
1

Breaking Down Barriers: Achieving Seamless
Protocol Conversion with UVM Component

Layering

Name: Santosh Mahale
Organization: Marvell India Pvt. Ltd.
Job Title: Senior Staff Verification
Engineer
 Email ID: smahale@marvell.com

 Mobile no: +91 7350686748

Name: Shantanu Lele
Organization: Marvell India Pvt. Ltd
Job Title: Senior Staff Verification
Engineer
Email ID: slele@marvell.com

 Mobile no: +91 9901908181

Table of Contents
 Abstract: .. 2

 Related Work: .. 3

 Layering Component: .. 4

 Application: .. 5

 CHI2AXI Layering Architecture: ... 6

 Flow Diagram: .. 7

 Code Snippets: ... 7

o Test Case main phase: ... 7

o Top Level env : ... 8

o Layering Agent: .. 8

o Conversion Sequence: ... 9

 Results: .. 9

o Initiated CHI Transaction: .. 9

o Converted AXI transaction:.. 10

 Case Study 2: Phy bypass component .. 10

 Conclusions: ... 11

2

Figure 1 Typical system architecture ... 3
Figure 2 UVM Layering component ... 4
Figure 3 CHI to AXI Layering Internal Architecture .. 6
Figure 4 CHI to AXI Protocol Conversion Layering Flow .. 7
Figure 5 CHI Initiated Sequence Items .. 9
Figure 6 Converted AXI Interface fields ... 10
Figure 7 Phy bypass component .. 10

Table 1 CHI to AXI control attribute conversion 5
Table 2 CHI to AXI Memory attribute conversion .. 5
Table 3 CHI to AXI ordering attribute conversion .. 5
Table 4 CHI to AXI protection conversion .. 5
Table 5 CHI to AXI Excl conversion .. 6

 Abstract:

Increasing computing needs and maturing technology changes demands change in how
various blocks in System on chip (SoC) are connected. The Advanced Micro controller
Bus Architecture (AMBA) bus protocols is an example of interconnect specifications from
ARM that standardizes on chip communication mechanisms between various functional
blocks (or IP) for building high performance SOC designs. Over the years AMBA protocols
as well have undergone updates and some new protocols are also introduced on the
way. Due to this even if an IP does not have significant logic change, to be compliant
with latest SoC architecture, IP’s input or output protocol gets updated. This calls for
verification changes which must be done along with design update. Common proposal
for this kind of change is to add a bridge to do conversion between two protocols. UVM
component layering concept enables conversion of one complicated protocol
transaction items into other type of protocol transaction items. With layering
component, we can develop efficient reusable verification component to replace RTL
block under development which does protocol conversion. This allows left shifting
verification framework development effort which can reduces time to market with
parallel development.

3

 Related Work:

Consider a typical system where there is a processing element, usual IO devices,
hardware accelerator to ease processing load and MMU to oversee memory
management. Over the time processor architecture evolves and there is need of higher
bandwidth communication between these elements. An example is recent ARM
processor having native CHI interface compared to older ARM processors where ACE or
AXI was native interface. To cater increased bandwidth needs interconnect and
subsystem which are near to processor must upgrade to newer protocols to maintain
high bandwidth flow eventually. Take an example where system shown in Figure 1
Typical system architecture has upgraded CPU which forces hardware accelerator IP also
to upgrade to newer interface specification. Hardware accelerator subsystem adapt to
this change by adding a protocol conversion module within IP.

Figure 1 Typical system architecture

When Ips/Subsystems are upgraded in such a way, verification can be done in three
ways.

1. We can verify subsystem without bridge/protocol converter, which means
bridge verification must be done at full chip. This will increase risk of finding
integration bugs at full chip which will be very late.

2. We can start verification with legacy IP only and later add bridge in subsystem
testbench; which will duplicate work on input interface and all work done on
legacy interface has to be thrown out.

3. The other approach is to use layering component which will take place of
protocol convertor module and start developing verification collaterals such as
tests & sequences which will allow bridge to be included in subsystem
verification environment as soon as its ready without doing any redundant work.

4

 Layering Component:
A Layering component is slightly different component than usual UVM agent. Layered

component allows verification engineer to code sequence in one protocol and execute it
on completely different protocol driver. User sequence which will be coded on protocol A
will be running on sequencer of type protocol A, instead of driving it on protocol A
driver, UVM layering component first converts sequence item to protocol B and starts it
on Protocol B sequencer which will eventually be run on protocol B driver.

 Figure 2 UVM Layering component

With layering component, we can start verification development on new protocol and
sequence executed with new protocol will be converted to legacy protocol by layering
component. Converted sequence is then executed on legacy sequencer. This way we can
start verification without the availability of actual bridge module. All the test cases and
sequence can be developed on new protocol. When Bridge development is completed,
we can simply integrate bridge and start stressing it with already stabilized test &
sequence suite.

5

 Application:
Case Study 1: CHI2AXI Protocol Converter

Table 1 CHI to AXI control attribute conversion

Table 2 CHI to AXI Memory attribute conversion

Table 3 CHI to AXI ordering attribute conversion

Table 4 CHI to AXI protection conversion

6

Table 5 CHI to AXI Excl conversion

 CHI2AXI Layering Architecture:
Figure 3 CHI to AXI Layering Internal Architecture shows the block diagram of CHI2AXI UVM
layering component. This is complete reusable component which does conversion of CHI
transaction items in to AXI transaction items. CHI transactions are generated from CHI vip
sequences and converted to AXI transactions from UVM layering component.

 Figure 3 CHI to AXI Layering Internal Architecture

7

 Flow Diagram:

Figure 4 CHI to AXI Protocol Conversion Layering Flow

User will write all tests and sequence in CHI (newer)
1. At the start of run phase axi driver will be ready and waiting for sequence item to

appear. Similarly, test will call a sequence which will randomize a sequence item.
2. A sequence item will be then start on chi sequencer which will first convert (2a) the

CHI sequence item to AXI sequence item and instead of sending it to CHI driver will
start converted axi sequence item on axi sequencer(2b).

3. Axi sequencer then pass on this item to driver which will drive the protocol level
transaction.

4. Once done driver will inform sequencer completion of sequence item processing by
calling item_done()(4a). Optionally driver can also send response back to driver if
get_response()(4b) is called by sequence.

 Code Snippets:
o Test Case main phase:

As shown in Figure 3 CHI to AXI Layering Internal Architecture, below main function
where actual CHI sequence started in test case which is extended from subsystem
base test.

virtual task main_phase(uvm_phase phase);
 phase.raise_objection(this);

8

//start test sequence on the CHI sequencer inside layering component
chi2axi_seq.start(env.layering_env.chi2axi_layering
_comp.chi_sqr);

 phase.drop_objection(this);
endtask : main_phase

o Top Level env :
As shown in Figure 3 CHI to AXI Layering Internal Architecture, creating the Layering
agent (chi2axi converter) handle in subsystem level env and setting the axi agent
object required for the converter.

layering_env =
chi2axiact_pkg::env_c::type_id::create("layering_env",
this);
 layering_env.set_axi_agent(axi_master_agent);

//Analysis port connected to receive the response transaction from AXI VIP.
`AXI_RSP_CONNECT(axi_master_agent,layering_env)

o Layering Agent:
As shown in Figure 3 CHI to AXI Layering Internal Architecture, chi2axi_layering_comp
implementation :

class chi2axiact_layering_agent extends uvm_component;
 //Declaration of analysis port for chi/axi req/rsp transaction items
 uvm_analysis_port #(req_item_c) chi_req_ap;
 uvm_analysis_port #(rsp_item_c) chi_rsp_ap;
 uvm_analysis_imp_axi_rsp

#(denaliCdn_axiTransaction,chi2axiact_layering_agent)
axi_rsp_port;

 //local axi agent handle
 axi_agent_t axi_agent;

 //Receiving axi rsp transactions from AP

virtual function void write_axi_rsp(denaliCdn_axiTransaction
axi_rsp);

 axi_trans_q.push_back(axi_rsp);
 endfunction

 virtual task run_phase(uvm_phase phase);
 chi2axiact_conv_seq chi2axi_seq;

 chi2axi_seq =

chi2axiact_conv_seq::type_id::create("chi2axi_seq");

 // connect chi2axi conversion sequences to their respective upstream sequencers
 axi_sqr = axi_agent.seqr;
 forever begin
 chi_sqr.get_next_item(chi_transaction);

 chi2axi_seq.chi_trans = chi_transaction;

9

 // start the chi2axi conversion sequences
 chi2axi_seq.start(axi_sqr);
 chi_sqr.item_done();

 // waiting for the axi response
 wait(axi_trans_q.size());

 $cast(axi_rsp_transaction,axi_trans_q.pop_front());
 axi2chi_rsp_translator();
 end
 endtask
 endclass

o Conversion Sequence:

As shown in Figure 3 CHI to AXI Layering Internal Architecture, conversion sequence
running in forever loop in Layering component class which is having actual conversion
logic as per Table 1, Table 2, Table 3, Table 4, Table 5.
class chi2axiact_conv_seq extends uvm_sequence
#(denaliCdn_axiTransaction);
 `uvm_object_utils(chi2axiact_conv_seq);

 virtual task body();
 axi_trans =
denaliCdn_axiTransaction::type_id::create();
 start_item(axi_trans);
 chi2axi_req_translator();
 finish_item(axi_trans);
 endtask
endclass

 Results:
o Initiated CHI Transaction:

Figure 5 CHI Initiated Sequence Items

10

o Converted AXI transaction:

Figure 6 Converted AXI Interface fields

 Case Study 2: Phy bypass component

Figure 7 Phy bypass component

In typical SoC, for subsystems bring up; PHY block develops bottleneck for verification
progress because long initialization and training time. PHY developers do provide bypass
ideas but still it takes extra simulation time to get pass PHY module and do the actual
transaction on output interface. UVM component layering can be used in such case to
eliminate PHY complexity by catching PHY input transaction through a standard

11

monitor, which will call translation function to output protocol and driving converted
transaction through output verification IP on output interface. With phy bypass
component, we can simply skip all initialization, training and calibration steps and
directly go into data transfer phase.

 Conclusions:
o UVM Component layering provides solution to develop completely reusable

verification component.
o UVM Component layering Left shift’s verification cycle & providing opportunity to

stress various scenarios at Sub-system level TB; while doing so, we can catch issues
in incremental changes done is legacy designs.

o Layering Component can be used at IP/Sub-System level without any limitation.
o This methodology allows seamless integration of RTL as and when its ready.

After availability of RTL, we can optionally use this Layering component as a
transaction reference model.

o This architecture can be extended to do conversion from any to any Bus Protocol
and applications are endless.

