaf	1	4	0		opens	repc	ort tha	at shc) WS (onl	v tl	ne			0643	55.36	2.31	55.36
0 10	clk	decode_row.cgInst	0.456495	54.35 %	54.35 %	1174068	Inferred	Leaf	1	36	0	0							' .				5283	280.35	9.87	280.35
0 11	clk	cgic_inst2.cgic_ins	0	100 %	100 %	960080	Instantiated	Leaf	1	16	0	0	tlops c	ontri	ibutir	ng to t	this I	nui	mb	er):	162	37.49	0	37.5
0 12	clk	cgic_inst3.cgic_ins	0.999983	0 %	0 %	16	Instantiated	Leaf	1	16	0	0):	162	37.49	0	37.5
0 13	clk	mem_inst_1.cgic_ins	0.999983	0 %	0 %	44	Instantiated	Leaf	1	44	1	0	0	0	0.005683	93.18 %	4.55 %	2.27 %	0 %	0 % 0) % ()	\$ 0.00	4373	263.39	0.243767	263.4
0 14	clk	cgic_inst	0.133422	86.66 %	86.66 %	1455972	Instantiated	Branch & Leaf	1	28	1	0	1	0	0.23617	3.57 %	35.71	150 %	10.71	0 % 0) % ()	€ 0.00	2694	92.6	0.317842	92.6
																	•						-		CONFERE	NCE AND EXHIBI

Average Power Report

Command Library Used	<pre>powerpro> re Library(s) Use sc9_base_lvt sc9_base_lvt sadrlskkb2p2 </pre>	eport_power d: _tt_typical_ma _ff_typical_ma 56x64m2b2w0c1p	x_0p90v_25c x_0p72v_0c 0d0t0_1ib				
	Operating Cond	itions : tt	_typical_max_0p90v_250				
Design Hierarchy	Design		Target Libraries	Voltage VTH Di	stribution		
and Characteristic	dut uut.rxReceiv	eEngine	All All	0.9 0.9			
PVT Corner	Global Operati Power-specific Voltage Unit Capacitance Time Units Dynamic Powe Leakage Powe Power Summa	ng Voltage = 0 unit informat s = 1V Units = 1pf = 1ns r Units = 1uW r Units = 1uW ry Report	.9 ion:				
	Power Group	Count	Leakage Power(uW)	Internal Power(uW)	Switching Power(uW)	Total Power(uW)	Percentage(%)
Average Power Summary	io_pad memory black_box register combinational sequential clock_network total	0 5 2 2136 12414 0 2 14559	0 263.897 0 169.694 693.335 0 20.2277 1147.15	0 278.173 0 770.985 24.0329 0 350.193 1423.38	0 0 1.467e-03 0.30607 13.8433 0 5.22296 19.3738	0 542.07 1.467e-03 940.985 731.211 0 375.644 2589.91	0% 20.93% 0% 36.33% 28.23% 0% 14.5% 100%
	Concertainty of the second second				· · · · · · · · · ·		

SYSTEMS INITIATIVE

Ē

Cycle Accurate Peak Power (CAPP) Report

- Energy value is computed for each event (toggle) in the design
- CAPP analysis provides cycle level accurate power behavior for the design

UNITED STATE

report power -time based

Energy Reports

- Power & Energy both are critical parameters in low power/energy circuit design.
- Power defines rate of energy consumption per unit time.
- Like power, it is also necessary to know total amount of consumed energy in given simulation timeline.
- Along with power reports, users also want energy consumption reports.

Energy Summary	Report						
Power Group ing Energy(uJ)	Count Total Powe	Leakage Power(uW) er(uW) Total Energ	Leakage Energy(uJ) y(uJ) Percentage(%)	Internal Power(uW)	Internal Energy(uJ)	Switching Power(uW)	Switch
io_pad	0	0 0	0 0%	0	Θ	0	Θ
memory 58e-04	11 10694.46	2941.41 0.641721	0.176499 45.89%	7750.67	0.465079	2.38	1.4305
black_box	0	0 0	0	0	0	0	Θ
register 271	975 8901.49	0.118966 0.534134	7.138571e-06 38.2%	8665.94	0.52	235.43	0.0141
combinational 76	978 1393.21	60.05 0.0835998	3.603187e-03 5.98%	486.97	0.0292205	846.2	0.0507
sequential	0 0	0	0 0%	Θ	Θ	Θ	Θ
clock_network 352	345 2313.35	0.012144 0.138813	7.287208e-07 9.93%	987.86	0.0592768	1325.48	0.0795
total 81	2309 23302.51	3001.59 1.39827	0.18011 100%	17891.44	1.07358	2409.49	0.1445

SYSTEMS INITIATIVE

Toggle Activity Reports/Plot

report_toggle_profile -start_instance {TOP_HIER large_mem_inst large_mem_inst_1 mem_inst mem_inst1 mem_inst3 mem_inst_1} toggle waveform mems.vcd

		Fil	le Edit View Plot Window To	ols Window Help	
		ê +	▼ → √ 🎨 🏡 😵 🎬 🕏 🔍 🔯 📭 🕴	🗊 🕏 🌮) 🖡 🔁 😗 🗛 Mnem 🔹 F0 ▾ ⇐ AnyEdge ▾ ➡ 0 📫 1ps 🔹	
Summary: Instance Start Time for Toggle Profile analysis End Time for Toggle Profile analysis Average Toggle Count of analysis window Peak Toggle Count of analysis window Peak Toggle Count timestamp Timescale for all above timestamps Detailed Report	= correlator_top = 0 = 60005000 = 0.12133 = 306 = 58735500 = 1ps = Toggle_Profile_Register	Toggle waveform VCD \$scope module toggle_profi \$scope module correlator_t \$var real 64 ! I0_PAD \$end \$var real 64 " Memory \$end	sign (# 2 ×)tor plock.v 2 DU (⇒) 2 modu i testbench 4 dut :(co 5 1 el \$end op \$end	Iot Window Cycle Accurate Peak Power Analysis Begin 1297647 End 36244 Current Hierarchy: correlator_top Peak Power 600- 600- Pggle Activity 400- 400- Activity Groups 400- 400- Io_Pad 400- 400- Wemory 10- 10- BlackBox 200- 10-	₩ 163 (1ps) Q Q X
Toggle Profile Analysis (Power Group: 'Register')		\$var real 64 # BlackBox \$e	nd	Register	
Summary: Instance Start Time for Toggle Profile analysis End Time for Toggle Profile analysis Average Toggle Count of analysis window Peak Toggle Count of analysis window Peak Toggle Count timestamp Timescale for all above timestamps Detailed Report	= mem_inst_1 = 0 = 60005000 = 0.000716874 = 7 = 4500 = 1ps = Toggle_Profile_Register	<pre>\$var real 64 \$ Register \$e \$var real 64 % Combination \$var real 64 & Sequential \$var real 64 ' Clock_Netwo \$var real 64 (Total \$end \$scope module cgic_inst_5 \$upscope \$end</pre>	nd al \$end \$end rk \$end \$end	Sequential Slask Naturet	******
Toggle Profile Analysis (Power Group: 'Register')		<pre>\$scope module cgic_inst_4 \$upscope \$end</pre>	\$end		
Summary: Instance Start Time for Toggle Profile analysis End Time for Toggle Profile analysis	= mem_instl = 0 = 60005000	<pre>\$scope wodule cgic_inst_3 \$upscope \$end</pre>	\$end		
Average Toggle	= 0.000500292	Pea	ak Power: 41081.49 uW @3961000	0 (1ps)	
				DVI	

Conclusion and Summary

- Develop low-power, energy efficient RTL right from the beginning
- Early Design Checking (with EDCs) helps weed out low-hanging power issues without the need of vectors
- Input qualification helps remove structural or functional abnormalities in the provided inputs for right-atfirst-time power/energy results
- Iteratively improve the power and energy efficiency of your RTL
- Regress RTL to track Power and Energy KPIs for qualifying the design for low power and energy

5-28 | DVCon- China | Siemens Digital Industries Software | Where today meets tomorrow.

Questions

- What is CAPP?
- How PowerPro is able to provide accurate power numbers at the RTL level?
- How to run PowerPro in a regression framework to develop a robus power and energy efficient methodology at RTL level?

