

Revolutionizing Proof Convergence for Algorithmic Designs: Combining Multiple Formal
Verification Tools

Disha Puri (disha.puri@intel.com), Suraj Kamble (suraj.jyotiram.kamble@intel.com), Rajib Lochan Jana (rajib.lochan.jana@intel.com)

Intel Corporation

Abstract-Arithmetic designs play a key role in GPU architecture. As the market demand for power/performance

increases, so does the onus on architects to come up with optimized and understandably more complex algorithmic designs.
Formal Verification particularly C vs RTL formal methodology has been recently accepted as an industry standard to
verify such data-centric designs by formal experts. Success of Datapath verification tools in recent times have encouraged

multiple vendors to invest in this area. However, even though all vendor tools are investing heavily in their R&D, it is
reasonable to say that we cannot expect one single tool to achieve complete convergence every time on all types of newly
architected complex data-oriented designs.

In this paper, we showcase that instead of trying deep convergence techniques with one tool alone over multiple months,

it might be more lucrative in these competitive times to adopt a tool agnostic flow to validate an algorithm. This involves

splitting an algorithm into multiple disjoint blocks and proving them in tools which work best on those individual blocks.

We then show how to seamlessly stitch the algorithm back together to get complete convergence. We use single/double

precision fused multiply-add (FMA) as case study for this paper.

I. INTRODUCTION

C vs RTL and RTL vs RTL (illustrated in Fig. 1) are very

common Datapath Formal Verification methodologies that we have

been leveraging at Intel from many years with successful signoff on

various generation projects. As designs are becoming more and

more complex, we have been collaborating with multiple vendors

on tool strategies, improvements, and enhancements to get support

on complex Datapath designs such as compression, fused multiply

add, hashing etc. The reason that we need to be forthcoming in

solving the problem of convergence for Datapath designs is that in

Datapath, we cannot afford even a single bug miss. Even if we run

the design for >48 hours on a tool without any failure, the

unconverged status still implies that there is a possibility of

uncovering a deep-rooted corner case bug later in the design cycle

or in silicon which can be catastrophic. This problem becomes

more prevalent when we are dealing with floating point arithmetic

designs such as Fused Multiply Add where we must revert to various convergence techniques like case splitting,

assume guarantee, cut points etc. due to huge state space as well as internal complexity of the algorithm. In this paper,

we are talking about those designs where we are applying numerous convergence techniques but still, we are not able

to get a convergence. With this scenario, the next step to getting a convergence is to reduce the abstraction difference

by creating multiple intermediate models so that we can prove them step by step and get complete convergence. These

kinds of activities are usually taken by Datapath formal engineers towards the end of the design cycle once the design

becomes stable, because the convergence efforts will be useless if the design changes in the meantime due to various

optimizations including gate count reduction. However, applying formal verification convergence activity at the end

of design cycle can lead to a major effect on overall product timelines, as missing the corner case deep bugs will not

be unearthed till end of design cycle.

In this work, we are leveraging the expertise and engines of different Datapath tools to come up with a strategy that

can do a huge left shift in convergence of the design. With this approach, we have not only converged on 7 complex

Datapath designs including SPFMA and DPFMA but also unearthed 3 deep corner case bugs very early in the design

cycle. The message here is not to compare and contrast the various Datapath tools, but to emphasize that we can create

an environment where we can complement these tools and come up with strategies where we can adopt tool agnostic

flow for every complex design. In this paper, we have showcased how we have done it successfully on FMA Unit and

we have a plan to adopt this for every other project at Intel.

Fig.1 Datapath Formal Equivalence

Check

II. RELATED WORK

Formal verification is becoming more and more popular in industry [1] especially with the increase in scalability which formal

verification tools can now support. With the development of formal equivalence checking techniques in recent years [2], it is now

possible to check the functional equivalence at higher abstraction levels, such as C to RTL, RTL to RTL, and C to C, both on

combinational and sequential logics. Commercial EDA tools are available in applications such as sequential equivalence checking

and transaction-level equivalence checking [2] [3][4]. There are various papers which talk about C vs RTL equivalence

verification of complex algorithms such as ALU floating point operations [5-6]. A collective study of these papers

can help a user understand various convergence techniques in Datapath domain. Full proof of complex designs often

leverages deep understanding of internals of designs to manually reduce abstraction difference. Needless to say, it

requires design expertise and a lot of effort which spans over multiple months in many cases. In this paper, we leverage

the efficiency of different tools to solve different sub-problems and provide End to end solution by stitching the proofs

seamlessly.

III. APPLICATION

3.1. Design Overview:

 The Fused Multiply Add (FMA) Unit performs A * B + C

operation, depicted in Fig. 2, where A, B and C can be single or double

precision floating-point numbers. The mantissa of A and B are

multiplied and stores the product P in carry save format. At the same

time, the mantissa of C is aligned with the product of A and B

according to computed value of Exponent (A) + Exponent (B) -

Exponent (C). The product P and mantissa of C are added in form of

two vectors using carry save adder. The two vectors are added and

complemented if result is negative. Otherwise, the vectors are sent to

the leading zero anticipator to perform normalization on final mantissa

along with rounding. The processed mantissa, sign, and exponent

forms the result. The FMA performs not only multiply-add (A * B +

C) but also may emulate a floating-point adder (A + C) with B equal

to 1.0 and floating-point multiplier (A * B) with C equal to 0.0.

3.2. Problem Statement:

In this work, our intention is to prove functional correctness of a

highly optimized FMA unit of Intel graphics processor design for

single/double precision floating point numbers. At the time the work

has been done, no single state of art industrial tool could prove the

complete unit using C vs RTL equivalence checking. The formal verification complexity comes from the complex

algorithms like multiplication block and renormalization style with different rounding modes. We are not claiming

that an FV expert with deep knowledge of design/tool and ample time at their disposal to write multiple properties at

internals of the design would never be able to prove this design in a single tool. However, a practical challenge is to

find a methodology that can formally prove the correctness of FMA unit in reasonable time frame with minimal

manual intervention.

3.3. Methodology Overview:

We first run E2E flow on all tools available to us for C vs RTL to ensure that no one tool is enough to provide

complete convergence with standard convergence techniques. We have then divided our tool agnostic flow, depicted

in Fig. 3, into following 4 intuitive.

Fig.2 FMA Design

3.3.1. Complexity Analysis:

The first step is to understand the structure of the design and determine the portion of logic/modules that are most likely to introduce

the formal complexity. In this case study, verification of FMA operation, we identify the multiplication block and renormalization

logic as a main source of formal complexity based on prior knowledge and tool generated complexity reports.

3.3.2. Partitioning Into Sub-Blocks:

The sub-blocks identified as source of complexity are neatly

partitioned and assertions and assumptions are written surrounding

it to isolate them from rest of the design. For example, in this case

study, Fig.3 we have isolated the multiplier block in both C and

RTL by proving that output of multiplier block is equivalent to

multiplication of inputs for C as well as for RTL. This technique

allows us to Blackbox the multiplier from end-to-end proof. This is

a standard convergence methodology adopted by many verification

experts to apply different kinds of abstraction techniques, but we

have leveraged it to use tool agnostic strategy in next step.

3.3.3. Pick the Best Tool for Each Sub-Block:

Based on previous analysis of FV runs (analysis of unconverging

proofs), we have isolated the sub blocks which introduces complexity for FV proofs, we can run proofs on multiple

tools and select one which works best for corresponding logic. To save time and engineering efforts we modelled the

design constraints as System Verilog Assertions (SVA) that are portable in most of the commercial formal tools and

help to enable tool agnostic flow, only input mapping and internal checkers are written in tool specific language, refer

Fig.2. For the sake of using FMA Unit, we proved internal logic in multiple tools (refer Table 3). The selection of tool

can also be dependent on the prior knowledge of tool efficiency. For FMA case study, combination of two tools

worked best than executing end 2 end proof in single tool.

Fig.3 Tool Agnostic Flow

Fig.4 Methodology Overview (C vs RTL)

3.3.4. Stitching the E2E Proof:

The proved assertions on different internal blocks of the design using multiple tools are used as assumptions in our

End-to-End (E2E) setup that is used to prove the correctness of functional behavior of the complete FMA unit. We

used case-split and assume guarantee techniques to assist final proof for convergence and finally, prove the correctness

of function behavior of FMA unit for SP and DP floating point numbers within 15 hours and 25 hours respectively.

IV. RESULT

We exploit the different solvers facilitated by multiple tools to prove the helper assertions as well as end 2 end proof

on our FV setup. We reported >10 bugs including some corner case scenarios on FMA unit for SP and DP floating

point numbers. 2 of them are explained below.

A 0x0B381E20 3.5459775E-32

B 0x2DF2067E 2.7515098E-11

C 0x808002B8 -1.1755919E-38

Expected output 0x80800000 -1.1754944E-38

Impl output 0x0 0.0

Table 1. Corner case bug-1 (SPFMA)

This is one of the corner cases in SPFMA where RTL did not correctly determine whether to flush the result to zero

or keep it as a minimum normal number when the mantissa after renormalization before rounding is negative (sign =

1), leading bit of 1, and all remaining 23 mantissa bits are 0s. This case can occur only once when sign bit is 1, mantissa

MSB 1 and all remaining bits 0 (1 in 2^32 (billion) combinations) of an intermediate signal.

A 0xA3E59B1BB76CF3A6 -9.289325019823287E-136

B 0x1F39C4CE02FEB9A5 2.932621087873144E-158

C 0x0331660EC998B4B7 2.724207044524136E-293

Expected output 0x8010000000000000 -2.2250738585072014E-308

Impl output 0x8000000000000000 -0.0
Table 2. Corner case bug-2 (DPFMA)

This is one of the corner cases reported after application of convergence techniques on DPFMA where the result

after renormalization and rounding becomes minimum normal number but due to the wrong mantissa shift value

calculation RTL determining it as negative zero.

For complete convergence on C vs RTL setup where we are verifying RTL (Gen1) using golden (softfloat) C model

(Normal/Denormal floating point inputs for SPFMA and Normal floating-point inputs for DPFMA) we have used

convergence techniques along with tool agnostic flow where best of multiple tools are explored to prove and get

complete confidence on FMA design with less engineering efforts and minimal manual interventions. Similarly, for

next Gen RTL we have enabled RTL vs RTL flow and proved (E2E algorithm) SPFMA and DPFMA with same

approach. All proofs are run at least for 48 hours before application of any convergence technique.

 Gen 1(C vs RTL)

 SPFMA DPFMA

E2E setup Unconverged Unconverged

Standard case split Unconverged Unconverged

Tool Agnostic flow Proved (~15h) Proved (~25h)

Table 3. C vs RTL Gen1 Results

Table 4. RTL vs RTL next Gen Results

V. CONCLUSION

This paper shows how the benefit of tool agnostic flow can be leveraged to achieve faster convergence of proof on

complex arithmetic-centric algorithm like FMA units. We do understand that as tools would be exposed to more

structures, they may add abstraction support so that this case study can be done in a single tool itself. However, as

new algorithms are being architected every day to bring an edge to semiconductor industry, we can say that there

would be multiple designs which would fall in same category. Our approach suggests using a tool agnostic flow to

leverage the benefits of multiple tools at once and contradicts the traditional mindset of going deep in the design with

single tool and doing extensive manual interventions to get full proofs where convincing complete solution itself is a

complex task.

VI. ACKNOWLEDGMENT

We would like to express our sincere gratitude to the RTL designers, Hurd, Kevin, Wu, shifu and Nakagawa, Takashi, for their

invaluable contributions in the design discussions to deep dive into the design for resolving the convergence issues as well as

resolving bugs and providing fixes as early as possible. We would also like to acknowledge the support and understanding of

Vichal from the Graphics management team for understanding the algorithm's complexity and bandwidth requirements and thus

helped in successfully carrying out the activity. Furthermore, we extend our thanks to Kiran, the FVCTO Manager, for providing

continuous guidance throughout the project ensuring the project's success.

REFERENCES
[1] H. Foster, Trends in Functional Verification-A 2014 Industry Study, Design Automatic Conference (DAC) 2015.

[2] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, Solver Technology for System-level to RTL Equivalence Checking, Proc. Design Automation

and Test Conference of Europe (DATE) 2009.
[3] V. M. A. KiranKumar, A. Gupta and R. Ghughal, "Symbolic trajectory evaluation: The primary validation vehicle for next generation Intel

processor graphics fpu", Formal Methods in Computer-Aided Design (FMCAD) 2012, pp. 149-156, Oct 2012.

[4] SLEC, https://www.mentor.com/products/fv/questa-slec.
[5] T. W. Pouarz, and V. Agrawal, Efficient and Exhaustive Floating-Point Verification Using Sequential Equivalence Checking, Design and

Verification Conference and Exhibition (DVCON), 2017.

[6] J. Wang and J. Zhu, conquer difficult C-RTL formal verification problems using recursive compositional reasoning, design/IP track, Design
Automation Conference (DAC) 2017

 Next Gen (RTL vs RTL)

 SPFMA DPFMA

E2E setup Unconverged Proved (~5h)

Standard case split Unconverged NA

Tool Agnostic flow Proved (~3h) NA

