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Abstract—Behind every application be it AI, ML, SQL, DBMS, or Verification Intellectual Property (VIP) in the 

Very Large-Scale Integration (VLSI) domain etc. lots of useful information is encapsulated in tabular form. Extracting 

and processing the data/information from these tables can be very challenging. Talking about Double Data Rate 

Generation 5 (DDR5) specification itself has more than 300+ tables which contributes ~20% or more of entire 

specification and there’s been >50 spec iterations in getting there. The manual extraction of this data and information 

is prone to error and requires significant efforts. 
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I. INTRODUCTION 

Double Data Rate Generation 5 (DDR5) provides memory part bandwidth options via operation over a wide 

variety of frequencies (3200Mega Transfers per second to 6400+ Mega Transfers per second) [1] and for each of 

these speeds has a range of sub-part latency option types (low-latency high cost to high-latency low cost: AN, B, 

BN, C) [1] (and many other part options as well such as densities and stack rank configurations). Many 

memories parameter characteristic values in DDR5 are linked to the operating speed and sub-part type. Based on a 

part’s max speed and the current operating speed, these speed dependent parameter values get determined, which 

in turns helps determine how fast or slow a device can work. Hence the specific level or category of memory 

speed that a DDR5 memory can operate at is termed speed bin. These parameters are crucial since they relate to 

various aspects such as command-to-command spacing (tRCD, tRP timings), data access command latencies 

(Read, Writes, Mode Reg Read) to 1st data burst time (CL), etc. Within the specification these many speed-bins 

are listed in tabular form with all possibilities of valid and reserved values across speeds and sub-parts across 

many speed tables. In Cadence Verification IP we devised an ‘Executable Table’ solution to 

• Extract valid parameter values correlated in relation with respect to the ‘key’ indexing of tabulated 

celled data in documented tables, 

• Transform this indexable data to executable APIs (and other value items). 

As example the mentioned tabulated data across DDR5’s speed bin tables get extracted and transformed to “Speed 

to Modes and Timings” Application Programming Interfaces (abbreviation: SMT APIs) which can be utilized by 

DV users of the Verification IP. These SMT APIs provide simulation runtime access to the large collection of 

speed bin table associated information, selectably returning matching timing and mode parameter value(s) 

information. 
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II. KEY INNOVATIVE CONCEPT 

The main concept of this Executable Table we want to convey is the verification technique in making tabled data 

executable. This includes defining a n-dimensional aggregation matrix/array, where the row ‘key’ is Sub- type and 

column ‘key’ is Speed in the following DDR5 example (n = 2 in our reduced DDR5 example to convey concept, as 

additional index dimensions into the tabulated matrix exist such as planar or 3DS selection). Hence the 

extracted values are a function of index ‘key’ arguments, here: Sub-type x Speed. The API exercises access logic to 

these dimensional arrays returning the desired values based on the selection ‘key’s, e.g.: Sub-type x Speed. 

We’ve automated the process in extracting tables from specification pages and converting it to a intermediary 

metadata. This metadata gets used to achieve our end goal of executable table code generation in any HVL 

language data structure format (2-D packed array in our example case). There are multiple ways to achieve this 

automation, although the tabled data extraction details from specification PDF is not covered in this paper. This 

paper focuses on how the extracted table data is made executable and used to simplify design verification for a 

robust coverage of specification tables. 

 
III. EXECUTABLE TABLE EXAMPLE - SMT API 

Each speed dependent timing parameter has a different value for different operating frequencies and sub-part 

type. A particular timing parameter value can be valid at a higher operating speed for a given sub-part and be 

reserved at a lower operating speed for the same sub-part. In such cases, using the SMT API, the VIP user can 

determine the valid values of timing parameter by passing in the operating speed and the sub-part type. Hence the 

APIs comes as savior when up-and-down speed bin change scenarios need to be tested. Pictorial representation of 

the entire problem and solution in Figure 1. Complete Flow from Specification to Implementation: 

Figure 1 Complete Flow from Specification to Implementation 

This Executable Table solution can be seen in above Figure1, from reading the tabular data, eg PDF, and conversion 

to the aggregation array (SV unpacked array shown) which is the very fundamental building block of this solution. 
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Again the breakthrough automation recipe is not the scope of this talk, but rather the Executable Table’s concept, 

flow, example, and application overview. In the snippet above, the values of timing parameters CL, tRCD, tRP, tAA 

are a function of sub-type x speed. The function API’s sub-types and speeds arguments are nothing, but the rows and 

columns of the table given in the data sheet/specification (referred to as ‘keys’ here). Hence, 

𝑡𝑖𝑚𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = function (Speed x subtype); (1) 

 
Example call below demonstrates the Executable Table usage simplicity via the SMT API : 

 
cas_latency = getClAtSpBin(SPBIN_TYPE_3600, SPBIN_SUBTYPE_C); 

$display($time,"Printing CL value obtained using API for speed = %s and sub- 

type =%0s: %0d",spbin_type.name , spbin_subtype.name, cas_latency); 

 

Simulation Output 

 
Printing CL value obtained using API for speed = SPBIN_TYPE_3600 and sub- 

type=SPBIN_SUBTYPE_C: 32 

 

IV. SAME TABLE, ANOTHER REPRESENTATIVE FORMAT 

 

We’ve also kept in mind the concept of configurability. In real scenarios user might reconfigure some of the values 

of a speed-bin to different than what is provided in configuration file. Solution must be capable enough to return the 

updated value. 

 

To address this problem the API’s like: getValidsInSpBinAtSpeed takes enum (e.g., SPBIN_TYPE_3200) and timing 

parameter name string (clSpBin) as an input. The Enum input is then used as an key to find the sub-string of period 

range (e.g. “[.625ns - .681ns]”). These sub-strings are then used to search for the complete string of valid value sets 

as per period range from config core string. What gets returned to user is a queue of valid values at a given speed 

within the full set of valid values across speeds (represented in the part’s configuration string attribute, see image 

with “END RESULT” below). 

 

Figure 2 Internal Working Of getValidsInSpBinAtSpeed API 

 
 

In configuration file, each of the speed-based timing parameter gets represented in form of string, as below: 

 
clSpBin("[.416 ns - .454 ns) 34 40 42, [.454 ns - .500 ns) 32 36 40, [.500 ns - .555 ns) 32 

36, [.555 ns - .625 ns) 26 30 32, [.625 ns - .681 ns] 24 26 28, [.952 ns - 1.010 ns] 22"); 
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A. An example below that demonstrates the user-friendly usage of this API: 

 

Variable declaration in testbench: 
string clSpBinString = Sve0.myUvmEnv.activeDevice.config.clSpBin; 

valids_t valCLs ; 

SpBinTypeT speed; 

 

Testbench API call: 
speed = SPBIN_TYPE_4800; 

valCLs = getValidsInSpBinAtSpeed( clSpBinString, speed ); 

`uvm_info("USER_TEST",$psprintf("\t Printing all possible valid values of CL for 4800 Operating 

Frequency %0p",valCLs),UVM_LOW); 

 

 

B. Simulation Output 

uvm_test_top [USER_TEST] Printing all possible valid values of CL for 4800 Operating 

Frequency '{34,40,42} 

 

The result obtained from such API’s can be used in different ways. Let’s say we are testing randomization scenario 

where we want to loop over all the valid values of a timing parameter and check the design behavior for that 

Particular speed, then this API of getValidsInSpBinAtSpeed can be of very useful. There can be many such use cases 

like this. This example is given to demonstrate that other useful representative formats can be formed from the same 

tabulated data set, we’ve many more such generated executable code from tabled data accounting for user inputs and 

needed outputs where alternative structure, logic processing gets done. 

 

V. BEING SIMULATION PERFORMANCE AWARE 

Reason for choosing 2D unpack array as the basic building block is because they get allotted at build time with fix 

size which remains same throughout the simulation due to which even if the API get called very frequently during 

simulation the performance impact will be minimal as compared to when other aggregate data types are used. We 

architect with associative arrays for speed reasons where direct access key is by name, data is mutable, allocation is 

sparse, AND not necessary to preserving table data cell order as contiguous ordered sets.. but for ordered things like 

dates or command sequence order relations these can instead be organized as queue or dynamic array structure. But 

if data is to be locked, immutable, to data given in document table, then static unpacked array provides optimal 

compilation optimization for speed and allocation. 

 
VI. EASE OF USE 

The feature API is provided directly out-of-box in release product package formatted for user's environment 

HVL<e.g., SV/UVM/SystemC>, and with example demonstrating ease-of-use of memory configurability and 

command selection spacing appropriate to operating speeds in user's simulator. No specific configuration is 

required to enable use of these APIs, even the relevant package import into the DV environment was already done 

prior for general VIP use, so the VIP user can directly call and use the API methods. Due to such ease of use, this 

solution was adopted by many customers, internal teams of other groups and our own verification teams. 

 

VII. REALIZED EFFECTIVENESS OF SOLUTION 

We saw significant reduction in validation costs (time and effort) versus coverage gain by using SMT APIs 

[compared to manually transferring speed bin table values from specifications into our internal test scenarios]. This 

cost reduction and coverage gain is realized over and again with each new revision of table during specification 

evolution. Simple table, types, and API mechanisms provide configurable access to unpack spec data. Here for a 

given speed and bin a legal combination {of timings, latencies, modes, command spacings} is returned. But to 

quantify the scale of improvement consider the task scope in validating a memory model ‘scenario of interest’ across 

it’s legal intersects of speeds, modes, command spacings, latencies, e.g.: 
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Scenarios_of_interest[] 

 

...across the legal combinations of... 

 

{speeds [~30], bins [4], modes [~12], affected_Command_to_command_spacings[~20] }.. 

This blows out to 30x4x12x20 combinations across the scenarios. Here’s where the benefit of this devised API 

solution becomes immeasurable or orders of magnitude better [than the impractical opportunity cost approach of 

unpacking and hard coding spec table values to a multitude of fixed tests and then MAINTAINING them]. Each 

test scenario can be checked for compliance across operating speeds applicable to each memory-under-test. Simply 

iterate speed x bin API inputs to apply appropriate mapped modes, latencies, and timings into DUT stimulus at 

runtime. Thus, this large noted combinatorial explosion is easily tested with iteration. And maintenance is kept to 

spec alignment of one speed x bin mapping table of {latency, timing} data. 

 
 

VIII. REALIZING EFFECTIVENESS OF SOLUTION ON LARGER SCALE 

While DV regression set size scales by 2n with ‘n’ test combinations, parallelization of earlier mentioned 

combinational loop iterations can be realized by fanning out execution of the iteration combinations over large farm 

of CPU resources: 

 
• Parameterize <speed, bin>scenario block utilizing a macro ’ed version of speed x bin API 

• Parallelize simulation runtime speed x bin loop iteration -to- regression test sets[speeds][bins] matrix 

of test configurations 

.. test suite generation = ∑speeds ∑bins [ scenario block @ speed=n, bin=m], atomized into separate tests. 

Again in same fashion the same extracted tabled data is the source for generating the needed parameterized API’s 

format and regression test set list format for regression. 

 
 

IX. ACTUAL CUSTOMER TESTIMONIAL 

I recall using Speed to Modes and Timings solution to access valid value of timing parameters based on operating 

speed and sub-part in the DRAM which allowed us ease of access. Using these valid values, we were able to 

correctly describe the spacing between valid commands which save our effort from running into command spacing 

related violations. 

 

 
X. APPLICATION STEPS 

Executable tables via APIs – how-to considerations in translating spec tables into useful APIs: 

 

1. Identify useful data, i.e. documented table(s) and data subsets in tables. 

Consider which tables, rows, columns, subsections you will be targeting to pull together into an API. 

2. Note table’s labeling for useful portions of table data, such as table number, subsection, row, columns. 

▪ Table cells are indexable by table number/row/column/subsection labels. 

How many index dimensions and what are the types for each index used to access down to a 

cell of atomic table data (consider merging similar repeating tables into one API with 

additional per Table dimension) 

▪ Determine the needed API arguments and type, i.e., number of dimensions to index access into 

this aggregated array/matrix of interesting cell'd data and/or sets (, e.g.). Arguments are 

often privative types like integers, reals, Enums, strings but can be clubbed together as a 

struct or class transaction .. ) 

▪ Consider existing DV environment variables and their types, can API use these to access the 

table data providing internal helpful conversion as needed, e.g.: API can handle argument 

type 
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conversion, mapping from existing DV variable types into your API's data structure indexer 

type (such as period-to-freq, pages-to-bytes, Enums-to-valueID, tuple struct data-to-breakout 

needed member index privatives). 

 

3. Determine appropriate underlying HVL data aggregation structure for the targeted data such as, 

e.g. cost/benefit for given API application of 

[ static unpacked array -vs- queue -vs- dynamic array -vs- associative array -.. ] 
 

Eg: 

• Will Data be immutable, dimensionality shape of aggregation structure fixed and/or 

static for compiler size allocation and optimization (eg static unpacked array)? 

• Or will data values and shape be subject to change and access at runtime (dynamic 

arrays, queues, maps aka associative array) 

• Will API always only return single atomic cell of data 

• Or do subsets of data need to be collected through query (eg queue) or directly 

addressable for speed consideration (map/Assoc-array organizations)? 

Does the row/column cell ordering need to be preserved such as for history and sequences 

(queue, array over maps) 

 

4. Capture API function prototype - Named appropriate to returned table data, with argument types 

from #2 (needed to index tabled data) 

5. Unpack specification table data into the API block with needed HVL format in proper syntax format 

of chosen data structure, such as in the initialization assignment at data structure declaration. 

6. CONSIDER AUTOMATING this #5 format translation if this will be repeated ( eg: table value and 

column/row label pickup and translate with python pandas + regex ) 

7. Share API for reuse, such as make import'able package or embed into existing already imported 

package class 

 

XI. APPLICATION TO OTHER PROTOCOLS 

Although this paper demonstrates the ‘Executable Table’ solution with a DDR5 SMT API for speed bin 

verification, this ‘Executable Table’ solution can also be extended to other protocols. Let’s quickly take an 

example of ONFI. Referring to v1.0 [2] of the ONFI specification where the minimum and maximum value of a 

particular timing parameter is based on Mode0, Mode1 or Mode2 as per the “Table 1” below. 

 
Table 1 TIMINGS MODE 0, 1, & 2 
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Applying the ‘Executable Table’ API solution, above Table 1 can be represented in form of an 2D packed array 

whose keys are: Mode, Min-or-Max, so Table’s valid value result for any above-mentioned timing parameters will 

be: 

t𝐷𝑆, t𝐹𝐸𝐴𝑇, t𝐴𝐷𝐿, t𝐶𝐸𝐴 … … . = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛( 𝑀𝑜𝑑𝑒[0, 1, 2], 𝑖𝑠𝑀𝑖𝑛[𝑇|𝐹] ) (2) 

 

 
XII. APPLICATION OUTSIDE OF ENGINEERING DOMAIN 

 
Table 2 Densiy Localities versus Years 

 

The concept of extracting information from tabular format can be applied across multiple domains and is not limited 

to the engineering domain. For example, as shown in Table 2 Density Localities versus Years above : let say 

we’ve data from census carried out over period of years for 3 localities and the census data is formulated in tabular 

form. Let say we’ve data from census carried out over period of years for 3 localities and the census data is 

formulated in tabular form. We can apply the same Executable Table concept and steps as the SMT APIs, where 

the relevant API returns population density as a function of locality x year. 

 
XIII. CONCLUSION 

The Executable Table instruments a specification’s tabled data information in needed DV extractable formats, 

thus empowering a DV user’s closure of compliance and compatibility over that data without need to refer to the 

specification. The solution abstracts usage of any spec version as data is KEY sourced from the golden reference 

table mapping of data, the specification. For ease of compliance coverage, the API’s KEYs align to spec’d table’s 

rows/columns with argument types whose valid values are both iterate-able and captured in range sets that can be 

sampled. The Executable Table solution solves access, edit, and exercise of documented table data providing ease- 

of-use, consistency, readability, efficiency, maintenance, abstraction, and is automatable. 

 
This intentional alignment of coded mapping table to spec table eases maintaining connection to spec so much 

that the coded translation result, going from spec-to-map over iterations of spec revisions, can be automated. There 

are many tools for automation which can be used to automate the process of extracting tabled data from 

specifications and data sheets for conversion to intermediate meta data and from there onwards to needed grammar 

formats such as HVL mapped table with API logic demonstrated here, thereby automating the entire process of 

extracting precise data from multiple tabular formatted data. 

 
The benefit of this Executable Table scales with the scope space of a table (layers x rows x columns -> table sets, 

speeds, bins, modes timings) making the executable table API a necessary building block tool to cover and automate 

a test scenario’s scope space, accelerating DV’s compliance and compatibility closure with speed, quality, and 

consistency, ease-of-use. The key concept we demonstrate here is how to limit a DV engineer’s time and effort cost 

spent in compliance compatibility over tabled data while improving the quality of verification. This executable table 

solution can be further extended for use in applications which require extraction of data from hefty tabular formats 

be it in other VIP’s or any software domain or any other domain outside of engineering. Update of values from newer 

versions of specification into aggregated array data is no more a tedious task and can in fact be automated. Hence, 

utilizing the very basic functionality of dimensionally aggregated data, we have a maintainable and executable user- 

friendly solution to ease, accelerate and improve the verification over tabled data. We’ve demonstrated this 

Executable Table solution with a DDR5SDRAM example and showed it to be generally applicable even outside the 

scope of DV. 
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