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Abstract- As the complexity of system-on-chip (SoC) designs increases, the cost and criticality of bugs escalate 

significantly. Late-stage bug discovery or, worse, post-silicon detection leads to panic and paranoia, making confidence in 
design quality imperative. While formal verification (FV) is ideal for comprehensive bug detection, skepticism surrounds 
its application on design IPs from scratch due to perceived time and resource constraints. In this paper, we present a case 
study demonstrating the successful utilization of last-minute formal verification techniques near tape-in date. Through 
clever bug hunting strategies involving existing RTL assertions and high-level end-to-end checkers, we identified and 
resolved showstopper starvation and hang issues that could have caused significant delays if undetected. Our experience 
highlights the importance of formal verification and provides valuable insights for engineers and managers involved in 
critical projects, showcasing the benefits of employing formal bug-hunting techniques even in the late stages of a project. 

 

I.   INTRODUCTION 
 
As the development of modern-day System on Chips (SOCs) advances through various design and verification 

phases, the importance and cost of detecting and addressing bugs become increasingly critical. With each stage of the 
design cycle, the difficulty and expense of fixing these bugs grow exponentially, making it crucial to identify and 
resolve them as early as possible. If a bug is discovered late in the development process or, in the worst case, after the 
silicon has been produced, it can cause panic and lead to significant setbacks. In these situations, it is essential to have 
the utmost confidence in the quality and robustness of the design. Since formal technology is ideal for finding needles 
in the haystack due to its breadth-first search, it provides highest level of assurance about robustness of the fix. 

 
There has been much skepticism about applying formal verification (FV) on designs IPs from scratch. It is 

considered as a time-consuming, effort-intensive and expertise dependent task. While these concerns are not entirely 
baseless, it is essential to recognize the significant benefits that FV brings to the table, outweighing its limitations. 
Formal verification has indeed revolutionized the verification landscape by providing rigorous, mathematical methods 
to ensure design correctness. So, however challenging, inclusion of formal verification can strike gold even when the 
runway is short, and it is crucial to de-risk the time-to-market (TTM) of flagship SOCs. 

 
In this paper, we share our innovative strategy that has the potential to greatly enhance design quality, even when 

formal verification is introduced close to the tape-in date. We discuss our ingenious approach to bug hunting 
techniques, which involves utilizing existing RTL assertions and high-level end-to-end checkers in a project nearing 
tape-in, without requiring extensive design ramp-up time. Our experience report highlights the success of our last-
minute formal verification process, which uncovered critical starvation and hang issues that could have caused 
significant delays if left undiscovered. We delve into the techniques used to pinpoint and resolve these issues, offering 
valuable insights into the design and verification process. 

II.   RELATED WORK 
 
A. RTL Embedded Assertions 

The concept of assertions has been a part of computer science for many years; however, it only gained prominence 
in hardware design after the introduction of hardware description languages like VHDL and Verilog in the 1990s. In 
2002, the Accellera Systems Initiative introduced SystemVerilog Assertions, which provided a powerful and flexible 



 
 
mechanism for specifying design properties. This innovation was widely adopted and integrated with modern 
verification tools and methodologies, significantly impacting the field of hardware design. 

 
Despite these advancements, assertions are still primarily used in simulation, which is a valuable application but 

not the most optimal one. In this paper, we present an innovative approach where we effectively utilized well-written, 
abundant RTL embedded assertions with formal technology to verify critical aspects of design correctness in a more 
efficient manner. 

 
By leveraging formal technology in conjunction with RTL embedded assertions, we were able to enhance the 

verification process, ensuring a higher degree of design correctness and reliability. This approach showcases the 
potential of combining traditional assertion-based verification methods with advanced formal techniques to achieve a 
more robust and effective verification process for hardware designs. As a result, designers and engineers can benefit 
from this powerful synergy, ultimately contributing to the development of more reliable and robust hardware systems. 
 
B. Formal Coverage 

Coverage is a handy utility to measure how much of the design's functionality has been exhaustively verified using 
formal methods. As we near tape-in, everyone in the design and verification team is laser-focused on the coverage 
number to feel confident about the design quality. In such situations, confirmations from formal coverage can help 
build confidence on design quality. In this paper, we used two types of formal coverage to augment overall verification 
coverage. 

1. Reachability Coverage is a valuable metric that aids in determining the extent to which various portions of a 
design can be reached during the verification process. By examining reachability coverage, we gain insights into the 
effectiveness of their verification efforts and identify any gaps that may need further attention. 

2. Observability Coverage is an essential metric in verification process that assists in evaluating the 
completeness and effectiveness of properties used to verify a design. Observability coverage helps identify portions 
of the design that are not checked by any property. By analyzing observability coverage, we gain insights into the 
areas of the design that may require additional properties or adjustments to existing properties to improve their 
effectiveness. 
 
C. Bug-hunting 

Bug hunting is a well-established area in formal verification, with numerous techniques being developed and 
integrated into industrial formal verification tools. Formal bug hunting is particularly effective in identifying subtle or 
complex bugs that may be overlooked by other verification methods, ultimately enhancing the robustness and 
reliability of a design. 

 
However, employing naïve bug hunting techniques can be a time-consuming and computationally intensive process, 

potentially delaying the overall verification timeline and requiring significant resources. In this paper, we will share 
some innovative and clever bug hunting techniques that have enabled us to find showstopper bugs in a limited amount 
of time and with limited compute resources. 

 
These sophisticated techniques leverage the power of formal verification tools while optimizing the bug hunting 

process, making it more efficient and resource friendly. By adopting these strategies, designers can quickly and 
effectively uncover critical bugs that may have otherwise remained undetected, significantly improving the overall 
design quality and reducing the risk of costly issues arising later in the development cycle. 

 
These clever bug hunting techniques not only demonstrate the potential of formal verification in identifying and 

addressing complex design flaws but also showcase how innovative approaches can overcome the limitations of 
traditional bug hunting methods. This paper serves as a valuable resource for designers seeking to enhance their 
verification processes and efficiently discover showstopper bugs, ultimately contributing to the development of more 
reliable and robust hardware designs. 
 

III.   VERIFICATION CHALLENGE – DETECT DEADLOCKS & STARVATIONS 
 



 
 

Formal verification was challenged with a unique task of addressing concerns related to the possibility of deadlocks 
and starvation issues in a complex bridge design between fabric and memory controller of a server CPU System-on-
Chip (SOC). Deadlocks and starvation issues can have severe consequences on the overall performance and 
functionality of a system, making their detection and resolution critical in the design process. 

 
These issues frequently escaped traditional verification environments in previous generations of the design, as they 

were difficult to detect and debug, particularly in large and complex designs such as the one shown in Figure 1. 
Traditional verification methods, such as simulation and testing, may struggle to uncover such issues due to the sheer 
scale and intricacy of the design, as well as the potential for rare or corner-case scenarios to trigger these problems. 

 
Formal verification, on the other hand, offers a powerful alternative for detecting and addressing deadlocks and 

starvation issues in complex designs. By exhaustively analyzing the design's state space and rigorously checking its 
properties, formal verification can uncover subtle issues and scenarios that might be missed by other methods. 
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Figure 1: Design Block Diagram 

Since the project was nearing tape-in, formal verification had a very short runway to execute. Without a proper 
understanding of the specifications and sufficient design ramp-up time, aiming for a formal signoff would not be 
feasible. Formal signoff typically requires a thorough understanding of the project requirements, detailed design 
documentation, and a comprehensive review process. It also involves investing significant time and effort to ensure 
that all aspects of the project meet the necessary standards and criteria. 
 

IV.   VERIFICATION SOLUTION – ABC (AMPLIFY BUILD CONCENTRATE) FORMAL 
 
In the case of the complex bridge design between the fabric and memory controller of the server CPU SOC, formal 

verification was employed to systematically analyze the design and identify potential deadlocks and starvation issues. 
We adopted the approach called ABC formal where “A” stands for “Amplify”, “B” stands for “Build” and “C” stands 
for “Concentrate”. 
 



 
 
A. Amplify the impact of available RTL embedded assertions 

Formal verification planning typically starts with standard practices like browsing the design and specification files, 
understanding the hierarchy of modules, understanding the flow of transactions through the design, identification of 
micro-architectural details etc. During all this process, we identified a unique “goodness” in the design under test. The 
DUT was blessed with many detailed RTL embedded assertions which were curated over the course of RTL 
development and were run in dynamic simulation for flagging unexpected behavior of design’s microarchitectural 
components such as counters, state machines, arbiters etc. 

 
Since these RTL embedded assertions were run in dynamic simulation alone, there ability of finding bugs was 

limited by the test vectors run in dynamic simulations. In order to unlock the full potential of RTL embedded assertion 
and amplify their impact in terms of finding bugs, we setup the DUT in formal property verification tool, and ran the 
same RTL embedded assertion with exhaustive input vectors. This approach helped increase the effectiveness of the 
RTL embedded assertions many folds. 

 
DUT had many assertions, and we needed a systematic approach to manage the clean-up process effectively. To 

initiate this effort, a triage of the RTL assertions was conducted, considering their individual characteristics. The triage 
aimed to identify and categorize the assertions based on their importance, complexity, feature and potential impact on 
the design. This evaluation revealed that out of approximately 300 assertions in the design, around 40 distinct failures 
were present.  

 
Formal verification tools are known for bombarding the DUTs with all possible input scenarios, which include both 

valid and invalid scenarios. Therefore, many of the initial assertion failures are false failures due to invalid input 
scenarios. We decided to tackle such failures in a phased manner. This strategy involved prioritizing the clean-up 
based on the features associated with each assertion. By organizing the assertions according to their priority, the 
verification team could focus on addressing the most critical issues first, while still ensuring that all assertions were 
eventually verified and cleaned up. Clean-up exercise involved debugging, analyzing, and resolving bogus failures by 
adding appropriate assumptions on input ports of the DUT. 

 
To rule out any mistake in formulation and implementation of assumptions, source code of assumptions was 

integrated in dynamic simulation environment and validated in simulation regression runs. Through this exercise, we 
were able to identify unintentional over-constraints in FV environment which could affect the effectiveness of formal 
runs adversely. 
 
B. Build high-level forward progress checkers 

Forward progress checkers are an essential component in the verification process, particularly when addressing 
deadlock and starvation issues in a design. These checkers help ensure that incoming requests within the design can 
progress through the system without encountering deadlocks (where two or more processes are waiting for each other 
to release a resource) or resource starvation (where a process is unable to acquire the necessary resources to execute 
due to competition with other processes). 

 
"Transaction Tracker" design mentioned in block diagram, involved multiple Finite State Machines (FSMs) 

interacting with each other in parallel based on input information. In such complex systems, the potential for deadlocks 
and starvation issues increases due to the numerous interactions and dependencies between the FSMs. As a result, it 
becomes imperative to conduct thorough checks using forward progress checkers to identify and prevent any 
occurrences of deadlock or resource starvation. 

 
A sample implementation of forward progress check is shown below. It operates by monitoring the ingress (start) 

and egress (stop) of the transaction at DUT boundary and fail when transactions indefinitely stuck in the design. 
 
module fwd_prog_check #(parameter MAX_COUNT = 8) 

( 

   input clk, rst, 

   input start, stall, finish     



 
 
); 

reg [$clog2(MAX_COUNT):0] count; 

always @(posedge clk) begin 

   if (rst) count <= 'b0;  

   else if (finish) count <= 'b0; 

   else if (stall && (|count)) count <= count; 

   else if (|count) count <= count + 1'b1; 

   else if (start && !(|count)) count <= 'b1;  

end 

// Counter should not cross max allowed latency 

count_must_not_cross_max: assert property ( 

   @(posedge clk) disable iff (rst)  

   count <= MAX_COUNT 

); 

 
C. Concentrate on bug-prone microarchitectures for bug-hunting 

The process of bug-hunting primarily relies on simulation-based proof engines, which explore proof cycles to 
randomly encounter bug scenarios without examining the entire state space in each cycle. Conversely, formal proof 
engines begin from cycle 0 and do not progress to the next cycle until they exhaustively check the full state space 
within that cycle as shown in the figure 2. 
 

 
Figure 2: Comparison of formal proof and formal bug-hunting 

Given the substantial size of our design, approximately 50% of our RTL assertions faced challenges due to their 
complexity and were not fully proven. To uncover deep issues, we conducted bug-hunting exercise on RTL assertions 
and the forward progress checkers using interesting functional covers as re-located start points of the formal search. 

 
In order to increase the reached proof depth of bounded assertions, a technique involving the use of already proven 

assertions as helper assertions was employed. This technique involved converting already proven assertions into 
assumptions, which were then used in conducting regressions with the remaining assertions. By leveraging proven 
assertions as helper assertions, the following benefits were achieved: 

1. More full proofs: Full proof was achieved for additional 3% of bounded assertions, indicating that more aspects 
of the design were verified to be correct. 

2. Enhanced proof depth: More than 15% of the bounded assertions attained higher proof depth, further enhancing 
the confidence in the design's correctness. 

 



 
 

V.   RESULTS 
 
“ABC Formal” approach was deployed by four engineers spending half of their bandwidth over two quarters to 

produce stellar results on a simulation clean design. Using this approach, seven bugs were found during this activity 
with two showstopper bugs – one deadlock and one starvation each. We were also able to improve the stimuli coverage 
by 49% and checker coverage by 24%. Overall, the results detailed in the section helped improve the design quality 
many folds with minimal resources and within limited time. 
 
A. Sign-off status 

Table 1: FV environment status at sign-off 

Type Statistics Status 

RTL embedded assertions 6019 60% proven, 40% bounded 

RTL embedded covers 7892 100% covered 

End-to-end Checkers 9 100% bounded 

Interface assumptions  402 100% validated in dynamic simulation 

Design Assumptions 389 100% validated in dynamic simulation 
 
B. Deadlock bug 

A corner-case deadlock scenario was flagged by forward progress checker when two independent (but later realized 
as conflicting) request called “force_bridge_to_idle” and “block_ingress_req” sent to the bridge in the exact same 
cycle. 

 
“block_ingress_req” is a request from fabric to bridge to drain all transactions from ingress buffer. Bridge is 

expected to acknowledge “block_ingress_req” with “block_ingress_ack” once ingress buffer is empty. 
“force_bridge_to_idle” is a request made by memory interface to bridge to quiesce the interface and remain asserted 
till bridge declares that the “bridge_is_idle”. However, bridge cannot declare “bridge_is_idle” till there is a pending 
transaction in bridge. 

 
As one request is trying to bring bridge to idle and another one preventing that, design gets stuck in an inescapable 

state. This bug was a result of an omission in the architecture/specification of the bridge; hence design implementation 
never considered this case and did not implement a tiebreaker.  



 
 

Fabric

Memory Interface

   
       Bridge

Event 1 (A)
block_ingress_req

Expected handshake event
block_ingress_ack

Expected handshake event
bridge_is_idle

Event 1 (B)
force_bridge_to_idle

Conflicting requests

 
Figure 3: Deadlock bug explanation 

C. Starvation bug 
A corner case starvation scenario was caught by an RTL embedded assertion where anti-starvation timer of entry 0 

of “transaction tracker” could never timeout due to incorrect implementation in the RTL. Bug details are as follows: 
1. Bridge allocates a unique tracker id to each transaction. The “alloc” signal is asserted for every tracker id 

that is being allocated at different clock cycles. 
2. When a transaction is allocated to entry 0 of the tracker, tracker allocation signal “alloc_vec[0][0]” gets 

asserted and “entry_valid[0]” goes high indicating a valid entry for tracker id 0. 
3. Since the “alloc_ptr” signal is tied to zero at instantiation therefore, the “entry_enable[0]” signal will keep 

getting asserted every time a new allocation happens  
4. This will keep on refreshing the value of the signal “entry_time_stamp” and thus the transaction on tracker 

id 0 will never timeout as indicated by “timeout_entry_vec[0]” as far as new transaction keeps coming in.  
5. If a transaction is allocated to the tracker entry id 0 then it is vulnerable to starvation which can lead to a 

need of cold reset of the entire SoC. 
 

 
Figure 4: Starvation bug waveform 



 
 
trkr_timeout ( 

   .clk, 

   .reset, 

   ... 

   .alloc (trkr_req_vld), 

   .alloc_ptr('0),             // Bug 

   .alloc_vec(trkr_entry_vec), 

   .entry_vld(trkr_entry_vld), 

   ... 

); 

 

for (genvar entry=0; entry < NUM_ENTRIES; entry++) begin 

   always_comb begin 

      entry_enable[entry] = '0; 

      for (int i=0; i < ALLOCS_PER_CYCLE; i++) begin 

         entry_enable[entry] |= alloc[i] & (alloc_vec[i][entry] | (alloc_ptr[i] == entry)); // Bug 

      end 

   end 

end 

 

VI.   CONCLUSIONS 
 
We presented a comprehensive guide for improving design quality through formal verification, even when starting 

near the tape-in date with impactful results highlighted in the case study. We show-cased how bug hunting techniques 
using existing RTL assertions and end-to-end checkers can be done without much design ramp-up time. In the case 
study, showstopper issues were discovered just in time that saved millions of $ by preventing re-spins. And emphasizes 
the importance of formal verification and the benefits of formal bug-hunting techniques in the late stages of a project 
for engineers and managers involved in critical projects. This last minute FV approach helped us in getting a good 
head start in the next generation of design. 
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