
Improving Debug Productivity using latest AI & ML
Techniques

Amod Khandekar
Sr Principal Customer Engagement

Engineer

Cadence

Amod has been working with Cadence for past 20

years. He has worked as Pre Sales and Customer

Support Engineer supporting all the verification related

tools. Currently he is part of Product Engineering team

with Focus on Verisium Apps.

Sundararajan Ananthakrishnan
Application Engineer Architect

Cadence

Sundar has been at Cadence for 13 years, with

an overall Experience of 23+ years in the field of

SoC & IP Verification. Sundar leads the

Cadence AVS field team for India region and

drives the Advanced ML/AI and Verification

Solutions in the region.

Amit Verma
Software Engineering Director

Cadence

Amit has been at Cadence for 18 years, and

until 2021 he was managing multiple coverage

related Formal apps for Cadence’s Formal

product, IEV earlier and currently Jasper. For 2

years he has been managing innovative

software developments for Verisium bug-

localization apps.

He is passionate about exploring how the ML/AI

and Verification technologies can be used

together to accelerate the design verification.

Improving Debug Productivity using latest AI
& ML Techniques

Amod Khandekar, Amit Verma, Sundararajan A
Cadence Design Systems

Narasimha Rao Chinni
Samsung

© Accellera Systems Initiative

Agenda

© Accellera Systems Initiative 6

What

Challenges & related asks for failures debug

What

Solutions to failures debug related
problems

How

Run apps to faster failures debug

What

Productivity gains for failures debug time

What

Challenges & related asks for failures debug

What

Solutions to failures debug related
problems

How

Run apps to faster failures debug

What

Productivity gains for failures debug time

Agenda

Verification Challenge – SoC Debug

• SoCs integrate hundreds of IP

• Each of the IP is constantly changing, evolving, improving

• Week to week, SoC-level testing results in several test failures

• 2 major pain points
• Determining the root cause (source code) of the failure takes significant time/resources

• Determining the test to reproduce the failure in shortest time takes significant time/resources

Major Pain Points – Large debug time

Which failures are most critical? What is the root cause?Where is the bug? Bug Fix

Verification Challenge – SoC Debug

• Provide the Semantic behavior changes (Structural) for quick analysis for design changes

• Provide the Functional behavior changes for accurate analysis for design changes

• Provide the failure causing repository version from large chain of versions for filtered analysis of

failure

• Provide the shortest failing test per failure for reproducing faster a failure

Major Asks – Reduce root-cause time

Which failures are most critical? What is the root cause?Where is the bug? Bug Fix

What

Challenges & related asks for failures debug

What

Solutions to failures debug related
problems

How

Run apps to faster failures debug

What

Productivity gains for failures debug time

Agenda

Automatic Bug Localization Solution & Apps
Given two design versions and regression failure,

predict/locate with high accuracy the root-cause at source code

1

Engineering team submits

many design updates

(commits)

Regression

simulation or

emulation

AutoTriage

SemanticDiff

PinDown2 WaveMiner3

Quick Analysis of Changes (Structural)

What

Challenges & related asks for failures debug

What

Solutions to failures debug related
problems

How

Run apps to faster failures debug

What

Productivity gains for failures debug time

Agenda

Verisium AutoTriage

© Accellera Systems Initiative 13

Bus Error

Parity Error

Coherency Mismatch

Transaction

out of Order

Opcode Mismatch

Runs
Today’s failure triage

• Group runs by their failure description

• Are they really from the same bug?

• Many different failures messages could

be associated from one bug

• One failure message can be caused by

many bugs

Impact

• Manual triage is difficult

• Bugs could be characterized by a variety

of conditions

• Automated scripted solutions are not

smart enough

Vanilla Failure Triage Flow

Fifo Full

Mem Access Violation

Failure

message Bug

Bad Routing ID

Packet Timeout

AutoTriage – Automated ML Bucketing of Regression Failures

• Solution

o Automate the failure analysis/classification using Supervised Learning ML

o Initial results show success rate of ~95% prediction

Configuring Verisium Manager for AutoTriage

This is very easy to enable and setup.
User can start triaging failures in a
very short time by enabling this in
the vManager Web Admin Portal

Run Attributes used in learning
• By default, only the Run name and first failure description are used in the ML learning process however if other attributes are useful,

they should be added before the learning process begins

– Changing the attributes will reset the learning, however after reset if the previous data (failed run to cluster association) exist the
tool learning curve is very fast

Select other
attributes from

messages or runs

Ability to export/import the
clusters and the learning

from one project to another

Enable learning and
prediction

Enhancements to Create New Clusters
Unsupervised ML

• New Button added to Failure Cluster Analysis Context to create Automatic Clusters

Create new clusters for all
runs in the table

Advance option to control
how tolerant the algorithm

is towards noise

Unrecognized pattern
(Unsupervised ML)

ML create new clusters, and
proposed failed runs to the

new Cluster

(trigger by user)

Enhancements to Control Automatically
Proposed Existing Clusters, Supervised ML

The configurable threshold
for proposals

New attribute show the
percentage of the assurance
level we have for the cluster

proposal

The threshold can be
configured in the admin page

Recognized pattern
(Supervised ML)

ML proposed failed runs to
existing Clusters

(automatically)

© Accellera Systems Initiative 20

VERISIUM AUTOTRIAGE DEMO

Verisium SemanticDiff

© Accellera Systems Initiative 21

SemanticDiff – Meaningful Diff Analysis

• An advanced AI Driven RTL design comparison tool

– Handles both DUT and TB

• Compares two snapshot versions of the same RTL design

– Determines the meaningful semantic differences between them

• Generates diff metrics for the analysis

– CSV and summary log, useful for postprocessing

– Module and design-hierarchy metrics

• Analysis completes very fast

– in 30% of the time it takes to compile + elaborate entire design

© Accellera Systems Initiative 22

Identify and rank semantic changes between two RTL versions

Ignore harmless changes

Rank “complexity” of genuine logic changes

SemanticDiff – Meaningful Diff Analysis

Xcelium
Snapshot

Rev1

Xcelium
Snapshot

Rev2

Xcelium Snapshot Read

Module/Entity Level File/Line Level Signal Level

Semantic Comparator

Smart Analysis

Semantic Diff

Output Report(s)

module cg (d, clk);

 input d, clk;

 reg orig;

 reg clone;

 reg g_latch;

 wire w = orig ^ d;

 wire gclk = clk & g_latch;

 always @(clk or w)

 if (~clk) g_latch <= w;

 always @(posedge gclk) clone <= d;

 always @(posedge clone) orig <= d;

 fd : assert property (

 @(posedge clk) orig == clone

);

Endmodule

module cg (d, clk);

 input d, clk;

 reg orig, clone, g_latch;

// Comments …

 wire w = orig ^ d;

 wire gclk = clk & g_latch;

 always @(clk or w)

 if (clk) g_latch <= w;

 always @(posedge gclk)

clone <= d;

 always @(posedge clone)

orig <= d;

 fd : assert property (

 @(posedge clk) orig == clone

);

endmodule

?

Launching SemanticDiff

verisium –semanticdiff

–xmlibdirpath_golden <path of reference snapshot>

-xmlibdirpath_new <path of the new snapshot>

<other user configurable options>

Verisium SemanticDiff Results

© Accellera Systems Initiative 25

The summary log shows how many
entities we analyzed and where we
found semantic differences

The detailed csv report gives
individual statistics about each file
where semantic differences were
found

Verisium SemanticDiff Performance
DESIGN Compile + Elaboration Time(sec) SemanticDiff Analysis Time(sec)

Design 1 921 220

Design 2 2596 716

Design 3 8558 2901

Design 4 14480 3120

© Accellera Systems Initiative 26

o The numbers here represent SemanticDiff Analysis on the entire snapshot

o Semanticdiff completes in 20-30% of compile+elab time.

o User has flexibility to run SemanticDiff on portion of the snapshot for faster turnaround time

© Accellera Systems Initiative 27

VERISIUM SEMANTICDIFF DEMO

Verisium PinDown

© Accellera Systems Initiative 28

0.05 0.14 0.1 0.1 0.02 0.25 0.07 0.83 0.1 0.01 0.01 0.13 0.38 0.01 0.22

PinDown - ML Based

Search

“Baseline" revision “Failing" revision

Revision# 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

ML Risk Prediction is based on:
• code complexity, commit info, design/tb

structure, revision history
100+ features implemented

Risk Prediction

Revert “bad” changes on latest version using patching technology

One single recompile/rerun of the failing test to validate it is passing without bad commit

Revision# 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

Revert “bad” changes on latest version using patching technology

PinDown: Validation to ensure correct bug

reports

“Baseline/passing" revision “Failing" revision

Revision# 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

Revision# 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

'Tipping Point’ Found

PinDown2

()

Bug fixed, but revision not tested

Actual, still open bug

Running PinDown

verisium –pindown

-config <path to pindown_config file >

--session_name <session to run PinDown analysis>

--vmanager_server <server on which PinDown should run analysis>

o Config file configures the PinDown Debug Analysis

o Defines debug options for PinDown

o Provides version control information

o Defines how long should PinDown Debug run

Revision Control and Debug Options

© Accellera Systems Initiative 32

Runs that PinDown can run in parallel

Revision Control information that
PinDown uses for debug.

PinDown Bug Report in Demo
Open workdir/latest_debug/pindownlogs/text/pindown_debug.html and go to ”Reports” section:

Commit message

for bad commit

Error message

Debug result accepted:

Bug ID: C1

Run ID: 1067

Debug Status: pilot_validated_bug

Committer: daniel

Generating waveminer results for bug: C1 (new bug)

waveminer results for bug C1 (new bug) are ready under run

directory:

vmrunner_pindownprerunscript/manual_checkout/apb_uart/apb_

uart/my_sessions/uart_ctrl/uvm_regression_25_10_22_14_06_2

9/chain_0/uart_tests/run_3/debug

Debug is completed.

pindown.log:

waveminer_top_signals:

1. uart_ctrl_top.uart_dut.regs.lcr

2. uart_ctrl_top.uart_dut.regs.block_value

3. uart_ctrl_top.uart_dut.regs.counter_t

4. uart_ctrl_top.uart_dut.regs.block_cnt

For the WaveMiner analysis of signals

go the folder shown at the end of

pindown.log. Here you find 2 important

files: waveminer_top_signals and

show_waveminer

show_waveminer:

Run this script to show the wave forms in WaveMiner

Ranked most

problematic signal

Remember the path to the PinDown logs:

workdir/latest_debug/pindownlogs/text

The path is always the same
All PinDown logs are here
It’s where you go to see what Pindown did

51%

1 iteration
(rank 1-3)

Customer Use-Case: Bug Report in 1 iteration in 51% of
cases

Bug prediction ranking for 53 validated
bugs June 5th to Sep 27th 2020

Rank no 1 (the ideal) is the most
common ranking

Model: trained on real bugs

PinDown Efficiency

• Due to ML-based Bug Prediction

• Saves slots on the farm

• Bug reports issued faster

PinDown Accuracy

• Due to Validation

• Each Bug Prediction is Validated

• If you want to automate blame, you

better be right

2-7 iterations
(rank 4 or more)

Customer Use-Case:

Bugs Fixed 4x Faster, 5x Less Discussion

There was more discussion about who
and what needs to be fixed when there
was just an error message vs. a
PinDown bug report

Measured Bug Fix Time

- from the time the bug was reported

- to the time the fix was submitted to

the revision control system

Project Details

- ASIC IP Project (Microprocessor)

- About 40 people (ASIC designers plus

DV engineers)

- Multi-site

- Measured over 3 months

23h

5.7h

2.6 emails

0.5 emails

Customer Use-Case: 11% reduced project time

Time saving

per bug

(17.3h/bug)

Time to correct bugs 75% shorter
(4x) with PinDown...

x

Number of

bugs

(39/quarter)

11% shorter total project lead time!

• Faster time-to-market

• Major cost savings: 4.4 engineer years

(40 engineers in project)

...has a direct impact on the total project leadtime

Degree of

blocking

(35%)

x

23h

5.7h

measured measured estimated

Measured project time: 3 months = 2184 hours

Freed up Verification Lead

• PinDown took over the job of chasing

down engineers to fix issues

• Half of the verification lead’s time was

saved (0.5 engineer years)

+

© Accellera Systems Initiative 37

Verisium PinDown Demo

Verisium Waveminer

© Accellera Systems Initiative 38

AIP

BIP

CIP

SoC

WaveMiner simplifies Regression Debug

SoC
C

BA

Verisium App

Signature mining from (multiple)

passing and failing waveforms

Rank failure root cause

candidate signals / timepoints

Minimizes the debug effort of

complex regression failures

Verisium Debug
Automatic

invocation

Several IP level changes in between the passing and the failing SoC regression runs

R
elease stream

s

Launching Verisium WaveMiner

verisium –waveminer

-wavepath_new <path to the new waveform>

-xmlibdirpath_new <path to the new snapshot>

-wavepath_golden <path to reference waveform>

-xmlibdirpath_golden <path to the reference snapshot>

Verisium WaveMiner Report

© Accellera Systems Initiative 41

WaveMiner generates ranked list of signals based on
waveform analysis and ranks the timepoints also to
help narrow down the debug and opens Verisium
Debug Window for further debugging

Verisium WaveMiner Demo

© Accellera Systems Initiative 42

Verisium WaveMiner Performance
Waveform DB’s Size WaveMiner Analysis Time

Waveform DB 1 Golden – 1GB, Diff – 850MB ~ 20 min

Waveform DB 2 Golden – 26 GB , Diff – 25GB ~ 35 min

Waveform DB 3 Golden - 46GB, Diff - 43GB ~ 15 min

Waveform DB 4 Golden – 648MB, Diff – 702MB ~57 min

© Accellera Systems Initiative 43

The analysis time taken for generating results is dependent on multiple factors like size of the waveform,

number of signals to analyze and total activity happening on each signal of interest.

Verisium Platform 1.0 in Action

Design

Repository

Verisium
PinDown

Design
Version N

XceliumXceliumXceliumXcelium™

Simulation

Verisium
AutoTriage

Verisium
SemanticDiff

Verisium
WaveMiner

Automatically groups tests failing due to

the same underlying bug

Automatically identifies code differences

between design versions N and N+1

Analyzes waveforms and automatically

identifies root cause of bug (signals + time)

Design
Version N+1

Xcelium
XceliumXceliumXcelium

Simulation

Verisium
Debug

AI-driven submission of

tests to compute farm

Interactive side-by-side display of passing vs

failing tests with bug root cause highlighted

V
e

ri
si

u
m

 M
an

ag
e

r

Cadence

JedAI
Platform*

* Cadence® Joint Enterprise Data and AI (JedAI) Platform

What

Challenges & related asks for failures debug

What
Solutions to failures debug related problems

How
Run apps to faster failures debug

What
Productivity gains for failures debug time

Agenda

Summary - SoC Debug with Verisium Platform

Potential for 10X improvement in debug productivityPotential for 10X improvement in debug productivity

Bug Fix

Which failures are most critical? What is the root cause?Where is the bug? Bug Fix

Manual Flow

Verisium™ AI-Driven Flow

Samsung Collaboration

© Accellera Systems Initiative 47

© 2021 Cadence Design Systems, Inc. Cadence confidential. Internal use only.48

Verisium

PinDown

VERISIUM APPS Collaboration with Samsung

Design
Version N

Xcelium
Xcelium
XceliumXcelium™

Simulation

Design

Repository

Verisium

AutoTriage

Verisium

SemanticDiff

Verisium

WaveMiner

Used in SoC and IP Regressions

Ongoing setup at SoC level

Used by different teams

Design
Version N+1

Xcelium
Xcelium
XceliumXcelium

Simulation
Verisium

Debug

AI-driven submission of

tests to compute farm

Debugging and Analysis

V
e
ri

s
iu

m
 M

a
n

a
g

e
r

Cadence

JedAI
Platform*

* Cadence® Joint Enterprise Data and AI (JedAI) Platform

© 2021 Cadence Design Systems, Inc. Cadence confidential. Internal use only.49

• To validate the tool – Mid Level Complexity IP(~100k gate count)

• Results

Verisium Results

Complexity of Failure
Debug time without

tool(Minutes)

Debug time with

tool(Minutes)
Debug gain

Less 30 20 1.5X

Less 40 25 1.6X

Moderate 60 40 1.5X

Moderate 80 45 1.7X

Hard 130 70 1.85X

Hard 135 80 1.7X

Q &A

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Improving Debug Productivity using latest AI & ML Techniques
	Slide 6: Agenda
	Slide 7: Agenda

	Verification Challenge – SoC Debug
	Slide 8: Verification Challenge – SoC Debug

	Verification Challenge – SoC Debug
	Slide 9: Verification Challenge – SoC Debug
	Slide 10: Agenda
	Slide 11
	Slide 12: Agenda

	Summary Section
	Slide 13: Verisium AutoTriage

	Vanilla Failure Triage Flow
	Slide 14: Vanilla Failure Triage Flow

	AutoTriage – Automated ML Bucketing of Regression Failures
	Slide 15: AutoTriage – Automated ML Bucketing of Regression Failures

	Configuring Verisium Manager for Failure Cluster
	Slide 16: Configuring Verisium Manager for AutoTriage

	Run Attributes used in learning
	Slide 17: Run Attributes used in learning

	Section 5
	Slide 18: Enhancements to Create New Clusters Unsupervised ML
	Slide 19: Enhancements to Control Automatically Proposed Existing Clusters, Supervised ML
	Slide 20

	SemanticDiff – Meaningful Diff Analysis
	Slide 21: Verisium SemanticDiff
	Slide 22: SemanticDiff – Meaningful Diff Analysis

	SemanticDiff – Meaningful Diff Analysis
	Slide 23: SemanticDiff – Meaningful Diff Analysis

	Launching SemanticDiff
	Slide 24: Launching SemanticDiff

	Verisium SemanticDiff Results
	Slide 25: Verisium SemanticDiff Results

	Verisium SemanticDiff Performance
	Slide 26: Verisium SemanticDiff Performance
	Slide 27

	Summary Section
	Slide 28: Verisium PinDown
	Slide 29: PinDown - ML Based Search
	Slide 30: PinDown: Validation to ensure correct bug reports

	Running PinDown
	Slide 31: Running PinDown

	Revision Control and Debug Options
	Slide 32: Revision Control and Debug Options

	PinDown Bug Report in Demo
	Slide 33: PinDown Bug Report in Demo

	Customer Use-Case: Bug Report in 1 iteration in 51% of cases
	Slide 34: Customer Use-Case: Bug Report in 1 iteration in 51% of cases

	Section 8
	Slide 35

	Customer Use-Case: 11% reduced project time
	Slide 36: Customer Use-Case: 11% reduced project time
	Slide 37: Verisium PinDown Demo
	Slide 38: Verisium Waveminer

	WaveMiner simplifies Regression Debug
	Slide 39: WaveMiner simplifies Regression Debug

	Launching Verisium WaveMiner
	Slide 40: Launching Verisium WaveMiner

	Verisium WaveMiner Report
	Slide 41: Verisium WaveMiner Report

	Verisium WaveMiner Demo
	Slide 42: Verisium WaveMiner Demo

	Verisium WaveMiner Performance
	Slide 43: Verisium WaveMiner Performance
	Slide 44: Verisium Platform 1.0 in Action
	Slide 45: Agenda

	Summary - SoC Debug with Verisium Platform
	Slide 46: Summary - SoC Debug with Verisium Platform

	Summary Section
	Slide 47: Samsung Collaboration

	Verisium Results
	Slide 48: VERISIUM APPS Collaboration with Samsung

	Verisium Results
	Slide 49: Verisium Results
	Slide 50: Q &A

