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Abstract-Arithmetic designs play a key role in GPU architecture. As the market demand for power/performance 

increases, so does the onus on architects to come up with optimized and understandably more complex algorithmic designs. 
Formal Verification particularly C vs RTL formal methodology has been recently accepted as an industry standard to 
verify such data-centric designs by formal experts.  Success of Datapath verification tools in recent times have encouraged 

multiple vendors to invest in this area. However, even though all vendor tools are investing heavily in their R&D, it is 
reasonable to say that we cannot expect one single tool to achieve complete convergence every time on all types of newly 
architected complex data-oriented designs. 

In this paper, we showcase that instead of trying deep convergence techniques with one tool alone over multiple months, 

it might be more lucrative in these competitive times to adopt a tool agnostic flow to validate an algorithm. This involves 

splitting an algorithm into multiple disjoint blocks and proving them in tools which work best on those individual blocks. 

We then show how to seamlessly stitch the algorithm back together to get complete convergence. We use single/double 

precision fused multiply-add (FMA) as case study for this paper. 

 

I. INTRODUCTION 

C vs RTL and RTL vs RTL (illustrated in Fig. 1) are very 

common Datapath Formal Verification methodologies that we have 

been leveraging at Intel from many years with successful signoff on 

various generation projects. As designs are becoming more and 

more complex, we have been collaborating with multiple vendors 

on tool strategies, improvements, and enhancements to get support 

on complex Datapath designs such as compression, fused multiply 

add, hashing etc. The reason that we need to be forthcoming in 

solving the problem of convergence for Datapath designs is that in 

Datapath, we cannot afford even a single bug miss. Even if we run 

the design for >48 hours on a tool without any failure, the 

unconverged status still implies that there is a possibility of 

uncovering a deep-rooted corner case bug later in the design cycle 

or in silicon which can be catastrophic. This problem becomes  

more prevalent when we are dealing with floating point arithmetic  

designs such as Fused Multiply Add where we must revert to various convergence techniques like case splitting, 

assume guarantee, cut points etc. due to huge state space as well as internal complexity of the algorithm. In this paper, 

we are talking about those designs where we are applying numerous convergence techniques but still, we are not able 

to get a convergence. With this scenario, the next step to getting a convergence is to reduce the abstraction difference 

by creating multiple intermediate models so that we can prove them step by step and get complete convergence. These 

kinds of activities are usually taken by Datapath formal engineers towards the end of the design cycle once the design 

becomes stable, because the convergence efforts will be useless if the design changes in the meantime due to various 

optimizations including gate count reduction. However, applying formal verification convergence activity at the end 

of design cycle can lead to a major effect on overall product timelines, as missing the corner case deep bugs will not 

be unearthed till end of design cycle. 

In this work, we are leveraging the expertise and engines of different Datapath tools to come up with a strategy that 

can do a huge left shift in convergence of the design. With this approach, we have not only converged on 7 complex 

Datapath designs including SPFMA and DPFMA but also unearthed 3 deep corner case bugs very early in the design 

cycle. The message here is not to compare and contrast the various Datapath tools, but to emphasize that we can create 

an environment where we can complement these tools and come up with strategies where we can adopt tool agnostic 

flow for every complex design. In this paper, we have showcased how we have done it successfully on FMA Unit and 

we have a plan to adopt this for every other project at Intel. 

Fig.1 Datapath Formal Equivalence 
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II.   RELATED WORK 

Formal verification is becoming more and more popular in industry [1] especially with the increase in scalability which formal 

verification tools can now support. With the development of formal equivalence checking techniques in recent years [2], it is now 

possible to check the functional equivalence at higher abstraction levels, such as C to RTL, RTL to RTL, and C to C, both on 

combinational and sequential logics. Commercial EDA tools are available in applications such as sequential equivalence checking 

and transaction-level equivalence checking [2] [3][4]. There are various papers which talk about C vs RTL equivalence 

verification of complex algorithms such as ALU floating point operations [5-6]. A collective study of these papers 

can help a user understand various convergence techniques in Datapath domain. Full proof of complex designs often 

leverages deep understanding of internals of designs to manually reduce abstraction difference. Needless to say, it 

requires design expertise and a lot of effort which spans over multiple months in many cases. In this paper, we leverage 

the efficiency of different tools to solve different sub-problems and provide End to end solution by stitching the proofs 

seamlessly.  

 

III.   APPLICATION 

3.1. Design Overview:  

 

       The Fused Multiply Add (FMA) Unit performs A * B + C 

operation, depicted in Fig. 2, where A, B and C can be single or double 

precision floating-point numbers. The mantissa of A and B are 

multiplied and stores the product P in carry save format. At the same 

time, the mantissa of C is aligned with the product of A and B 

according to computed value of Exponent (A) + Exponent (B) - 

Exponent (C). The product P and mantissa of C are added in form of 

two vectors using carry save adder. The two vectors are added and 

complemented if result is negative. Otherwise, the vectors are sent to 

the leading zero anticipator to perform normalization on final mantissa 

along with rounding. The processed mantissa, sign, and exponent 

forms the result. The FMA performs not only multiply-add (A * B + 

C) but also may emulate a floating-point adder (A + C) with B equal 

to 1.0 and floating-point multiplier (A * B) with C equal to 0.0. 

  

3.2. Problem Statement: 

In this work, our intention is to prove functional correctness of a 

highly optimized FMA unit of Intel graphics processor design for 

single/double precision floating point numbers. At the time the work  

has been done, no single state of art industrial tool could prove the  

complete unit using C vs RTL equivalence checking. The formal verification complexity comes from the complex 

algorithms like multiplication block and renormalization style with different rounding modes. We are not claiming 

that an FV expert with deep knowledge of design/tool and ample time at their disposal to write multiple properties at 

internals of the design would never be able to prove this design in a single tool. However, a practical challenge is to 

find a methodology that can formally prove the correctness of FMA unit in reasonable time frame with minimal 

manual intervention. 

 

3.3. Methodology Overview: 

 

We first run E2E flow on all tools available to us for C vs RTL to ensure that no one tool is enough to provide 

complete convergence with standard convergence techniques. We have then divided our tool agnostic flow, depicted 

in Fig. 3, into following 4 intuitive. 

 

 

Fig.2 FMA Design 



 
 

 

3.3.1. Complexity Analysis: 

The first step is to understand the structure of the design and determine the portion of logic/modules that are most likely to introduce 

the formal complexity. In this case study, verification of FMA operation, we identify the multiplication block and renormalization 

logic as a main source of formal complexity based on prior knowledge and tool generated complexity reports. 

 

3.3.2. Partitioning Into Sub-Blocks: 

The sub-blocks identified as source of complexity are neatly 

partitioned and assertions and assumptions are written surrounding 

it to isolate them from rest of the design. For example, in this case 

study, Fig.3 we have isolated the multiplier block in both C and 

RTL by proving that output of multiplier block is equivalent to 

multiplication of inputs for C as well as for RTL. This technique 

allows us to Blackbox the multiplier from end-to-end proof. This is 

a standard convergence methodology adopted by many verification 

experts to apply different kinds of abstraction techniques, but we 

have leveraged it to use tool agnostic strategy in next step. 

 

3.3.3. Pick the Best Tool for Each Sub-Block: 

 

Based on previous analysis of FV runs (analysis of unconverging 

proofs), we have isolated the sub blocks which introduces complexity for FV proofs, we can run proofs on multiple 

tools and select one which works best for corresponding logic. To save time and engineering efforts we modelled the 

design constraints as System Verilog Assertions (SVA) that are portable in most of the commercial formal tools and 

help to enable tool agnostic flow, only input mapping and internal checkers are written in tool specific language, refer 

Fig.2. For the sake of using FMA Unit, we proved internal logic in multiple tools (refer Table 3). The selection of tool 

can also be dependent on the prior knowledge of tool efficiency. For FMA case study, combination of two tools 

worked best than executing end 2 end proof in single tool. 

 

 

Fig.3 Tool Agnostic Flow 

Fig.4 Methodology Overview (C vs RTL) 



 
 

 

3.3.4. Stitching the E2E Proof:   

The proved assertions on different internal blocks of the design using multiple tools are used as assumptions in our 

End-to-End (E2E) setup that is used to prove the correctness of functional behavior of the complete FMA unit. We 

used case-split and assume guarantee techniques to assist final proof for convergence and finally, prove the correctness 

of function behavior of FMA unit for SP and DP floating point numbers within 15 hours and 25 hours respectively. 

 

IV.   RESULT 

We exploit the different solvers facilitated by multiple tools to prove the helper assertions as well as end 2 end proof 

on our FV setup. We reported >10 bugs including some corner case scenarios on FMA unit for SP and DP floating 

point numbers. 2 of them are explained below. 

 

A 0x0B381E20 3.5459775E-32 

B 0x2DF2067E 2.7515098E-11 

C 0x808002B8 -1.1755919E-38 

Expected output 0x80800000 -1.1754944E-38 

Impl output 0x0 0.0 

Table 1. Corner case bug-1 (SPFMA) 

 

This is one of the corner cases in SPFMA where RTL did not correctly determine whether to flush the result to zero 

or keep it as a minimum normal number when the mantissa after renormalization before rounding is negative (sign = 

1), leading bit of 1, and all remaining 23 mantissa bits are 0s. This case can occur only once when sign bit is 1, mantissa 

MSB 1 and all remaining bits 0 (1 in 2^32 (billion) combinations) of an intermediate signal. 

 

A 0xA3E59B1BB76CF3A6 -9.289325019823287E-136 

B 0x1F39C4CE02FEB9A5 2.932621087873144E-158 

C 0x0331660EC998B4B7 2.724207044524136E-293 

Expected output 0x8010000000000000 -2.2250738585072014E-308 

Impl output 0x8000000000000000 -0.0 
Table 2. Corner case bug-2 (DPFMA) 

 

This is one of the corner cases reported after application of convergence techniques on DPFMA where the result 

after renormalization and rounding becomes minimum normal number but due to the wrong mantissa shift value 

calculation RTL determining it as negative zero. 

 

For complete convergence on C vs RTL setup where we are verifying RTL (Gen1) using golden (softfloat) C model 

(Normal/Denormal floating point inputs for SPFMA and Normal floating-point inputs for DPFMA) we have used 

convergence techniques along with tool agnostic flow where best of multiple tools are explored to prove and get 

complete confidence on FMA design with less engineering efforts and minimal manual interventions. Similarly, for 

next Gen RTL we have enabled RTL vs RTL flow and proved (E2E algorithm) SPFMA and DPFMA with same 

approach. All proofs are run at least for 48 hours before application of any convergence technique. 

 

 

 

 

 

 

 



 
 

  Gen 1(C vs RTL) 

 SPFMA DPFMA 

E2E setup Unconverged Unconverged 

Standard case split Unconverged Unconverged 

Tool Agnostic flow Proved (~15h) Proved (~25h) 

Table 3. C vs RTL Gen1 Results 

 

Table 4. RTL vs RTL next Gen Results 

 

V. CONCLUSION 

This paper shows how the benefit of tool agnostic flow can be leveraged to achieve faster convergence of proof on 

complex arithmetic-centric algorithm like FMA units. We do understand that as tools would be exposed to more 

structures, they may add abstraction support so that this case study can be done in a single tool itself.  However, as 

new algorithms are being architected every day to bring an edge to semiconductor industry, we can say that there 

would be multiple designs which would fall in same category. Our approach suggests using a tool agnostic flow to 

leverage the benefits of multiple tools at once and contradicts the traditional mindset of going deep in the design with 

single tool and doing extensive manual interventions to get full proofs where convincing complete solution itself is a 

complex task. 
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 Next Gen (RTL vs RTL) 

 SPFMA DPFMA 

E2E setup Unconverged Proved (~5h) 

Standard case split Unconverged NA 

Tool Agnostic flow Proved (~3h) NA 


