

Covering All the bases: Coverage-driven

Formal Verification Sign-off of Pipelined

Error Detection Filter

Harbaksh Gupta, Anshul Jain
{harbaksh.gupta, anshul.jain}@intel.com

Abstract- The erratic bit failure phenomenon in advanced on-chip cache memory poses significant challenges for

modern System-on-Chips (SoCs). While efforts have been made to log, correct, and recover from such failures, simulating

all possible combinations and sequences of errors remains practically impossible. This paper proposes a formal verification

(FV) methodology that complements or replaces traditional simulation approaches for select hardware designs. By

leveraging FV's capability to cover 100% of the design's state space and produce exhaustive proofs, our methodology

addresses the complex nature of deeply pipelined hardware designs with multiple interfaces, events, handshakes, and

dependencies. We introduce a comprehensive formal verification methodology to enhance confidence in the quality of FV

efforts and achieve formal sign-off. The effectiveness of our methodology is demonstrated through a case study where we

applied our methodology to formally sign-off an error detection filter of a flagship server CPU SoC.

I. INTRODUCTION

Erratic bit failure phenomenon is one of the widely reported issue in advanced flash memories used for

implementing on-chip cache memory [1]. Modern SoCs invest great efforts in logging, correcting, and recovering

from such bit failures. These failures can occur due to various factors such as aging, environmental conditions, and

variations in manufacturing processes. As the word “erratic” suggest, simulating all possible combinations and

sequence of errors is practically impossible. DV would not only require many test vectors and sizeable compute to

simulate errors, but it will also fall short of providing absolute confidence in verification effort.

Formal Verification (FV) has become a mainstream verification methodology, and advanced to the stage that it can

complement or even replace simulation effort for select hardware designs. Today, FV is widely recognized for its

capability to cover 100% state space of the design and produce exhaustive proofs. For complex hardware designs

involving many interfaces, many events (including errors), many handshakes and dependencies, a deterministic

measure of the design state space being simulated and checked is necessary for high-quality formal sign-off.

In this paper, we would like to share our formal methodology for verifying deeply pipelined hardware designs which

involves filtering different types of correctable and un-correctable erratic errors. We will discuss how we leveraged

formal coverage analysis to enhance the confidence in quality of formal verification effort and achieving formal sign-

off. We will also discuss the effectiveness of our methodology using a case study related work.

II. RELATED WORK

Application of formal verification has matured many-folds in past one decade. Formal verification

engineers/researchers/enthusiasts as well as EDA companies have been churning out new ideas, implementations, and

utilities for pushing the boundaries of FV and its application. We leveraged some of such methods and developments

in our work and would like to list them in this section.

mailto:harbaksh.gupta@intel.com
mailto:anshul.jain@intel.com

A. Floating Pulse

Floating pulse[2] is a well-known powerful formal technique where the formal tool can assert a single pulse at some

arbitrary time after reset, and on that pulse do something special. Based on the purpose of use, special thing can be

used to tag a certain transaction, inserting a barrier, switching modes etc.

FV Tool can assert pulse anytime Constraint makes sure pulse is
only asserted for one cycle

Figure 1: Floating Pulse Behavior

For our work described in this paper, we have used floating pulse to quiesce the incoming traffic at a random time,

wait for a specific duration and then compare the design outputs with the predicted outputs. Effectiveness of this

technique helps simplify formal reference modelling by achieving cycle independence in a deeply pipelined design.

B. Symbolic Variable

Use of symbolic variables is an efficient formal verification technique for leveraging design symmetries to keep

implementation of checkers simple and manage proof complexity. A symbolic variable enables checking of the entire

symmetric logic by checking only one unit of it.

Symbolic variables can take any legal value and are kept stable during a formal run.[3] For example, when verifying

control logic that reads/writes to a memory, it is sufficient to verify the behavior for one address if the control logic

behaves identically across all addresses and all addresses are independent of each other.

In our design, error information gets logged in a Content Addressable Memory (CAM)[4]. We used symbolic

variable for tracking sequence of transaction on a symbolic address of the CAM. Since a symbolic variable can take

any legal value, transactions for every possible address were covered. Hence, achieved exhaustive coverage of

addresses.

C. Formal Coverage

Formal coverage is a powerful way to gauge the quality of formal testbench used to verify a design. In our work,

we used reachability coverage, observability coverage and formal coverage metrics to analyze the quality of

verification effort. Three coverage metrics are described below:

1. Reachability Coverage: This metric determines the extent to which different parts of the design are reachable

under a given set of constraints. Reachability coverage helps identify whether all the intended behaviors and states of

the design can be reached during the formal verification process. It ensures that the constraints and properties specified

for the design exercise all the relevant functionalities.

2. Observability Coverage: Observability coverage measures the exhaustiveness of the checkers or assertions

implemented in the testbench. It determines the extent to which the design is being observed and verified for specific

properties. Observability coverage helps ensure that the checkers adequately capture the desired properties and

behaviors of the design.

3. Formal Coverage: Formal coverage provides a consolidated view of both reachability and observability coverage.

It combines the metrics of reachability and observability to assess the overall verification progress. In order for a

design to be considered completely verified with formal methods, it must exhibit full reachability (all parts of the

design are reachable) and full observability (all relevant properties are observed and checked).[5]

These metrics collectively help evaluate the quality and completeness of the formal testbench and guide the

verification engineer in identifying areas that may require additional coverage or refinement. In our work, formal

coverage was enabled at the early stage of the verification cycle to track how close we are to the goal of formal sign-

off.

III. FORMAL VERIFICATION METHODOLOGY

A. Design Details

The Error Detection Filter is a specialized memory structure designed to manage and track errors in high volume

manufacturing environments. This is particularly useful for detecting and managing errors in L3 cache memory, where

"erratic bit failures" can cause correctable ECC errors.

Error Detection
Filter

Opcode

Address

Error

CAM Occupancy

Error Flow State

Logged Error Status

Figure 2: Block Diagram

Key features of an Error Detection Filter include:

1. N entry CAM array: The filter has an N entry CAM array to log errors for unique addresses, providing an

efficient way to track and manage correctable errors in the L3 cache.

2. Tracking correctable errors (CE): The Error Detection Filter tracks ECC errors that can be corrected, allowing

for more efficient error management and prevention of further issues.

3. Logging defects in DFT (Design for Test) mode: The filter logs defects found during DFT mode [6], which is

used in high volume manufacturing to detect and prevent potential issues before they arise in the final product.

4. Managing errors on a per set and way basis: The Error Detection Filter logs errors for unique addresses within

the L3 cache, allowing for better analysis and understanding of the issues that arise.

5. Filtering unique correctable errors: The Error Detection Filter is designed to filter up to N unique correctable

errors that may occur due to erratic bit failures, helping to maintain the integrity and performance of the L3

cache memory.

Out of reset, all the entries in the CAM are initialized to “NO_ERR”. When a correctable error (CE) of read type is

received for an address for the first time, one of the CAM entries is identified to log errors on that particular address

and the state for that entry moves from NO_ERR to SOFT_ERR state. After receiving a write to the same address, the

state moves from SOFT_ERR state to REPLACE state. This means that there is a replace of the data at that address.

If another corrected error is then detected for this entry, the state will be updated to HARD_ERR state. HARD_ERR

is a terminal state, which means we exit from HARD_ERR state only on cold reset.

NO_ERR SOFT_ERR REPLACE HARD_ERR
1st read

error
write

operation
2nd read/write

error

reset

Figure 3: State transition for CAM entries

B. Verification Challenge

Error detection filter design has been a challenging area for several generations because of the repeated bug-escapes

from IP and SOC DV environments to Silicon. Thorough analysis of bugs found in the past pointed towards following

two main contributing factors:

1. Handling multiple types of incoming errors: In complex systems, various types of errors can occur

simultaneously or at different points in time. These errors can arrive at different pipeline stages, which adds

complexity to the error detection filter design.

2. Variable latencies: In some cases, the time taken to process and log the errors is not constant. This variability

can be attributed to dependencies between different errors, which can make it challenging to design a robust

error detection filter.

Creating a simulation environment that can effectively test all possible combinations and sequences of events is

difficult and impractical. This is because it would require generating exhaustive stimuli for all potential test vectors,

including register programming. Formal Verification can address the challenges faced in error detection filter

verification through its breadth-first exhaustive search approach and comprehensive coverage. FV can ensure that no

bugs are left undetected.

C. Implementation Complexities and Formal Verification Solutions

In this section we will cover four most crucial implementation complexities and describe the solution developed to

overcome them in an efficient manner.

1. Multiple input streams of errors spread across different pipe stages: The DUT handles multiple types of

incoming errors that arrive through different streams of inputs and at different pipeline stages. Misaligned

pipeline stages can pose a challenge in efficiently processing and managing errors. This misalignment can lead

to incorrect error detection or handling, negatively impacting the system's overall performance and reliability.

Creating an accurate reference model is crucial for proper error detection and handling, which requires sampling

the data at the correct time and pipeline stage to make well-informed decisions. To address this issue, a solution

is to align the pipeline stages at a common point before feeding the data to the FV reference model. The process

of aligning pipeline stages involves synchronizing the data from different stages to a single reference point or

stage. This ensures that all incoming errors are processed consistently and accurately, regardless of the stage at

which they initially arrived. Once the pipeline stages are aligned, the data can be fed into the FV reference

model for comprehensive error analysis and detection. By implementing this pipeline alignment strategy, the

problem of misaligned pipeline stages is greatly reduced. This results in accurate error detection and simplifies

the creation of the reference model, as the data is consistently processed and organized, allowing for a more

streamlined approach to error management.

always @(posedge fv_clk) begin

 if (en_err_log && en_clk) begin

 // error info received @stage x18

 fv_tag_err_x19 <= tag_err_x18;

 fv_tag_err_x20 <= fv_tag_err_x19;

 fv_tag_err_x21 <= fv_tag_err_x20;

 fv_tag_err_x22 <= fv_tag_err_x21;

 fv_tag_err_x23 <= fv_tag_err_x22;

 fv_tag_err_x24 <= fv_tag_err_x23;

 fv_tag_err_x25 <= fv_tag_err_x24;

 end

end

always @(posedge fv_clk) begin

 // opcode info received @stage x20

 if (pkt_x20.vld && en_clk) fv_pkt_x21.op <= pkt_x20.op;

 if (fv_pkt_x21.vld && en_clk) fv_pkt_x22.op <= fv_pkt_x21.op;

 if (fv_pkt_x22.vld && en_clk) fv_pkt_x23.op <= fv_pkt_x22.op;

 if (fv_pkt_x23.vld && en_clk) fv_pkt_x24.op <= fv_pkt_x23.op;

 if (fv_pkt_x24.vld && en_clk) fv_pkt_x25.op <= fv_pkt_x24.op;

end

Figure 4: Auxiliary code to handle misaligned pipe stages

2. Multiple CAM entries: In the design under test, there are multiple entries in the CAM. Writing a reference

model for each individual entry in the design can be time-consuming and inconvenient, especially considering

that every entry in the CAM is symmetric in nature. This symmetry can be leveraged to simplify the process of

creating the reference model. Instead of writing a reference model for each entry, a symbolic variable can be

used to track the sequence of transactions on a symbolic address of the CAM. Symbolic variables can take on

any legal value, which makes them extremely useful in this context. By using a symbolic variable for tracking

transactions, the reference model can cover transactions for every possible address in the CAM. This approach

effectively exploits the symmetry of the CAM entries, reducing the need to create multiple reference models

for each individual entry, and streamlining the overall design and verification process. This approach ensures

that transactions for every possible address are covered, enhancing the efficiency verification process.

3. Variable output latencies: Variable latencies in a design can pose a challenge when it comes to accurately

verifying the system's behavior. One technique to address this issue is the use of quiesce checking. Quiesce

checking helps manage variable latencies by temporarily halting incoming traffic at a random time, waiting for

a specific duration, and then comparing the design outputs with the predicted outputs. In this approach, a

floating pulse is used to quiesce the incoming traffic. The floating pulse is applied randomly, causing the system

to pause or "quiesce" temporarily. During this quiescent period, the system stabilizes, allowing for accurate

comparisons between the design outputs and the predicted outputs. Once the specific waiting duration has

passed, the design outputs are compared with the predicted outputs to verify the system's behavior. This

comparison helps identify any discrepancies, which can then be addressed to improve the overall design. The

effectiveness of quiesce checking lies in its ability to simplify formal reference modeling by achieving cycle

independence in a deeply pipelined design. This cycle independence allows the system to be evaluated and

verified without being affected by variable latencies, ensuring accurate and reliable results.

Start checking
after achieving
quiesce state

Phase before achieving Quiesce state

Figure 5: Waveform showing use of quiesce method

IV. RESULTS

Sign-off capable formal verification environment was implemented form the scratch. Novel and straightforward

methods and techniques were devised for implementing different components of formal verification environment. For

reference, table 1 captures the statistical details of the design under test (DUT). A total of two formal verification

engineers were engaged for 8 engineering weeks to build the formal verification solution and achieve formal sign-off.

Design Statistics for Hardware Configuration with 32 CAM entries (N=32)
Flops 1,367

Latches 11

Gates 47,739

Nets 50,778

Ports 36

RTL Lines 2,989

Formal verification analysis helped find four new bugs in a simulation clean design, most importantly the “last bug”

of the design. A couple of bugs were identified to be existing in previous generations of the IP as well. These bugs

were extremely complex to uncover due to the nature of sequence of the events required to activate them. Using this

approach, we were able to suggest two enhancements which simplified the design implementation and made it more

efficient w.r.t area and performance.

Figure 6: Number of design changes triggered by FV

A. Bug Description

In one of the design bugs found through formal verification, “error flow” state machine did not transition correctly

from “soft error” to “replace” state when “write operation” arrives immediately (in the next cycle) after “read error”

for same address(represented by set and way).

RTL misses state transition
It was expected to move to
Replace from SoftErr state

Write operation in just next
cycle of Read for same

address

Figure 7: Waveform showing bug scenario

The root-cause of the bug lies in erroneous way of matching pipeline latencies. In the waveform shown in figure

above, even though “write operation” and “read error” was received for the same address (set 0x09, way 0x04), design

pipeline captured the “write operation” before the address (set, way) for the write operation be updated. This lead to

mapping the “write operation” to incorrect address and corrupting the “error flow” state of address (set=0x09,

way=0x04).

B. Formal Coverage

We collected formal coverage numbers on weekly basis throughout the implementation of FV testplan. This helped

in active tracking the execution progress and identify waivers, but also helped gain confidence that we have found the

“last bug” in the design. As you can see in figure 12, constant improvements in coverage metrics shows how the design

state space was covered through a well-defined process that helped us achieve exhaustive proofs and high-quality

formal sign-off.

Figure 8: Coverage trend during FV lifecycle

IV. CONCLUSIONS

Coverage-driven Formal Property Verification on error detection filter enabled the guarantee of “0 bugs left” on a

simulation clean design which had a history of repeated bug escapes from pre-silicon IP & SOC DV analysis. The

decision to deploy formal verification on a complex design involving erratic bit errors and deep pipeline proved to be

a successful strategy to gain full confidence on the quality of implementation. High-quality formal sign-off of error

detection filter design not only helped prevent re-spins and save costs, but also paved way for novel methods for

verifying similar class of designs and defined a sound strategy for formal sign-off.

ACKNOWLEDGMENT

Thanks to Praveen Khemalapure and Sudarshan Sridharan Amruthur from Design Team for the support and FVCTO

Team for the motivation and the valuable feedback.

REFERENCES

[1] M. Agostinelli, J. Hicks, J. Xu, B. Woolery, K. Mistry*, K. Zhang*, S. Jacobs, J. Jopling, W. Yang, B. Lee# , T. Raz+ , M. Mehalel- , P.

Kolar*, Y. Wang*, J. Sandford*, D. Pivin, C. Peterson, M. DiBattista, S. Pae, M. Jones, S. Johnson and G. Subramanian et al, “Erratic

Fluctuations of SRAM Cache Vmin at the 90nm Process Technology Node”, IEEE InternationalElectron Devices Meeting, IEDM Technical
Digest, 2005

[2] T. Patel et al, “Using Formal Sign-Off to Deliver Bug-Free IPs”, Oski Decoding Formal Club, Dec 2019

[3] I. Tripathi, A. Saxena, A. Verma, P. Aggarwal et al, “The Process and Proof for Formal Sign-off A Live Case Study”, DVCON US 2016
[4] X. Fan, A. Ghonem, and T. Gemmeke et al, “Content-Addressable Memory – Overview and Outlook of an Enabler for Modern Day

Applications” ANALOG 2018; 16th GMM/ITG-Symposium, Sep 2018

[5] “Formal Verification: An Essential Toolkit for Modern VLSI Design” by Erik Seligman, Tom Schubert, M V Achutha Kiran Kumar, Elsevier
Publications, 2016.

[6] Wang D, Hu Y, Li HW et al, “Design-for-testability features and test implementation of a giga hertz general purpose microprocessor “, Journal

of Computer Science and Technology23(6): 1037–1046 Nov. 2008

