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Abstract- The erratic bit failure phenomenon in advanced on-chip cache memory poses significant challenges for 

modern System-on-Chips (SoCs). While efforts have been made to log, correct, and recover from such failures, simulating 

all possible combinations and sequences of errors remains practically impossible. This paper proposes a formal verification 

(FV) methodology that complements or replaces traditional simulation approaches for select hardware designs. By 

leveraging FV's capability to cover 100% of the design's state space and produce exhaustive proofs, our methodology 

addresses the complex nature of deeply pipelined hardware designs with multiple interfaces, events, handshakes, and 

dependencies. We introduce a comprehensive formal verification methodology to enhance confidence in the quality of FV 

efforts and achieve formal sign-off. The effectiveness of our methodology is demonstrated through a case study where we 

applied our methodology to formally sign-off an error detection filter of a flagship server CPU SoC. 

 

I.   INTRODUCTION 

 

Erratic bit failure phenomenon is one of the widely reported issue in advanced flash memories used for 

implementing on-chip cache memory [1]. Modern SoCs invest great efforts in logging, correcting, and recovering 

from such bit failures. These failures can occur due to various factors such as aging, environmental conditions, and 

variations in manufacturing processes. As the word “erratic” suggest, simulating all possible combinations and 

sequence of errors is practically impossible. DV would not only require many test vectors and sizeable compute to 

simulate errors, but it will also fall short of providing absolute confidence in verification effort. 

 

Formal Verification (FV) has become a mainstream verification methodology, and advanced to the stage that it can 

complement or even replace simulation effort for select hardware designs. Today, FV is widely recognized for its 

capability to cover 100% state space of the design and produce exhaustive proofs. For complex hardware designs 

involving many interfaces, many events (including errors), many handshakes and dependencies, a deterministic 

measure of the design state space being simulated and checked is necessary for high-quality formal sign-off. 

 

In this paper, we would like to share our formal methodology for verifying deeply pipelined hardware designs which 

involves filtering different types of correctable and un-correctable erratic errors. We will discuss how we leveraged 

formal coverage analysis to enhance the confidence in quality of formal verification effort and achieving formal sign-

off. We will also discuss the effectiveness of our methodology using a case study related work. 

 

II.   RELATED WORK 

 

Application of formal verification has matured many-folds in past one decade. Formal verification 

engineers/researchers/enthusiasts as well as EDA companies have been churning out new ideas, implementations, and 

utilities for pushing the boundaries of FV and its application. We leveraged some of such methods and developments 

in our work and would like to list them in this section. 
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A. Floating Pulse 

Floating pulse[2] is a well-known powerful formal technique where the formal tool can assert a single pulse at some 

arbitrary time after reset, and on that pulse do something special. Based on the purpose of use, special thing can be 

used to tag a certain transaction, inserting a barrier, switching modes etc. 

 

FV Tool can assert pulse anytime Constraint makes sure pulse is 
only asserted for one cycle

 
Figure 1: Floating Pulse Behavior 

For our work described in this paper, we have used floating pulse to quiesce the incoming traffic at a random time, 

wait for a specific duration and then compare the design outputs with the predicted outputs. Effectiveness of this 

technique helps simplify formal reference modelling by achieving cycle independence in a deeply pipelined design. 

 

B. Symbolic Variable 

Use of symbolic variables is an efficient formal verification technique for leveraging design symmetries to keep 

implementation of checkers simple and manage proof complexity. A symbolic variable enables checking of the entire 

symmetric logic by checking only one unit of it. 

 

Symbolic variables can take any legal value and are kept stable during a formal run.[3] For example, when verifying 

control logic that reads/writes to a memory, it is sufficient to verify the behavior for one address if the control logic 

behaves identically across all addresses and all addresses are independent of each other. 

 

In our design, error information gets logged in a Content Addressable Memory (CAM)[4]. We used symbolic 

variable for tracking sequence of transaction on a symbolic address of the CAM. Since a symbolic variable can take 

any legal value, transactions for every possible address were covered. Hence, achieved exhaustive coverage of 

addresses. 

 

C. Formal Coverage 

Formal coverage is a powerful way to gauge the quality of formal testbench used to verify a design. In our work, 

we used reachability coverage, observability coverage and formal coverage metrics to analyze the quality of 

verification effort. Three coverage metrics are described below: 

 

1. Reachability Coverage: This metric determines the extent to which different parts of the design are reachable 

under a given set of constraints. Reachability coverage helps identify whether all the intended behaviors and states of 

the design can be reached during the formal verification process. It ensures that the constraints and properties specified 

for the design exercise all the relevant functionalities. 

2. Observability Coverage: Observability coverage measures the exhaustiveness of the checkers or assertions 

implemented in the testbench. It determines the extent to which the design is being observed and verified for specific 

properties. Observability coverage helps ensure that the checkers adequately capture the desired properties and 

behaviors of the design. 

3. Formal Coverage: Formal coverage provides a consolidated view of both reachability and observability coverage. 

It combines the metrics of reachability and observability to assess the overall verification progress. In order for a 

design to be considered completely verified with formal methods, it must exhibit full reachability (all parts of the 

design are reachable) and full observability (all relevant properties are observed and checked).[5] 

 



 
 

These metrics collectively help evaluate the quality and completeness of the formal testbench and guide the 

verification engineer in identifying areas that may require additional coverage or refinement. In our work, formal 

coverage was enabled at the early stage of the verification cycle to track how close we are to the goal of formal sign-

off. 

 

III.   FORMAL VERIFICATION METHODOLOGY 

 

A. Design Details 

The Error Detection Filter is a specialized memory structure designed to manage and track errors in high volume 

manufacturing environments. This is particularly useful for detecting and managing errors in L3 cache memory, where 

"erratic bit failures" can cause correctable ECC errors. 
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Figure 2: Block Diagram 

Key features of an Error Detection Filter include: 

1. N entry CAM array: The filter has an N entry CAM array to log errors for unique addresses, providing an 

efficient way to track and manage correctable errors in the L3 cache. 

2. Tracking correctable errors (CE): The Error Detection Filter tracks ECC errors that can be corrected, allowing 

for more efficient error management and prevention of further issues. 

3. Logging defects in DFT (Design for Test) mode: The filter logs defects found during DFT mode [6], which is 

used in high volume manufacturing to detect and prevent potential issues before they arise in the final product. 

4. Managing errors on a per set and way basis: The Error Detection Filter logs errors for unique addresses within 

the L3 cache, allowing for better analysis and understanding of the issues that arise. 

5. Filtering unique correctable errors: The Error Detection Filter is designed to filter up to N unique correctable 

errors that may occur due to erratic bit failures, helping to maintain the integrity and performance of the L3 

cache memory. 

 

Out of reset, all the entries in the CAM are initialized to “NO_ERR”. When a correctable error (CE) of read type is 

received for an address for the first time, one of the CAM entries is identified to log errors on that particular address 

and the state for that entry moves from NO_ERR to SOFT_ERR state. After receiving a write to the same address, the 

state moves from SOFT_ERR state to REPLACE state. This means that there is a replace of the data at that address. 

If another corrected error is then detected for this entry, the state will be updated to HARD_ERR state. HARD_ERR 

is a terminal state, which means we exit from HARD_ERR state only on cold reset. 
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Figure 3: State transition for CAM entries 



 
 

B. Verification Challenge 

Error detection filter design has been a challenging area for several generations because of the repeated bug-escapes 

from IP and SOC DV environments to Silicon. Thorough analysis of bugs found in the past pointed towards following 

two main contributing factors: 

1. Handling multiple types of incoming errors: In complex systems, various types of errors can occur 

simultaneously or at different points in time. These errors can arrive at different pipeline stages, which adds 

complexity to the error detection filter design. 

2. Variable latencies: In some cases, the time taken to process and log the errors is not constant. This variability 

can be attributed to dependencies between different errors, which can make it challenging to design a robust 

error detection filter. 

 

Creating a simulation environment that can effectively test all possible combinations and sequences of events is 

difficult and impractical. This is because it would require generating exhaustive stimuli for all potential test vectors, 

including register programming. Formal Verification can address the challenges faced in error detection filter 

verification through its breadth-first exhaustive search approach and comprehensive coverage. FV can ensure that no 

bugs are left undetected. 

 

C. Implementation Complexities and Formal Verification Solutions 

In this section we will cover four most crucial implementation complexities and describe the solution developed to 

overcome them in an efficient manner. 

 

1. Multiple input streams of errors spread across different pipe stages: The DUT handles multiple types of 

incoming errors that arrive through different streams of inputs and at different pipeline stages. Misaligned 

pipeline stages can pose a challenge in efficiently processing and managing errors. This misalignment can lead 

to incorrect error detection or handling, negatively impacting the system's overall performance and reliability. 

Creating an accurate reference model is crucial for proper error detection and handling, which requires sampling 

the data at the correct time and pipeline stage to make well-informed decisions. To address this issue, a solution 

is to align the pipeline stages at a common point before feeding the data to the FV reference model. The process 

of aligning pipeline stages involves synchronizing the data from different stages to a single reference point or 

stage. This ensures that all incoming errors are processed consistently and accurately, regardless of the stage at 

which they initially arrived. Once the pipeline stages are aligned, the data can be fed into the FV reference 

model for comprehensive error analysis and detection. By implementing this pipeline alignment strategy, the 

problem of misaligned pipeline stages is greatly reduced. This results in accurate error detection and simplifies 

the creation of the reference model, as the data is consistently processed and organized, allowing for a more 

streamlined approach to error management. 

 
always @(posedge fv_clk) begin 

   if (en_err_log && en_clk) begin 

      // error info received @stage x18 

      fv_tag_err_x19 <= tag_err_x18; 

      fv_tag_err_x20 <= fv_tag_err_x19; 

      fv_tag_err_x21 <= fv_tag_err_x20; 

      fv_tag_err_x22 <= fv_tag_err_x21; 

      fv_tag_err_x23 <= fv_tag_err_x22; 

      fv_tag_err_x24 <= fv_tag_err_x23; 

      fv_tag_err_x25 <= fv_tag_err_x24; 

   end 

end 

always @(posedge fv_clk) begin 

   // opcode info received @stage x20 

   if (pkt_x20.vld && en_clk) fv_pkt_x21.op <= pkt_x20.op;  

   if (fv_pkt_x21.vld && en_clk) fv_pkt_x22.op <= fv_pkt_x21.op; 

   if (fv_pkt_x22.vld && en_clk) fv_pkt_x23.op <= fv_pkt_x22.op; 



 
 

   if (fv_pkt_x23.vld && en_clk) fv_pkt_x24.op <= fv_pkt_x23.op; 

   if (fv_pkt_x24.vld && en_clk) fv_pkt_x25.op <= fv_pkt_x24.op; 

end 

Figure 4: Auxiliary code to handle misaligned pipe stages 

 

2. Multiple CAM entries: In the design under test, there are multiple entries in the CAM. Writing a reference 

model for each individual entry in the design can be time-consuming and inconvenient, especially considering 

that every entry in the CAM is symmetric in nature. This symmetry can be leveraged to simplify the process of 

creating the reference model. Instead of writing a reference model for each entry, a symbolic variable can be 

used to track the sequence of transactions on a symbolic address of the CAM. Symbolic variables can take on 

any legal value, which makes them extremely useful in this context. By using a symbolic variable for tracking 

transactions, the reference model can cover transactions for every possible address in the CAM. This approach 

effectively exploits the symmetry of the CAM entries, reducing the need to create multiple reference models 

for each individual entry, and streamlining the overall design and verification process. This approach ensures 

that transactions for every possible address are covered, enhancing the efficiency verification process. 

 

3. Variable output latencies: Variable latencies in a design can pose a challenge when it comes to accurately 

verifying the system's behavior. One technique to address this issue is the use of quiesce checking. Quiesce 

checking helps manage variable latencies by temporarily halting incoming traffic at a random time, waiting for 

a specific duration, and then comparing the design outputs with the predicted outputs. In this approach, a 

floating pulse is used to quiesce the incoming traffic. The floating pulse is applied randomly, causing the system 

to pause or "quiesce" temporarily. During this quiescent period, the system stabilizes, allowing for accurate 

comparisons between the design outputs and the predicted outputs. Once the specific waiting duration has 

passed, the design outputs are compared with the predicted outputs to verify the system's behavior. This 

comparison helps identify any discrepancies, which can then be addressed to improve the overall design. The 

effectiveness of quiesce checking lies in its ability to simplify formal reference modeling by achieving cycle 

independence in a deeply pipelined design. This cycle independence allows the system to be evaluated and 

verified without being affected by variable latencies, ensuring accurate and reliable results. 
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Figure 5: Waveform showing use of quiesce method 

IV.   RESULTS 

 

Sign-off capable formal verification environment was implemented form the scratch. Novel and straightforward 

methods and techniques were devised for implementing different components of formal verification environment. For 



 
 

reference, table 1 captures the statistical details of the design under test (DUT). A total of two formal verification 

engineers were engaged for 8 engineering weeks to build the formal verification solution and achieve formal sign-off. 

 

Design Statistics for Hardware Configuration with 32 CAM entries (N=32) 
Flops 1,367 

Latches 11 

Gates 47,739 

Nets 50,778 

Ports 36 

RTL Lines 2,989 

 

Formal verification analysis helped find four new bugs in a simulation clean design, most importantly the “last bug” 

of the design. A couple of bugs were identified to be existing in previous generations of the IP as well. These bugs 

were extremely complex to uncover due to the nature of sequence of the events required to activate them. Using this 

approach, we were able to suggest two enhancements which simplified the design implementation and made it more 

efficient w.r.t area and performance. 

 

 
Figure 6: Number of design changes triggered by FV 

A. Bug Description 

In one of the design bugs found through formal verification, “error flow” state machine did not transition correctly 

from “soft error” to “replace” state when “write operation” arrives immediately (in the next cycle) after “read error” 

for same address(represented by set and way). 
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Figure 7: Waveform showing bug scenario 



 
 

 

The root-cause of the bug lies in erroneous way of matching pipeline latencies. In the waveform shown in figure 

above, even though “write operation” and “read error” was received for the same address (set 0x09, way 0x04), design 

pipeline captured the “write operation” before the address (set, way) for the write operation be updated. This lead to 

mapping the “write operation” to incorrect address and corrupting the “error flow” state of address (set=0x09, 

way=0x04). 

 

B. Formal Coverage 

We collected formal coverage numbers on weekly basis throughout the implementation of FV testplan. This helped 

in active tracking the execution progress and identify waivers, but also helped gain confidence that we have found the 

“last bug” in the design. As you can see in figure 12, constant improvements in coverage metrics shows how the design 

state space was covered through a well-defined process that helped us achieve exhaustive proofs and high-quality 

formal sign-off. 

 

 
Figure 8: Coverage trend during FV lifecycle 

 

IV.   CONCLUSIONS 

 

Coverage-driven Formal Property Verification on error detection filter enabled the guarantee of “0 bugs left” on a 

simulation clean design which had a history of repeated bug escapes from pre-silicon IP & SOC DV analysis. The 

decision to deploy formal verification on a complex design involving erratic bit errors and deep pipeline proved to be 

a successful strategy to gain full confidence on the quality of implementation. High-quality formal sign-off of error 

detection filter design not only helped prevent re-spins and save costs, but also paved way for novel methods for 

verifying similar class of designs and defined a sound strategy for formal sign-off. 
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