

Raising the Bar: Achieving Formal

Verification Sign-Off for Complex

Algorithmic Designs, with a Dot Product

Accumulate Case Study

Disha Puri, Madhurima Eranki, Shravya Jampana
Intel Corporation

Disha.puri@intel.com , Madhurima.eranki@intel.com , Shravya.jampana@intel.com

Abstract- Matrix multiplication is a crucial operation in Machine Learning (ML) applications. Dot Product

Accumulate Systolic (DPAS) units include interconnected multipliers and adders to perform the matrix multiplication

(Figure 1). Given the need for frequent and extensive performance optimizations to meet market requirements, thorough
verification becomes indispensable. While traditional validation primarily focuses on data validation by verifying the
Register Transfer Language (RTL) against a golden specification, there remains a potential gap when the specification

model itself is not entirely dependable. Additionally, the novelty of these designs necessitates multiple iterations to ensure
the validity of constraints. In this paper, we present a comprehensive End-to-End (E2E) Formal Signoff approach for
DPAS unit and aim to bridge the potential reliability gap. The proposed workflow starts with converting a new C++

model (provided by architect) to a golden model, followed by C2RTL equivalence checking to establish correctness of
RTL and continues with various methods employed to enhance validation process. The workflow and methodologies
outlined in this paper establish a solid foundation for future endeavors in achieving reliable and accelerated formal

signoff.

I. INTRODUCTION

DPAS has wide and quite complex design space that supports multiple floating-point formats with order of matrix

multiplications (Figure 2) often customized. In addition to the design complexity, systolic architectures go through

several optimizations to support high-speed computation and to reduce area/power consumption. The huge design

space and multiple versions emphasizes the need for formal methods that can address the complexity and perform

equivalence checking with lower turn-around time.

Figure 1: Dot Product Accumulate Systolic

mailto:Disha.puri@intel.com
mailto:Madhurima.eranki@intel.com
mailto:Shravya.jampana@intel.com

Figure 2: Matrix multiplication in a single systolic channel

The verification of DPAS unit comes with a list of challenges. An untimed architectural C-Model is a

fundamental reference needed to perform C2RTL equivalence checking. Prior to performing C2RTL verification,

the absence of a golden reference model posed a greater challenge. Since verifying a single transaction of data could

lead to bug escapes, an effective verification flow demands to allow multiple transactions and catch interaction bugs

which happen under uncommon scenarios due to multiple floating-point formats. Arriving at a complete set of

constraints which allow only legal scenarios for an entirely new design is challenging. An over-constrained

environment can unintentionally mask an underlying bug and thus needs an effective method to validate constraints.

The proposed flow surpasses the limitations of traditional verification methods by providing a more streamlined and

efficient verification flow. The significance of the achieved left shift through this flow is considerable, as the

workflow enables early bug detection and resolution, minimizes rework, and improves the efficiency of the

verification and development process for DPAS units in future generations. Subsequent sections of this study

demonstrate how each challenge was addressed while identifying crucial design bugs along the way.

II. E2E DATAPATH FORMAL SIGN-OFF METHODOLOGY

A. C++ Property Verification

The process of making the C++ model golden involves refining or improving the reference model to make it more

accurate and reliable. To refine the model, we have converted design restrictions to C++ assertions and included

them in the model to ensure that the algorithm itself operates accurately. In formal verification, assertions play a

crucial role in specifying and checking the desired properties or behaviour of a design. The C++ "assert" macro,

allows validation of properties at runtime to ensure that the model aligns with the expected behaviour.

After industry survey of projects done in software formal domain, we realized that minimal work is done on

checking C++ model. The proposed work uses the current industrial C2RTL tools and enhanced them with help

from vendors to perform C++ property verification. Figure 3 depicts the detailed flow that begins with the wrapping

constraints with architectural C++ model to generate a constrained model. Assertions failures seen while performing

C-FPV would need refining of architectural model. The golden model can then be used for further verification.

B. C2RTL Equivalence Checking

Design complexity is addressed by splitting the design into two Designs Under Test (DUT): MAC (multiply-

accumulate) and Final accumulator (adder). Further division was made to handle the time complexity as shown in

Figure 4:

a) Single transaction model:

A single instruction is allowed in the pipeline, enable signal is high only for one cycle

In conventional single transaction data path verification approach, we perform the equivalence checking by

allowing only a single instruction into the pipeline. Single transaction verification can lead to missing

critical errors that only manifest during complex interactions. For designs like DPAS that allows multiple

formats and has dedicated pipelines for each format, formal tools can struggle to give full proof results due

to the scale and complexity of the design. Since the objective of the proposed work is to provide full proof

for single transaction models of both MAC and adder, we have employed various convergence techniques

such as case split, assume lemma guarantee [4], etc.

Assume-Lemma-guarantee technique is used to simplify the verification process by abstracting the system's

behaviour into high-level properties or lemmas. These lemmas which capture the essential aspects of the

system's functionality are then used as building blocks for proving more complex properties. By breaking

down the verification process into smaller, manageable lemmas we have achieved significant reduction in

convergence time for the MAC unit. Initially, we have proved the C2RTL equivalence of partial products

which are the internal results of multiplier. These proven helper lemmas are then provided as assumptions

to reduce the cone of influence and ease the convergence of final multiplier result lemmas for the formal

tool engines.

Another such convergence technique applied for this design is case splitting. The case split convergence

strategy is used to separately handle different floating-point formats supported by the DPAS architecture.

We have applied case split on both MAC and final accumulator based on different floating-point formats.

Every formal testbench performs C2RTL equivalence by allowing input data of only single format and

disabling rest of the formats, this collectively provides proof for all formats.

Figure 3: Process of making C++ model golden

b) Multi transaction model:

Multiple instructions are allowed in the pipeline, enable signal is unconstrained for all cycles.

Single transaction verification can lead to missing critical errors that only manifest during complex

interactions. Creating a comprehensive set of test cases that cover a wide range of transaction scenarios can

be time-consuming and may still fail to capture all possible interactions. So, we need a strong and

exhaustive data path verification strategy to formally validate the pipeline. Multiple stages and concurrent

transactions in a pipeline introduce additional complexity and makes it challenging to ensure the

correctness of data flow, control signals, and synchronization between stages. By formally specifying the

properties and requirements of the data path, the verification process can check if these properties hold for

all possible transactions and pipeline stages. With the collaborative efforts between designers and

verification, we were able to verify the multi-stage pipeline architecture of DPAS.

C. Ensuring correctness of Formal Environment

a) Integrating FV constraints in DV Environment:

To arrive at the set legal constraints, an initiative was taken to implement them in the form of System

Verilog Assertions (SVA) and were then integrated in Dynamic Verification (DV) environment. The

constraints are carefully crafted to ensure that the pipeline runs smoothly with no scope of over constraints

being unintentionally added in FV environment. SVA helped to specify properties, check correctness,

detect bugs, achieve coverage closure, and aided in debugging. This initiative was highly appreciated by

designers and is made part of future methodology

b) Covers Methodology:

Additional functional covers are included in the verification flow to detect over-constraints or any

unreachable logic. Such covers also increase the confidence factor for any bounded proof. For example,

maximum positive/negative values and each combination of exception flags are included as covers to

ensure that the testbench is allowing all possible legal values.

D. Regression Methodology

The formal testbench used for E2E proof is automated and integrated to the main repository. We achieved a

huge left shift as this automated process generates detailed results and quickly finds all bugs of every release, before

the simulation runs.

Figure 4: Single/Multiple transaction models

III. RESULTS

 The design statistics of DPAS unit are shown in Table 1. Control elements like counters, FSMs or FIFOs are not present in

the design and do not contribute to the design complexity.

Lines of Code 5 thousand

Gates 120 thousand

We applied the proposed methodology on 2 units of DPAS: MAC and Final Accumulator and found over 15 corner

case bugs as shown in Figure 5 of both RTL design as well as the architectural C++ Model. Majority of the design

issues were found while performing C++ property verification and C2RTL equivalence checking.

A. Example of a C++ bug found through C++ Property Verification

Assertions included in C++ Model, also known as user asserts, assist in constraining the design to allow only legal

scenarios. Additionally, verifying such user assertions will also strengthen the model, since there can be cases where

the user assertion failures persist even with the required set of constraints. One such case was encountered when a

user assertion that checks if the exponent is within the legal range, was failing despite constraining the design and

allowing only legal exponent values. The failure was due to the incorrect values given to minimum and maximum

parameters in C++ model. The parameters were later modified with the expected values by the architect.

B. Example of a C++ bug found through C2RTL equivalence checking

The proposed methodology includes implementation of C2RTL equivalence checking assertions that check if the

output of RTL design is equal to the C++ model result. Several mismatch issues found by utilizing these C2RTL

lemmas were missed in simulation level testing. One such significant corner case bug as shown in Figure 6 (C++

result is available in the same cycle where valid instruction is high since C++ is an untimed model, whereas RTL

result can be seen a few cycles later due to the design latency), was found by formal testbench when negative input

data was being falsely rounded up. The carry-add logic in the final accumulator is expected to perform addition and

represent result by using 2’s complement. On the contrary, C++ carry-add logic differs from the expected behaviour,

since the negative result is represented in 1’s complement instead. This was a critical bug and could only be found

by formal testbench since such a corner case needs input to be negative with extremely small exponent.

Table 1: Design statistics of MAC and Adder

Figure 5: Bug count for EuDPAS Unit

C. Example of an RTL design bug found through C2RTL equivalence checking

Another corner case bug as shown in Figure 7, was found by formal testbench when one of the inputs provided to

adder was too small. The corner case has one of the 2 inputs to the adder as zero and the other input has exponent

value of -126 that is less than the minimum value for a 32bit floating point number. Based on these details, RTL

design logic clamps the result to zero. But there is an exception that needs to be considered by the design when the

exponent is too small. In addition to checking the exponent range, RTL design must also check if the mantissa can

be renormalized to fit within a denormal 32bit float.

In floating-point arithmetic, a denormal (or subnormal) number is a special representation used to handle very

small values that are below the normal range of the floating-point format. The corner case bug is seen since RTL

doesn’t support denormal handling and flushes such small values to zero. The expected output should be a denormal

instead, since the mantissa can be renormalized to fit within a denormal even though the exponent is below the legal

range. The denormal handling for such cases was later included by the designers in the logic such that the design can

give rise to a precise output instead of erroneously flushing the adder result to zero.

Figure 6: C++ Model bug found through C2RTL equivalence checking

Figure 7: RTL design bug found through C2RTL equivalence checking

Furthermore, adding functional covers to the testbench has also proved to be a vital initiative that was taken for

this design.

A. Example of a functional cover included in FV testbench for final accumulator

One such case that illustrates the need of adding functional covers was seen when the design was unstable and

various features were being included. To reduce hardware, the size of an overflow buffer being used by the final

accumulator was reduced. A functional cover was included in the formal testbench that checks if the overflow buffer

was too small. Based on the status of the cover, we were able to promptly verify that the overflow buffer was shrunk

to a point where the sticky bits can no longer go back into the result data and hence led the designers to modify the

design and make sure that the buffer is sized adequately.

B. Example of a functional cover included in FV testbench for MAC

Floating-point formats are used to represent numbers with varying precision in computer systems. DPAS design

supports multiple floating-point formats has dedicated pipelines for each of such formats. To reuse hardware, DPAS

unit that includes multiple pipelines can be merged into a single format. This gives rise to cases where a single input

data can be used to represent multiple formats. For example, a single 16-bit input data can be used to represent both

16-bit and 8-bit format data. Functional covers are advantageous in such cases since they strengthen the formal

testbench and prove that all possible values for every format can be covered and verified.

The complete set of properties, constraints and checkers in-place found corner cases and reduced the FV turn-

around time to less than a week. Multiple versions of DPAS unit have been formally verified with the testbench that

allows single transaction as well as multiple transactions of data.

III. CONCLUSION

Through this activity we have showcased that it is possible to sign-off on complex arithmetic designs with complete

confidence. The proposed workflow was able to create a golden C-Model, perform C2RTL equivalence checking,

integrate FV properties in DV and has led to numerous bug fixes in the design. The proposed work employed

various convergence techniques to deliver full proof for single transaction setup and advances to verify the design

when multiple transactions of data are allowed. The well-defined and stable flow has made it possible for quick

bring-up of multiple optimized designs with ensuring quality. This activity was a collaborative effort of designers,

formal verification engineers and tool vendors.

 Looking towards future generations, there are potential areas for further improvement. Incorporating

improvements, such as integrating machine learning techniques into the verification flow, employing various formal

verification methods, and addressing scalability challenges to handle larger designs can further advance the

verification of such designs for future generations. These enhancements will contribute to the development of

dependable and efficient ML applications that rely on matrix multiplication operations.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to the RTL and C++ designers, Elliot, Alex, and Emi, for their

invaluable contributions in the design discussions to deep dive into the design for resolving the convergence issues.

We would also like to acknowledge the support of Vichal from the Graphics management team for understanding

the algorithm's complexity and bandwidth requirements and thus helped in successfully carrying out the activity.

Furthermore, we extend our thanks to Kiran, the FVCTO Manager, for providing continuous guidance throughout

the project ensuring the project's success.

REFERENCES
[1] P. McLellan, “Datapath Formal Verification 101: Technology and Technique”, JUG 2021
[2] M Achutha KiranKumar V, Disha Puri, Mohit Choradia, Paras Gupta, “Novel Paradigm in Formally Verifying Complex Algorithms”,

DVCON US 2021.

[3] Nathan Chong, Byron Cook, Konstantinos Kallas, “Code-level model checking in software development workflow”, ICSE-SEIP

[4] S. Roy, “Formal verification based on assume and guarantee approach: a case study”, IEEE 2002d

