
Fast Track RISC-V System Validation Using

Hardware Assisted Verification Platforms

Prasad Kadookar

Director Applications Engineering

Synopsys

Prasad is responsible to make customers successful

with Synopsys Hardware Based Verification

Solutions primarily HAPS Prototyping and Synplify

Products. Prasad leads application engineering team

responsible for supporting global customer base. He

is based out of Bangalore. Prasad have been with

Synopsys and working for FPGA and FPGA

prototyping close to 20 years and have successfully

deployed various HAPS & Synplify technologies at

multiple customers. Prasad holds bachelor’s degree

in Electronics & Instrumentation from Pune

University.

Mohan Singh

Staff Application Engineer

Synopsys

Mohan is HAPS Prototyping expert at Synopsys. His

primary responsibility is to support customers on

complex SOC prototype bring up on HAPS. Mohan

comes with around 20 years of experience of FPGA

Design, Prototyping and Emulation. His expertise

includes RISC & ARM based SOCs Architecture,

DDR and LPDDR memories and PCIE, USB,

Ethernet, protocols. He is with Synopsys for 6 years

and prior to joining Synopsys, Mohan have worked

with Qualcomm on emulation. Mohan holds

bachelor’s degree in Electronics and

Telecommunication from MVJ College of

Engineering, Bangalore.

Agenda

• RISC-V Landscape

• High-performance FPGA-based Prototyping Landscape

• 5 Key Area for Fast Track RISC-V System Validation

• RISC-V on HAPS Demo

© Accellera Systems Initiative 4

RISC-V Landscape

• Advances in Semiconductor and Computer
– AI , 5G and Sensors

– Even Quicker Uptick AI SoCs powered by RISC-V

• Device and System Complexity - > Design Complexity

• SOC: Changing Definitions, Increasing Complexities

– Basic SOC (1+ Bus Structure , 1+ Complex Interconnect, 100-200
Discrete IP Blocks)

– Value Multi Core SOC (3+ sub system, 4+ Complex Interconnect
, 200-275 Discrete IP Blocks)

– Advance Performance Multi Core SOC (4+ sub system, 5+Complex
Interconnect , >275 Discrete IP Blocks

© Accellera Systems Initiative 5

• Smaller nodes needs more software
Development

• Verification & Validation includes:
– RTL Verification with Simulations

– RTL Verification with Emulations

– Software Development Enablement with Prototyping

– HW <-> SW Validation with Prototyping

RISC-V Landscape (Adaption)

© Accellera Systems Initiative 6

Addressing Needs of the RISC-V Design Community

© Accellera Systems Initiative 7

• Synopsys is a strategic member
of RISC-V International

• Partnership with key RISC-V core providers, foundries
and universities

• Interoperability of Synopsys IP with RISC-V solutions

• Availability of customized and adaptive flows for
implementation and verification

• Availability of collaterals, user guides, training, cloud-
based solution and design services

High Performance FPGA-Based Prototyping Landscape

Integral Part of IP and SoC verification

• From early RTL debugging to SoC performance modelling ….
and everything in between

Primary requirements for FPGA Prototyping

• High Performance

– Peta cycles for verification coverage

• High Capacity, Scalable and Flexible

– Growing IP and SoC sizes

– Expanded verification tasks

• Visibility Capabilities

– High capacity and at-speed debug

– Highest visibility

– Flexibility to locate the hardest to find bugs

RTL Development

Architecture
Development

S/W Development

S/W Platform

Regression Testing

Performance Modelling

Hardware Level Software Level

System Level

© Accellera Systems Initiative

Fast Track RISC-V System Validation

© Accellera Systems Initiative 9

Manage the growing RISC-V SOC Complexity

RTL Readiness

Achieve High Performance

Deep Cycle Debug Management

Dynamics Of Data Center Prototyping

MANAGE THE GROWING RISC-V SOC
COMPLEXITY

© Accellera Systems Initiative 10

IP Prototyping
• Prototyping Development cycle

– Target specific IP

– Utilize 1 - 2 FPGA

– Create Test Environment

– Prototype IP for FPGA platform

– Interface SW development platform

– Develop Test scenarios

– Monitor test results

• Prototyping Challenges

– Converting ASIC models for FPGA

– Adding extra IPs to create test environment

– Interfacing External Platforms

– Creating Platforms to monitor the results

© Accellera Systems Initiative 11

Proto IP

PHY Board

AXI NOC

Software Development
Platform

Device

FPGA

FPGA Platform

Subsystem Prototyping
• Prototyping Development cycle

– Target Sub-System

– Utilize 4-8 FPGA

– Create Test Environment

– Partition Sub-System in Multi-FPGA platform

– Interface SW development platform

– Develop Test scenarios

– Monitor test results

• Prototyping Challenges

– Converting ASIC models for FPGA

– Partitioning the Sub-System

– Adding extra Transactor IPs to create test
environment

– Interfacing External Daughter cards on Platform

– Creating Platforms to monitor the results

© Accellera Systems Initiative 12

Pheripheral NOC 0

UART SPI I2C I3S

Slow Pheripheral Sub-System

Pheripheral NOC 0

UART SPI I2C I3S

Slow Pheripheral Sub-System

Pheripheral NOC 0

UART SPI I2C I3S

Slow Pheripheral Sub-System

High
Perfo
rman

ce
NOC

Clk & Reset
Controller

Clocks

Resets

CPU Sub-

System

Memory Bus

System Bus

RISC-V

Core 0

L1 Cache

RISC-V
Core 1

L1 Cache

RISC-V
Core 2

L1 Cache

RISC-V
Core n

L1 Cache

Tile-0

High Speed NOC

Memory
Controller

Memory
Controller

Memory
Controller

Memory Sub-System

High Speed NOC

Memory
Controller

Memory
Controller

Memory
Controller

Memory Sub-System

High Speed NOC

Memory
Controller

Memory
Controller

Memory
Controller

Memory Sub-System

Pheripheral NOC 1

PCIe
US
B

Eth

High Speed Pheripheral Sub-

System

Pheripheral NOC 1

PCIe
US
B

Eth

High Speed Pheripheral Sub-

System

Pheripheral NOC 1

PCIe
US
B

Eth

High Speed Pheripheral Sub-

System

Pheripheral NOC 1

PCIe
US
B

Eth

Multi-Media Sub-System

Pheripheral NOC 1

PCIe
US
B

Eth

Multi-Media Sub-System

Multi-Media NOC

DP
CS
I

DSI

Multi-Media Sub-System

Configration & Control Block

Memory Interfface

Convolution
Buffer

Convolution
Core

Post-
Processing

AI Accelerator Sub-System

SoC Prototyping
• Prototyping Development cycle

– Target System On Chip (SoC)

– Utilize 10-100 FPGAs

– Create Test Environment

– Partition SoC in Multi-FPGA platform

– Identify Replication & Non-Replication Modules

– Team Based Design

– Interface SW development platform

– Develop Test scenarios, Monitor test results

• Prototyping Challenges

– Converting ASIC models for FPGA

– Partitioning the SoC

– Identifying Replication & Non-Replication Modules

– Interfacing External Daughter cards on Platform

– Creating Platforms to monitor the results
© Accellera Systems Initiative

14

SOC Prototyping (continued)

• Partition Replication Modules
– Identify Replication Modules & their size.

– Group FPGAs with Identical on-board interconnections

– Finalise on the IO assignments with care

– Partition the Module within a Group.

– Identify on board Clock sources and map to all groups

– Map resets to all groups

– Generate bit files of a group & use the same to others

– Interface SW development platform

– Develop Test scenarios

– Monitor test results

© Accellera Systems Initiative 15

SOC Prototyping (continued)

• Partition Non-Replication Modules
– Convert ASIC models for FPGA

– Partition the Sub-System

– Add extra Transactor IPs to create test
environment

– Interface External Daughter cards on Platform

– Create Platforms to monitor the results

© Accellera Systems Initiative 16

Synopsys HAPS® Solutions
• HAPS Hardware

– Flexible and Scalable Hardware
(IP to SOC Prototyping)

• Desktop -> Lab Table-Top -> Rack Mount

– Off-the-shelf Synopsys DesignWare Intellectual
Property Kit & Speed Adaptors

• HAPS® ProtoCompiler Software

– Team Based Design

– Multi Design Mode

– Farm Management

© Accellera Systems Initiative 17

Design 2

Design 1

Design 3

RTL READINESS

© Accellera Systems Initiative 18

RTL Readiness (RTL Change)

• ASIC RTL must be modified for efficient FPGA prototyping
due to the following reasons:

– ASIC design elements not suited for FPGA technology

– Tweaking for higher performance

– Efficient Debugging

– Modularizing RTL for FPGAs

© Accellera Systems Initiative 19

`ifdef FPGA_PROTO

 ... Modified FPGA RTL

`else

 ... Original ASIC RTL

`endif

`ifdef FPGA_PROTO

// Downward XMR read

assign d = inst1.a ;

....

// Upward XMR Write

assign top.d = a

//remove BIST Logic

Assign bist.clk = 1’b0

`endif

RTL Readiness (Clocks)
• Problems

– Timing violations due to clock skew can be caused by clock-gating logic
– Number of clocks in a design exceeds the number of global clocks available in the

FPGAs/FPGA prototyping Platforms

• Solution
– To successfully prototype an ASIC into an FPGA, make sure that all the ASIC design clocks fit

into the clock resources of the FPGA prototyping platforms and FPGAs by doing
the following:

– Simplifying the clock networks
– Removing/reducing Skew across FPGA
– Using the clock-conversion feature to convert the remaining gated and generated clocks

© Accellera Systems Initiative 20

RTL Readiness (Clocks)

© Accellera Systems Initiative 21

• Replace clock generation
logic with MMCMs and
PLLs

• Tie constants to clock
inputs not being used for
prototyping

RTL Readiness (Clocks)
• After simplifying the clock networks, gated clocks may still exist in the design

• To eliminate these clocks, use the clock conversion feature in the synthesis tool,
which moves the gating clock logic from the clock pin of the sequential elements
to the enable pins

© Accellera Systems Initiative 22

Without Gated Clock Conversion With Gated Clock Conversion

RTL Readiness (Memories)
Simple Memory Handling Complex Memory Handling

• Virtual Memory Models
– HBM family of memory models

– DDR family of memory models

• External Daughter Cards
– DDR3

– DDR4

– LPDDR3

– LPDDR4

© Accellera Systems Initiative 23

Memories Types Purpose

ROMs Single Port

Dual Port
Stores boot image, the constant
co-efficient in digital filters, etc.

High-Speed
SRAMs

Single Port

Multi Port
Used as cache memory in processor

cores and graphics processing units
(GPUs)

High-
Density SRAMs

Single Port

Multi Port
Stores data in basic peripherals
such as UART, I2C, and GPIO

High-Density
Register Files

Single Port

Multi Port

Stores data in camera interfaces

FIFO Asynchronous

Synchronous
Stores data in networking
applications

CAM Multi Port Used in network switches
and routers

• Recode Memories based on FPGA
Synthesis

• Stub out Analog &
Test Logic not
required for
prototypes

• Optimize Clocks

• Handle Memory

• Account for
additional Mux
Logic

© Accellera Systems Initiative 24

FPGA
Resources

Excluded from
Prototype

Additional pin
sharing logic

System timing
analysis

Logic assignment

Clock conversion

Memory
substitution

XILINX

UltraScale
Plus
XCVU19P
FSVA3824
-1-e

XILINX

UltraScale
Plus
XCVU19P
FSVA3824
-1-e

XILINX

UltraScale
Plus
XCVU19P
FSVA3824
-1-e

XILINX

UltraScale
Plus
XCVU19P
FSVA3824
-1-e

Exclusions

Memory, IO, Adaptor, and
Connectivity

Resources

RTL Readiness (Summary)

Synopsys HAPS® Solutions

• HAPS® Hardware

– Daughter Cards (Off the shelf)

– IPK Solutions (Off the shelf)

– Inbuilt Checks for HAPS Daughter Cards and
Cables

• HAPS® ProtoCompiler Software

– Easy Mapping of Global Clocks on Platforms

– Automatic Gated Clock Conversion

– Efficient Memory Mapping to
URAM/BRAM

© Accellera Systems Initiative 25

ACHIEVING HIGH PERFORMANCE

© Accellera Systems Initiative 26

FPGA FPGA2

Timing Aware Partitioning with core clk

FPGA1

400+ nets @ 50+MHz
only direct nets

TDM Ratio 8
Delay = 50ns

 <=20MHz

core-I core-II

Partitioning Core
- CPU cores
assign to FPGAs
- Identify nets

between these two
cores

- Make sure enough
traces are there
between two
FPGAs

- Use lowest TDM
based on slack

.

.

.

.

.

.

.

.

.

.

.

.

clkgen

FPGA 1

IP-Part 1clk ip_clk

FPGA 2

IP-Part 2

Clock
Crossing

Resolving - Clock Crossings/Cut Clocks

Resolving - Clock Crossings / Cut Clocks

.

.

.

.

.

.

.

.

.

.

.

.

clkgen

FPGA 1

IP-Part 1clk ip_clk

FPGA 2

IP-Part 2
clkgen

clk

Resolving Hops
• What is a Hop?

• An FPGA boundary that a path crosses between

start and end points

• Optimizing to minimize hops is important!

© Accellera Systems Initiative 30

FPGA A FPGA B

Single “Hop”

FPGA A FPGA B FPGA C

Two “Hops”

90 ns

FPGA A FPGA B FPGA C

TDM8=40 nsTDM8=40 ns

10 ns

Synopsys HAPS Solutions
• HAPS Hardware

– Flexible & Scalable Hardware
– 18-24 Global Clocks

• HAPS® ProtoCompiler Software
– Highly Flexible Partitioner
– Timing Aware Partitioning
– Automatic Cut Clock Resolving
– High Speed Time Division Multiplexing (

HSTDM)
– Multi Gigabit Time Division Multiplexing

(MGTDM)
– Reduce Multi Hops

© Accellera Systems Initiative 31

HAPS-100 Hardware

HAPS® ProtoCompiler Software

DEEP CYCLE DEBUG MANAGEMENT

© Accellera Systems Initiative 32

Simulation Emulation Prototyping

Speed
Slow

(~0.1 –
10KHz)

Medium
(~1MHz)

Fast
(~10 –

100MHz)

Visibility High Medium
Prototyping

Debug
Innovation

The Need for Deep-Cycle Visibility

Deep cycle visibility a prerequisite for high performance prototyping
• Visibility for debug

– Fault finding at all levels

• Visibility for performance measurement
– Data traffic characteristics due to S/W interaction with external memories, data caches
– Data bus transactions when running on H/W

• Visibility for off-line verification
– Capture for RTL and S/W Debugging
– Capture “real-world” stimuli for off-line module simulation

Continued debug innovation expands the scope
• High performance and complex event detection

– Peta cycles of cycles to get near the point of Interest

• High capacity and wide captures
– Full state captures over 100,000s cycles

Might only happen after days or even weeks of prototyping run
• H/W and S/W nearing maturity

– Error happens late in the verification cycle
• Need peta cycles to get to the point of interest

– Only possible with a FPGA Prototyping platform operating at the highest
speed

What we do and don’t know
• S/W error reported via higher-level transaction (UART with line count)

– Maybe pointing us to a specific process
• Something happened leading up to S/W error

– We might need to detect a complex sequence of events to help isolate that
• Maximum visibility required to locate and fix the error

– We are not completely sure what to look for

The Need for Deep-Cycle Visibility

Case Study: Trapping the Hardest to Find Bug

What we need to do

• Re-run the platform at the highest speed to
a point prior the line counter value

• Switch to a lower speed to increase the
visibility and look for primary events

• Once detected, capture the full state of the
platform to help locate and fix
– Off-Line debugging at both the S/W and

RTL level

The Need for Deep-Cycle Visibility
Case Study: Trapping the Hardest to Find Bug

SoC Level

Sub-System

Process

Circuit

Bugs could be anywhere
(Cast a wide net)

Bugs are contained
(Narrow the focus)

Bugs are located
(Identify the target)

Debug Funnel

Synopsys HAPS - DUT Debug
Multiple visibility options

– Performance, capacity and intrusion into the DUT

– Real-time, at-speed debugging, full state capture

Increased visibility capacity and flexibility

– Greater event detection and capture resolution

– Eliminate re-spins to capture the necessary scope

Different technologies combine to great effect

– First event detection at full speed

– Higher capacity visibility at reduced speeds

– Complete state capture at controlled speeds

© Accellera Systems Initiative 36
S

a
m

p
le

 L
e
n

g
th

 /

S

ig
n

a
l

C
o

u
n

t

System Frequency
GHz

MB

GB

Multiplex Groups, Depth Compression

On-Chip FPGA BRAM
Real Time

Debug

MHz

Deep-Trace Debug
Single / Multiple FPGA

Global
State

Visibility

On Board Memory

Host Server Storage

KHz

Verdi

HAPS

DYNAMICS OF DATA CENTER PROTOTYPING

© Accellera Systems Initiative 37

FPGA prototyping installations exist in multiple environments

• Desktop Systems for I/P and S/W development

– Interactive configuration changes, test access, visual output

• Lab-based systems for large system set-ups, exploration and development

– Initial system configuration testing

• High-Capacity prototyping farms with remote access

– Access for all world-wide users and for all verification requirements

Data Center based prototyping farms becoming the normal

• Secure remote data centers with limited physical access

– High system reliability with extensive remote system test and diagnostic
routines

• Remote global access

– System configuration, test deployment and high-speed result data extraction

The Dynamics Of Data Center Prototyping

System
Management

S/W
(Gateway)

Prototyping
Farm

Compile
Flow

Package &

Deploy

Use

Prototyping Engineer

Embedded SW & DevOps Teams

Setup

Lab Technician

Manager

Analyze

& Plan

Challenge to monitor and maintain to maximize the return

• Global System Resource Management

– Resource allocation

• Queue based system allocation

• The right system for the right job

– System Monitoring

• Which Configurations are bottlenecked

• Reallocation of systems of maximize return

• Tracking deep-cycle events over time

• Requires S/W Infrastructure

– To automate and manage access for all teams

– To analyze usage to ensure maximum productivity

The Dynamics Of Data Center Prototyping

HAPS Gateway

• A SW framework for global control and
analysis of HAPS prototyping systems

• Ease of access to all available HAPS
prototyping systems

– From anywhere, at any time, from any
location with instant access

Cloud native SW architecture

• Secure web APIs, access controls

• Latest Google UI technology and global
scripting

HAPS® Gateway for Prototyping Resource Management

Filters

Timeline View

• Max, Min, Average, Sum and Job Count

• Use and wait time per system, module, and user

Database

– MongoDB aggregation exported to CSV

– Copy and paste from UI for refined use

Analytics: Chart view, Trace and Dashboard

HAPS Gateway for Prototyping Resource Management

Conclusion: Fast Track RISC-V System Validation

© Accellera Systems Initiative 42

RTL Readiness

Design the RTL/HDL for Considering Prototype
Environment/Platforms

Manage the growing RISC-V SOC
Complexity

Scalability and Capacity of Hardware and Software
Modular Approach to Prototype Bring up

Conclusion: Fast Track RISC-V System Validation

© Accellera Systems Initiative 43

Achieve High Performance
Planning and Timing Awareness in both Hardware and
Software tools

Deep Cycle Debug Management
Capacity and at Speed Debug

Conclusion: Fast Track RISC-V System Validation

© Accellera Systems Initiative 44

Dynamics Of Data Center
Prototyping
– Effective use of Hardware Platforms

Demo : RISC-V System Validation with HAPS

Kernel

Image

Demo : RISC-V System Validation with HAPS

Kernel Image

Demo : RISC-V System Validation with HAPS

Thank You

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4: Agenda
	Slide 5: RISC-V Landscape
	Slide 6: RISC-V Landscape (Adaption)
	Slide 7: Addressing Needs of the RISC-V Design Community
	Slide 8: High Performance FPGA-Based Prototyping Landscape
	Slide 9: Fast Track RISC-V System Validation
	Slide 10: Manage the growing RISC-V SOC Complexity
	Slide 11: IP Prototyping
	Slide 12: Subsystem Prototyping
	Slide 13
	Slide 14: SoC Prototyping
	Slide 15: SOC Prototyping (continued)
	Slide 16: SOC Prototyping (continued)
	Slide 17: Synopsys HAPS® Solutions

	SOC RTL Readiness for FPGA Prototyping
	Slide 18: RTL Readiness
	Slide 19: RTL Readiness (RTL Change)
	Slide 20: RTL Readiness (Clocks)
	Slide 21: RTL Readiness (Clocks)
	Slide 22: RTL Readiness (Clocks)
	Slide 23: RTL Readiness (Memories)
	Slide 24: RTL Readiness (Summary)
	Slide 25: Synopsys HAPS® Solutions
	Slide 26: Achieving High Performance
	Slide 27: Timing Aware Partitioning with core clk
	Slide 28: Resolving - Clock Crossings/Cut Clocks
	Slide 29: Resolving - Clock Crossings / Cut Clocks
	Slide 30: Resolving Hops
	Slide 31: Synopsys HAPS Solutions
	Slide 32: Deep Cycle Debug Management
	Slide 33: The Need for Deep-Cycle Visibility
	Slide 34: The Need for Deep-Cycle Visibility
	Slide 35: The Need for Deep-Cycle Visibility
	Slide 36: Synopsys HAPS - DUT Debug
	Slide 37: Dynamics Of Data Center Prototyping
	Slide 38: The Dynamics Of Data Center Prototyping
	Slide 39: The Dynamics Of Data Center Prototyping
	Slide 40: HAPS® Gateway for Prototyping Resource Management
	Slide 41: HAPS Gateway for Prototyping Resource Management
	Slide 42: Conclusion: Fast Track RISC-V System Validation
	Slide 43: Conclusion: Fast Track RISC-V System Validation
	Slide 44: Conclusion: Fast Track RISC-V System Validation
	Slide 45: Demo : RISC-V System Validation with HAPS
	Slide 46: Demo : RISC-V System Validation with HAPS
	Slide 47: Demo : RISC-V System Validation with HAPS
	Slide 48: Thank You

