
1

Safety Analysis of Automated Driving Platforms
Using Digital Twin Simulation and Runtime Monitoring

Tasneem A. Awaad, Hanya A. Elged, Mohamed A. Abu-Bakr, Sama Y. Fathy, Sara H. Ahmed, M. Watheq El-
Kharashi, Ain-Shams University, Cairo, Egypt

Mohamed AbdElSalam, Siemens EDA, Cairo, Egypt

Abstract—The future of the automobile industry lies in Autonomous Vehicles (AV). Despite the efforts of major
companies to completely automate driving, ensuring AV’s safety remains challenging. The objective of our work is to
provide a compositional simulation interconnect framework to verify the safety of Autonomous Driving Platforms
(ADP). This objective is achieved by translating high-level safety requirements from ISO 26262 and ISO 21448 into
verifiable properties and building a comprehensive digital twin comprising of a Runtime Verification (RV) monitor for
property checking together with a car scenario simulator and ADP-under-test. We demonstrate our framework using
Apollo an open-source autonomous driving platform developed by Baidu as a case-study.

Keywords—Autonomous Driving Platforms, Digital Twin Simulation, formal analysis, runtime verification, Safety

I. INTRODUCTION

The quick evolution of autonomous vehicles, driven by the utilization of ADPs, particularly Advanced Driver
Assistance Systems (ADAS) software stacks, characterizes both current and future vehicles. Industry players such
as Waymo and Baidu have demonstrated the capability of fully automated driving, especially in specific geographic
locations and under restricted weather and illumination conditions. Simultaneously, major software companies like
Uber are actively engaged in developing their automated driving frameworks.

The urgency for safety requirements on both traditional software and Machine Learning (ML) components
within ADAS software stacks is increasingly evident to prevent catastrophic events. In the automotive domain,
safety requirement elicitation, also known as functional safety requirement analysis, is well-defined by two domain-
specific standards: ISO 26262, addressing safety requirements related to component malfunctions, and ISO 21448,
outlining limitations in achieving the intended functionality of ML-based components.

Our work aims to fulfil a crucial objective: safety analysis using comprehensive digital twin simulation. The
digital twin is built using a compositional simulation interconnect fabric to connect an ADP to a car scenario
Simulator and a Runtime Verification monitor. We also established a safety analysis method that translates high-
level ISO requirements into properties for verification during simulation, ensuring a proactive approach to safety
assessment. In essence, our work aligns with the industry’s pressing need for robust safety measures in the domain
of automated driving.

The paper is organized as follows. Section II gives some background on ISO Standards for safety and a brief
introduction to ADPs and tools we used to build our compositional simulation interconnect framework for safety
analysis. Section III discusses related work in the field of digital twin simulation and safety analysis of AVs. Section
IV presents the workflow of the proposed safety framework. Section V presents the results of our case-study with
conclusions and future work discussed in Section VI.

II. BACKGROUND

A. ISO 26262 & ISO 21448
ISO 26262 [1] is an international standard for the functional safety of electrical and electronic systems in road

vehicles. It is derived from the broader IEC 61508 standard and focuses specifically on automotive applications. It
utilizes Automotive Safety Integrity Levels (ASILs) to classify risks and determine the necessary safety measures
and its objective is to ensure that safety-related systems perform their intended functions correctly and at the right
time, minimizing the risk of accidents due to system failure.

2

On the other hand, ISO 21448 [2] provides a framework for identifying and mitigating risks associated with the
intended functionality of ML-based systems. This includes addressing potential hazards that could arise from the
limitations of ML algorithms. The standard also ensures that ML systems are designed and tested to meet safety
requirements, reducing the likelihood of accidents due to functional insufficiencies. By integrating these principles,
ISO 21448 helps ensure that ML-based automotive systems are safe, reliable, and capable of handling real-world
complexities.

B. Autonomous Driving Platforms
Autonomous driving refers to vehicles or systems that operate with minimal or no human intervention. ADPs

provide the infrastructure and technology enabling these vehicles to function. These ADPs integrate key
components such as localization, perception, prediction, planning, and control. Apollo [3] developed by Baidu, is
a leading open-source autonomous driving platform that we use in our case-study. The same can be applied to other
ADPs, e.g. Autoware built on the Robot Operating System (ROS), Nvidia Drive, Intel Mobileye, Tesla Autopilot
and Self Driving and Alphabet Waymo.

C. Sensor/Scenario Simulators
Sensor/Scenario Simulators provide a physics-based simulation platform to prototype, test, and validate

advanced driver assistance systems. Unlike real-world conditions, simulated conditions can be fully quantified and
controlled. In our case-study we used CARLA [4] open-source simulator, other simulators (open-source or
proprietary) can be used as well in our framework for safety. Usually, these simulators have Python or C++ interface
to connect with other tools for co-simulation.

D. Runtime Monitoring
DejaVu [5] is a monitoring tool designed in Scala, for the synthesis of runtime monitors for past-time first-order

LTL specifications. Starting with a user-defined formula/property, the tool parses the formula and generates an
abstract syntax tree, which is then traversed and translated into a monitor program. An event trace is fed into the
monitor that returns a verdict. It supports property checking against event streams using inputs event stream files
(CSV) and property files written in temporal logic (QTL) as shown in Fig. 1.

 Fig. 1. DejaVu runtime monitor.

Events Trace: The events trace file lists events in CSV format, each representing an occurrence as follows.
detect, o1, d1

Property Specification: Properties are written in first-order past-time linear temporal logic in QTL files (e.g.,
prop checkObstacleDistance :
Forall object . Forall d .
detect(object , d) −> d <= R # R is safe distance

TP-DejaVu enhanced DejaVu by managing two-phase Runtime Verification (RV). The first phase,
implemented in Scala, performs operational RV with arithmetic, string, and Boolean manipulations. The second
phase uses DejaVu for monitoring against first-order specifications.

Operational Specification: The operational specification file initializes variables and performs manipulations.
initiate
no_of_objects: int := 0
on detect(object: int, distance: int, timestamp: int)

3

no_of_objects: int := no_of_objects + 1
output objects_detected(no_of_objects, timestamp)

Declarative Specification: The declarative specification checks conditions against events output by the
operational file as follows.

prop objectsCheck :
forall no_of_objects . forall timestamp.
objects_detected(no_of_objects, timestamp) -> timestamp < 10 or

no_of_objects >= 5

E. Compositional Simulation Interconnect framework
To connect the ADP with the sensor/scenario simulator and Runtime monitor, a compositional simulation

interconnect framework is needed [6]. The framework enables interoperability between the various components of
a digital twin in general, synchronizes the network communication and enables data transfer via various protocols
(e.g. Ethernet). A client connection is feasible if it complies with the electronic design automation standards
supported: SystemC TLM 2.0, JModelica FMI 2.0, and Inter-Process communication. Such clients include
sensor/scenario simulators, mechatronic system simulators exported as co-simulation FMUs, dashboard SW, cloud
services and various computational and AI models at different abstraction levels, including C/C++, SystemC TLM,
Python, Robot Operating System, virtual platforms, HW emulation, FPGA prototyping platforms and embedded
system boards. The presumption is that each of these external simulators and foreign models runs in their own
processes and supports a third-party API. That application-specific API, as shown in Fig. 2, can be coupled with a
TLM fabric portal interface – we call this a Gateway – which gives access to the interconnect fabric backplane for
transactional communication purposes as well as mutual time advancement coordination. Each third-party
simulator or foreign model is assumed to be a client process that hangs on the common backplane interconnect.
The backplane is the keeper of time and is responsible for all time advance operations. To ease the automation of
the interconnect fabric. The framework automation flow [7] starts with a description of the clients’ connection using
a Digital Twin Description language and a builder that parses the description and generates the backplane server
and gateways needed to connect different digital twin components’ remote clients.

Fig. 2. Compositional simulation interconnect framework.

III. RELATED WORK

There have been contributions to Safety Runtime Verification in the process of running Temporal Logic
properties at runtime and other contributions in the field of AV safety in general. In [8], Donal Heffernan et al.
applied ISO 26262 to define functional safety requirements for an E/E gearbox controller. The functional safety
statements were mapped to Past-time Linear Temporal Logic (ptLTL) and verified using a runtime monitor.
Similarly, [9] also focused on applying safety runtime monitoring on a prototype of a vehicle built with Raspberry
Pi and Arduino Uno. There is also more work done on vehicles simulated on various platforms. For example, [10]
showed how to integrate the RTAMT [11] library, for runtime verification of Signal Temporal Logic (STL)
specifications, with the CARLA simulator. Also, in [12], Kosuke Watanabe et al. used STL and the Breach
monitoring tool to monitor and detect the undesirable interactions between the Cooperative Pile-up Mitigation

4

System (CPMS) and False-Start Prevention System (FPS) ADAS features on an AV modeled on Unity. Moreover,
some research contributed to making the safety verification process easier without doing the actual testing. For
example, in [13], Lina Marsso et al. focused on creating two formal models (written in the LOTOS New Technology
(LNT) language) for AVs that are more comprehensive than existing models and can be used to generate relevant
critical scenarios for testing AVs. In [14], Paul Rau et al. developed a structured framework for deriving scenarios
necessary for the Safety of the Intended Functionality (SOTIF) analysis and applied this framework to a highly
automated chauffeur system. Authors in [15] also presented a safety verification framework for AVs. The
framework is based on new longitudinal and lateral safe distances, lane changes, overtaking and how to face new
traffic participants. Finally, in [16], Chejian Xu et al. provided the first unified platform SafeBench to integrate
different types of safety-critical testing scenarios, scenario generation algorithms, and other variations such as
driving routes and environments.

Compared to related work, our methodology aims to build a comprehensive digital twin of ADPs with
sensor/scenario simulators and runtime monitoring tools with safety properties extracted from ISO standards 26262
and 21448. Furthermore, we rely on runtime monitors as an assertion-based verification tool for ADPs.

IV. WORK FLOW

In this section, we detail the user workflow for verifying the safety of ADPs and the associated safety properties
used as a proof of concept. As shown in Fig. 3, the workflow typically consists of four stages: setting up the chosen
ADP with the scenario simulator, translation of ISO high-level safety requirements into formal logic properties,
building a comprehensive digital twin framework, and finally checking any property violations using TP-DejaVu.

 Fig. 3. Safety analysis workflow of ADPs.

ADP failures could result from human errors while coding different components of the ADP software stack or
because of intrusions/attacks on any of these components. Our success criteria are to be able to catch these failures
using the runtime monitor based on a set of well-defined safety requirements during a comprehensive digital twin
simulation of the ADP. Since Apollo is a mature autonomous driving software, error injection is employed during
simulation to test for violations of the safety properties we are checking.

A. Safety Properties
In this section, we will discuss three crucial safety properties for autonomous vehicles: Safe Distance, Road

Speed Limit, and Collision Rate. The Safe Distance property will be explained in detail, highlighting the structure
of the operational and declarative files used for verification. For the Road Speed Limit and Collision Rate
properties, a brief overview will be provided, focusing on their importance and the key aspects of their
implementation without diving into the specifics of the operational and declarative files.

5

1) Safe Distance:

Reference ISO standard: ISO 26262. Component: Adaptive Cruise Control (ACC). Background: ACC
systems adjust the host vehicle’s velocity to maintain a safe distance from the preceding vehicle by controlling the
throttle and brake. A crucial part of ACC is the range sensor, which measures the distance to the preceding vehicle.
We used the CARLA obstacle detector to identify obstacles, including vehicles, within a specified range. The ACC
system activates when the preceding vehicle is too close (below a threshold r), adjusting the throttle and brake to
maintain a safe distance.

Safe Distance Calculation: The safe longitudinal distance (𝑑𝑠𝑎𝑓𝑒) between a host vehicle (ch) and a preceding
vehicle (cp) is determined using the following equation:

where: • 𝑣ℎ and 𝑣𝑝 are the velocities of the host and preceding vehicles, respectively.

• ρ is the response time (0.01 seconds in our simulation).

• 𝑎𝑎𝑐𝑐𝑒𝑙,𝑚𝑎𝑥 = 5.4 m/s², 𝑎𝑏𝑟𝑎𝑘𝑒,𝑚𝑖𝑛 = 2.9 m/s², and 𝑎𝑏𝑟𝑎𝑘𝑒,𝑚𝑎𝑥= 9.8 m/s².

Event Trace (CSV Format): The log records events such as:

detectLeadingVehicle(egoSpeed, leadingVehicleSpeed, distance)

Operational Specification:

initiate
P: double := 0.01
AccMax: double := 5.4
AccBrakeMax: double := 9.8
AccBrakeMin: double := 2.9

 on detectLeadingVehicle(vEgo: double, vLeading: double, distance: double)
 t0: double := vEgo * P

 t1: double := 0.5 * AccMax * P*P
 t2: double := vEgo + P * AccBrakeMax
 t3: double := 2.0 * AccBrakeMin
 t4: double := vLeading * vLeading
 t5: double := 2.0 * AccBrakeMax
 SD: double := t0 + t1 + (t2 * t2)/t3 - t4/t5
 distanceCheck: bool := distance >= SD
 output checkSafeDistance(distanceCheck)

Declarative Specification: This property verifies that the output from the pre-evaluation step (distanceCheck) is always true.

prop safeDistanceCheck :
forall distanceCheck .
checkSafeDistance(distanceCheck) -> distanceCheck = "true"

2) Road Speed Limit:

Reference ISO standard: ISO 26262, ISO 21448. Component: Perception, Planning, and control.
Background: Speed management ensures safe mobility by setting speed limits, reducing speeding, and
mitigating speeding-related crashes. This property verifies that the host vehicle respects the speed limits
imposed by CARLA.

6

3) Collision Rate: Reference ISO standard: ISO 21448. Component: Perception, planning, and control.
Background: Collision rate analysis is crucial for ensuring the safety and reliability of autonomous vehicles. The
property tracks the number of collisions and verifies whether the collision rate is below a specified threshold.

B. Scenario Generation
After implementing the safety properties in TP-DejaVu, we generate scenarios to verify that TP-DejaVu runtime

monitoring is functional as expected. The scenarios test Apollo in normal mode and abnormal mode through error
injection by code modifications to mimic the effect of a programmer bug or intrusion/attack.

Table I. Scenario generation.

Scenario
Safety Requirements Monitored (Safe Distance, Speed Limit, Collision Rate)

Description Error Injection Expected Properties
To be Violated

 I
The host vehicle follows a leading vehicle on a road
with a speed limit of 30 kilometres per hour. No None

 II Same scenario as normal mode, but the host vehicle
exceeds the road speed limit.

Apollo/modules/planning/reference line/
reference line.cc - Line 827:
The modification is done in the method
”Reference-Line::GetSpeedLimitFromS”
to return the speed limit multiplied by two.

Speed Limit

 III Same scenario as normal mode, but the host vehicle
follows the leading vehicle very closely.

Apollo/modules/planning/tasks/deciders/
speed decider/speed decider.cc - Line 173:
”IsFollowTooClose” to always return
false.
Apollo/modules/planning/tasks/optimizers/
path time heuristic/ dp st cost.cc - Line
113:”GetObstacleCost” to return the
obstacle cost as zero.
Apollo/modules/planning/tasks/optimizers/
piecewise_jerk speed/piecewise jerk speed
nonlinear_optimizer.cc - Line 286:
”SetUpStatesAndBounds” to increase the
speed upper bound by removing the
subtracted 8.
Apollo/modules/planning/tasks/optimizers/
piecewise_jerk speed/piecewise jerk speed
optimizer.cc - Line 114:” Process” to
increase the speed upper bound by
removing the subtracted 8.

Safe Distance

 IV

Same scenario as normal mode, but the host vehicle
follows the leading vehicle very closely and collides
with it. The leading vehicle is also controlled to
suddenly break after 120 metres.

Same error injections as Scenario III Safe distance and
collision rate

 V

Same scenario as normal mode, but the host vehicle
follows the leading vehicle very closely and collides
with it, and exceeds the speed limit. The leading
vehicle is also controlled to suddenly break after
120 metres.

Same error injections as Scenarios II and
III

Safe distance, speed
limit and collision

rate

V. EXPERIMENTAL RESULTS & DISCUSSIONS

In this section, we demonstrate the experimental results of verifying the three safety properties across five
different scenarios. These results were obtained using Carla simulator version 0.9.13 and Apollo version 8.0.0. The
scenarios were run on a machine with an AMD Ryzen 7 6800H with Radeon Graphics CPU, 16 GB of ram, and an
RTX 3050 mobile GPU. Table II illustrates the results for the first scenario. In this scenario, all three safety
properties were monitored over a simulation period of 135 seconds, with no violations detected. The Apollo
autonomous driving platform operated without any errors, showcasing its inherent safety and reliability.

Fig. 4 contains tables that summarize the results for scenarios II, III, IV, and V, above each table, a bar graph
is included to visualize the results. In scenario II, errors were intentionally injected into the planning module of
Apollo to induce speed limit violations. This resulted in 227 violations over a simulation period of 120 seconds. In
scenario III, violations were observed only for the Safe Distance property. These violations were induced by
injecting errors into the planning module of the Apollo stack. In scenario IV, violations were observed for both

7

Safe Distance and Collision Rate properties. These violations were induced by injecting errors into the safe distance
property in the planning module of the Apollo stack and instructing the leading vehicle to suddenly brake. In
scenario V, errors were intentionally injected into the planning module of Apollo in addition to instructing the
leading vehicle to suddenly brake to induce violations for all three properties over a simulation period of 136
seconds. Note that the violations for the collision rate property do not indicate the number of collisions, in fact,
there was only one collision in both scenarios IV and V. The reason for this is that the property is checked at each
tick of the simulation, so all the events would be recorded as violations until the vehicle travels a sufficient distance
without collisions.

Table III. Property checking results.

Property Scenario I
#Events #Violations Sim. Time (sec)

Safe Distance 1,644 0 135

Speed Limit 7,255 0 135

Collision Rate 7,255 0 135

 Fig. 4. Scenario II, III, IV, V results.

VI. CONCLUSIONS

 In this paper, we successfully demonstrated the feasibility and effectiveness of integrating a digital twin of an
autonomous driving platform within a car scenario simulator, alongside a runtime monitor for safety analysis. By
translating high-level safety requirements from industry standards ISO 26262 and ISO 21448 into checkable
properties, we established a pipeline for real-time safety verification during digital twin simulation.
 Future research should aim to develop a more comprehensive list of properties that incorporate a wider range of
environmental factors for safety compliance of existing or newly developed autonomous driving platforms across
various real-world scenarios.

8

 Fig. 5. Digital twin simulation run (Apollo, CARLA, DejaVu-TP).

REFERENCES

[1] ISO. 2018. ISO 26262: 2018 - Road vehicles – Functional safety. Standard. International Organization for Standardization.
[2] ISO. 2019. ISO/PAS 21448: 2019 - Road vehicles — Safety of the intended functionality. Standard. International Organization for

Standardization.
[3] ApolloAuto, Apollo: An open autonomous driving platform, Accessed: 2024-06-30, 2024. [Online]. Available:

https://github.com/ApolloAuto/apollo.

[4] CARLA - an open urban driving simulator. [Online] Available: https://carla.org/, Accessed: 2024-06-30.
[5] DejaVu Runtime Monitor. [Online] Available: https://github.com/havelund/dejavu.
[6] Anastasios Temperekidis, Nikolaos Kekatos, Panagiotis Katsaros, Weicheng He, Saddek Bensalem, Hisham AbdElSabour, Mohamed

AbdElsalam, and Ashraf Salem. “Towards a Digital Twin Architecture with Formal Analysis Capabilities for Learning-Enabled
Autonomous Systems”. In MESAS NATO conference for modelling and simulation of autonomous systems, Prague, Czech Republic,
Oct. 2022.

[7] Tasneem Awaad, Mohamed Ellethy and Mohamed Abdelsalam. Exploring Software-Defined Vehicles through Digital Twin Simulation
with Extensible Prototyping FPGA: A Tool Perspective, DVCon Japan, Tokyo, 29 August 2024.

[8] P. F. D. Heffernan C. MacNamee, “Runtime verification monitoring for automotive embedded systems using the iso 26262 functional
safety standard as a guide for the definition of the monitored properties,” Institution of Engineering and Technology, 2014.

[9] S. Shankar, U. V. R, S. Pinisetty, and P. Roop, “Formal runtime monitoring approaches for autonomous vehicles,” in Proceedings of the
2nd Workshop on Artificial Intelligence and Formal Verification, Logics, Automata and Synthesis, 2020.

[10] E. Zapridou, “Runtime verification of autonomous driving systems in carla,” Bachelor’s Thesis, Aristotle University of Thessaloniki,
2020.

[11] N. O. Vic, Rtamt, GitHub, Available: https://github.com/nickovic/rtamt, 2020.
[12] K. Watanabe, E. Kang, C. W. Lin, and S. Shiraishi, “Invited: Runtime monitoring for safety of intelligent vehicles,” in Proceedings of

Institute of Electrical and Electronics Engineers Inc., 2018.
[13] L. Marsso, R. Mateescu, L. Muller, W. Serwe, and U. G. Alpes, “Formally modeling autonomous vehicles in lnt for simulation and

testing,” in Mars 2022-5th Workshop on Models for Formal Analysis of Real Systems, 2022.
[14] J. B. P. Rau C. Becker, “Approach for deriving scenarios for safety of the intended functionality,” in ESV, 2019.
[15] H. Wu, D. Lyu, Y. Zhang, et al., “A verification framework for behavioral safety of self-driving cars,” IET Intelligent Transport Systems,

vol. 16, no. 5, 2022.
[16] C. Xu, W. Ding, W. Lyu, et al., “Safebench: A benchmarking platform for safety evaluation of autonomous vehicles,” in Proceedings of

the 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks, NeurIPS, 2022.
[Online]. Available: https://safebench.github.io.

