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Abstract- Matrix multiplication is a crucial operation in Machine Learning (ML) applications. Dot Product 

Accumulate Systolic (DPAS) units include interconnected multipliers and adders to perform the matrix multiplication 

(Figure 1). Given the need for frequent and extensive performance optimizations to meet market requirements, thorough 
verification becomes indispensable. While traditional validation primarily focuses on data validation by verifying the 
Register Transfer Language (RTL) against a golden specification, there remains a potential gap when the specification 

model itself is not entirely dependable. Additionally, the novelty of these designs necessitates multiple iterations to ensure 
the validity of constraints. In this paper, we present a comprehensive End-to-End (E2E) Formal Signoff approach for 
DPAS unit and aim to bridge the potential reliability gap. The proposed workflow starts with converting a new C++ 

model (provided by architect) to a golden model, followed by C2RTL equivalence checking to establish correctness of 
RTL and continues with various methods employed to enhance validation process. The workflow and methodologies 
outlined in this paper establish a solid foundation for future endeavors in achieving reliable and accelerated formal 

signoff.  

 

I. INTRODUCTION 

DPAS has wide and quite complex design space that supports multiple floating-point formats with order of matrix 

multiplications (Figure 2) often customized. In addition to the design complexity, systolic architectures go through 

several optimizations to support high-speed computation and to reduce area/power consumption. The huge design 

space and multiple versions emphasizes the need for formal methods that can address the complexity and perform 

equivalence checking with lower turn-around time. 

 

 

 

Figure 1: Dot Product Accumulate Systolic 
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Figure 2: Matrix multiplication in a single systolic channel 

The verification of DPAS unit comes with a list of challenges. An untimed architectural C-Model is a 

fundamental reference needed to perform C2RTL equivalence checking. Prior to performing C2RTL verification, 

the absence of a golden reference model posed a greater challenge. Since verifying a single transaction of data could 

lead to bug escapes, an effective verification flow demands to allow multiple transactions and catch interaction bugs 

which happen under uncommon scenarios due to multiple floating-point formats. Arriving at a complete set of 

constraints which allow only legal scenarios for an entirely new design is challenging. An over-constrained 

environment can unintentionally mask an underlying bug and thus needs an effective method to validate constraints. 

The proposed flow surpasses the limitations of traditional verification methods by providing a more streamlined and 

efficient verification flow. The significance of the achieved left shift through this flow is considerable, as the 

workflow enables early bug detection and resolution, minimizes rework, and improves the efficiency of the 

verification and development process for DPAS units in future generations. Subsequent sections of this study 

demonstrate how each challenge was addressed while identifying crucial design bugs along the way. 

 

II.   E2E DATAPATH FORMAL SIGN-OFF METHODOLOGY 

 

A. C++ Property Verification 

The process of making the C++ model golden involves refining or improving the reference model to make it more 

accurate and reliable. To refine the model, we have converted design restrictions to C++ assertions and included 

them in the model to ensure that the algorithm itself operates accurately. In formal verification, assertions play a 

crucial role in specifying and checking the desired properties or behaviour of a design. The C++ "assert" macro, 

allows validation of properties at runtime to ensure that the model aligns with the expected behaviour.  

 

After industry survey of projects done in software formal domain, we realized that minimal work is done on 

checking C++ model. The proposed work uses the current industrial C2RTL tools and enhanced them with help 

from vendors to perform C++ property verification. Figure 3 depicts the detailed flow that begins with the wrapping 

constraints with architectural C++ model to generate a constrained model. Assertions failures seen while performing 

C-FPV would need refining of architectural model. The golden model can then be used for further verification. 



 
 

 

 

 

B. C2RTL Equivalence Checking 

Design complexity is addressed by splitting the design into two Designs Under Test (DUT): MAC (multiply-

accumulate) and Final accumulator (adder). Further division was made to handle the time complexity as shown in 

Figure 4: 

 

a) Single transaction model:  

A single instruction is allowed in the pipeline, enable signal is high only for one cycle 

In conventional single transaction data path verification approach, we perform the equivalence checking by 

allowing only a single instruction into the pipeline. Single transaction verification can lead to missing 

critical errors that only manifest during complex interactions. For designs like DPAS that allows multiple 

formats and has dedicated pipelines for each format, formal tools can struggle to give full proof results due 

to the scale and complexity of the design. Since the objective of the proposed work is to provide full proof 

for single transaction models of both MAC and adder, we have employed various convergence techniques 

such as case split, assume lemma guarantee [4], etc.  

 

Assume-Lemma-guarantee technique is used to simplify the verification process by abstracting the system's 

behaviour into high-level properties or lemmas. These lemmas which capture the essential aspects of the 

system's functionality are then used as building blocks for proving more complex properties. By breaking 

down the verification process into smaller, manageable lemmas we have achieved significant reduction in 

convergence time for the MAC unit. Initially, we have proved the C2RTL equivalence of partial products 

which are the internal results of multiplier. These proven helper lemmas are then provided as assumptions 

to reduce the cone of influence and ease the convergence of final multiplier result lemmas for the formal 

tool engines. 

 

Another such convergence technique applied for this design is case splitting. The case split convergence 

strategy is used to separately handle different floating-point formats supported by the DPAS architecture.  

We have applied case split on both MAC and final accumulator based on different floating-point formats. 

Every formal testbench performs C2RTL equivalence by allowing input data of only single format and 

disabling rest of the formats, this collectively provides proof for all formats. 

Figure 3: Process of making C++ model golden 



 
 

 

 

b) Multi transaction model:  

Multiple instructions are allowed in the pipeline, enable signal is unconstrained for all cycles.  

Single transaction verification can lead to missing critical errors that only manifest during complex 

interactions. Creating a comprehensive set of test cases that cover a wide range of transaction scenarios can 

be time-consuming and may still fail to capture all possible interactions. So, we need a strong and 

exhaustive data path verification strategy to formally validate the pipeline. Multiple stages and concurrent 

transactions in a pipeline introduce additional complexity and makes it challenging to ensure the 

correctness of data flow, control signals, and synchronization between stages. By formally specifying the 

properties and requirements of the data path, the verification process can check if these properties hold for 

all possible transactions and pipeline stages. With the collaborative efforts between designers and 

verification, we were able to verify the multi-stage pipeline architecture of DPAS. 

 

C. Ensuring correctness of Formal Environment  

 

a) Integrating FV constraints in DV Environment: 

To arrive at the set legal constraints, an initiative was taken to implement them in the form of System 

Verilog Assertions (SVA) and were then integrated in Dynamic Verification (DV) environment. The 

constraints are carefully crafted to ensure that the pipeline runs smoothly with no scope of over constraints 

being unintentionally added in FV environment. SVA helped to specify properties, check correctness, 

detect bugs, achieve coverage closure, and aided in debugging. This initiative was highly appreciated by 

designers and is made part of future methodology 

 

b) Covers Methodology:  

Additional functional covers are included in the verification flow to detect over-constraints or any 

unreachable logic. Such covers also increase the confidence factor for any bounded proof. For example, 

maximum positive/negative values and each combination of exception flags are included as covers to 

ensure that the testbench is allowing all possible legal values. 

 

D. Regression Methodology 

The formal testbench used for E2E proof is automated and integrated to the main repository. We achieved a 

huge left shift as this automated process generates detailed results and quickly finds all bugs of every release, before 

the simulation runs. 

 

Figure 4: Single/Multiple transaction models 



 
 

 

III.   RESULTS 

 

 The design statistics of DPAS unit are shown in Table 1. Control elements like counters, FSMs or FIFOs are not present in 

the design and do not contribute to the design complexity. 

 

# Lines of Code 5 thousand 

# Gates 120 thousand 

 

We applied the proposed methodology on 2 units of DPAS: MAC and Final Accumulator and found over 15 corner 

case bugs as shown in Figure 5 of both RTL design as well as the architectural C++ Model. Majority of the design 

issues were found while performing C++ property verification and C2RTL equivalence checking. 

 

 

 

 

A. Example of a C++ bug found through C++ Property Verification  

Assertions included in C++ Model, also known as user asserts, assist in constraining the design to allow only legal 

scenarios. Additionally, verifying such user assertions will also strengthen the model, since there can be cases where 

the user assertion failures persist even with the required set of constraints. One such case was encountered when a 

user assertion that checks if the exponent is within the legal range, was failing despite constraining the design and 

allowing only legal exponent values. The failure was due to the incorrect values given to minimum and maximum 

parameters in C++ model. The parameters were later modified with the expected values by the architect.  

 

B. Example of a C++ bug found through C2RTL equivalence checking  

The proposed methodology includes implementation of C2RTL equivalence checking assertions that check if the 

output of RTL design is equal to the C++ model result. Several mismatch issues found by utilizing these C2RTL 

lemmas were missed in simulation level testing. One such significant corner case bug as shown in Figure 6 (C++ 

result is available in the same cycle where valid instruction is high since C++ is an untimed model, whereas RTL 

result can be seen a few cycles later due to the design latency), was found by formal testbench when negative input 

data was being falsely rounded up. The carry-add logic in the final accumulator is expected to perform addition and 

represent result by using 2’s complement. On the contrary, C++ carry-add logic differs from the expected behaviour, 

since the negative result is represented in 1’s complement instead. This was a critical bug and could only be found 

by formal testbench since such a corner case needs input to be negative with extremely small exponent. 

Table 1: Design statistics of MAC and Adder 

Figure 5: Bug count for EuDPAS Unit 



 
 

 

C.   Example of an RTL design bug found through C2RTL equivalence checking  

Another corner case bug as shown in Figure 7, was found by formal testbench when one of the inputs provided to 

adder was too small. The corner case has one of the 2 inputs to the adder as zero and the other input has exponent 

value of -126 that is less than the minimum value for a 32bit floating point number. Based on these details, RTL 

design logic clamps the result to zero. But there is an exception that needs to be considered by the design when the 

exponent is too small. In addition to checking the exponent range, RTL design must also check if the mantissa can 

be renormalized to fit within a denormal 32bit float. 

In floating-point arithmetic, a denormal (or subnormal) number is a special representation used to handle very 

small values that are below the normal range of the floating-point format. The corner case bug is seen since RTL 

doesn’t support denormal handling and flushes such small values to zero. The expected output should be a denormal 

instead, since the mantissa can be renormalized to fit within a denormal even though the exponent is below the legal 

range. The denormal handling for such cases was later included by the designers in the logic such that the design can 

give rise to a precise output instead of erroneously flushing the adder result to zero. 

 

 

 

Figure 6: C++ Model bug found through C2RTL equivalence checking 

Figure 7: RTL design bug found through C2RTL equivalence checking 



 
 

Furthermore, adding functional covers to the testbench has also proved to be a vital initiative that was taken for 

this design.  

 

A. Example of a functional cover included in FV testbench for final accumulator 

One such case that illustrates the need of adding functional covers was seen when the design was unstable and 

various features were being included. To reduce hardware, the size of an overflow buffer being used by the final 

accumulator was reduced. A functional cover was included in the formal testbench that checks if the overflow buffer 

was too small. Based on the status of the cover, we were able to promptly verify that the overflow buffer was shrunk 

to a point where the sticky bits can no longer go back into the result data and hence led the designers to modify the 

design and make sure that the buffer is sized adequately. 

 

B. Example of a functional cover included in FV testbench for MAC 

Floating-point formats are used to represent numbers with varying precision in computer systems. DPAS design 

supports multiple floating-point formats has dedicated pipelines for each of such formats. To reuse hardware, DPAS 

unit that includes multiple pipelines can be merged into a single format. This gives rise to cases where a single input 

data can be used to represent multiple formats. For example, a single 16-bit input data can be used to represent both 

16-bit and 8-bit format data. Functional covers are advantageous in such cases since they strengthen the formal 

testbench and prove that all possible values for every format can be covered and verified. 

 

The complete set of properties, constraints and checkers in-place found corner cases and reduced the FV turn-

around time to less than a week. Multiple versions of DPAS unit have been formally verified with the testbench that 

allows single transaction as well as multiple transactions of data. 

 

III.   CONCLUSION 

Through this activity we have showcased that it is possible to sign-off on complex arithmetic designs with complete 

confidence. The proposed workflow was able to create a golden C-Model, perform C2RTL equivalence checking, 

integrate FV properties in DV and has led to numerous bug fixes in the design. The proposed work employed 

various convergence techniques to deliver full proof for single transaction setup and advances to verify the design 

when multiple transactions of data are allowed. The well-defined and stable flow has made it possible for quick 

bring-up of multiple optimized designs with ensuring quality. This activity was a collaborative effort of designers, 

formal verification engineers and tool vendors.  

    Looking towards future generations, there are potential areas for further improvement. Incorporating 

improvements, such as integrating machine learning techniques into the verification flow, employing various formal 

verification methods, and addressing scalability challenges to handle larger designs can further advance the 

verification of such designs for future generations. These enhancements will contribute to the development of 

dependable and efficient ML applications that rely on matrix multiplication operations. 
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