2023

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Breaking Down Barriers: Achieving Seamless
Protocol Conversion with UVM Component
Layering

Name: Santosh Mahale Name: Shantanu Lele
Organization: Marvell India Pvt. Ltd.
Job '.Tltle: Senior Staff Verification Job Title: Senior Staff Verification
Englpeer Engineer

Ema.ll ID: smahale@marvell.com Email ID: slele@marvell.com
Mobile no: +91 7350686748 Mobile no: +91 9901908181

Organization: Marvell India Pvt. Ltd

Table of Contents

L Vo { - [S T OO ST OO O TP OOV PP U U SO PPTOTPRIOPRROt 2
® REIAEEA WOIK: .ot ettt ettt sh e st sttt et et e e s e nr e ae 3
LI IV T o] o = @] 0] e o] a1=] o L RO ORI O P PUPTPTRRN 4
L Voo Tt 14 Lo o Fo USRS 5
® CHI2AXI Layering ArChitECIUIE: ..ccoviveiieciieeeecctee et e et e e st e e et e e s br e e e e sbeaeeeeatbaeessnseeeessnneeaeenns 6
L 2 o VYA B =T -4 =T o o PSPPI 7
L 00 o [y oY o o 1= 3PN 7
O TeSt CasSe MAIN PRaSE: . .eiiiiie ettt ettt ettt sttt e s bt e eabe e e s a bt e st e e bt e s bee e eabeesebeeeeaeaeennbeesaneas 7
T I e o J RN V7Y =Y o PRt 8
O LAYEIING ABBNT .. ettt et e e ee e s bt e e e e et e e e s b e e e s e bae e e s e b e be e e e arnaeeeeennee 8
O CONVEISION SEOUEBNCE:utiiieiiiiee ettt ettt ee ettt e e st e e et e e e s s b bt e e s s eabeeeeesambaeseasnnaeeesaneaeessassneessannen 9
O RBSUIES: ittt et e e e e e bt e e ea bt e e b et e h e e e bbe e ehbeeehbe e sabeeeaateeaabeeeateensaeeenane 9
O INitiated CHI TranSaCtioN: ... ei ettt ettt ettt e st e et e e s bt e e s beesebeeesataeesnbeesaeeas 9
O Converted AXI EraNSACION ... ccoiiieii ettt ettt ettt et e e st e st e e et e e s eabe e s bb e e eataeebaeesabeeene 10
o Case Study 2: Phy bypass COMPONENToieiiiiiiieeiiiiie ettt ee et e e et tre e e s saae e e s eaaaeeeesnbaaeesssrnaeas 10

[
(@)
(]
>
o
[y
Q.
o
>
4
[y
[y

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Figure 1 Typical SYStemM arChitECTUNEuviiiiciiie e e ebe e e s st ae e s sbbae e e e sbbeeessbbneeas
Figure 2 UVIM Layering COMPONENT........uuuiiiiiiieiee ettt e ee e es e eetaetr e e e e e e s e s ssbeaaeeeeeaeaessasssnstnaeeaeesessnasnnssnnnnns
Figure 3 CHI to AXI Layering Internal ArChit@CtUIEccveeeei i e e e snar s
Figure 4 CHI to AXI Protocol Conversion Layering FIOWccuiiiiiiiiiiiiciiiee ettt svanee s
Figure 5 CHI Initiated SEQUENCE ILEMS ...eiiiiiiiieiiiciiie ettt ettt s e st e e s sabe e e s st ae e essabae s e esabbeeessabaneeas
Figure 6 Converted AXI INterface fieldS......c.uuueiiiii i s e e e eab e e e e sanae s 10
Figure 7 Phy bypass COMPONENT.....ccciiuiiiiiiiiieciiciiie ettt e st e s s sabaae s sssbbee e e sebbeeaessabbeeessneeeesenasesesessssenas 10

Table 1 CHI to AXI control attribute conversion 5

Table 2 CHI to AXI Memory attribUte CONVEISION.....cccuiie i ittt e ee e s sre e e e et ee e e snre e e e e enaaeaeeeas
Table 3 CHI to AXI ordering attribute CONVEISION....cccuviii ittt s st re e s sre e e e s sabaeaeeeas
Table 4 CHI to AXI Protection CONVEISION......cciicciiieeeiiireeeeeireeeeesitteeeseeteeeeestbeeeesebaeeeessseaeassnssaeessnsseeeesessssasenns
Table 5 CHI 10 AXI EXCl CONVEISION ..eiiiuieiiiiieieieeiiteeitee ettt e ssteeestteesateeesaaeesaseesssaeassseeesssesensnessssessnseessnsenssssessnnees

e Abstract:

Increasing computing needs and maturing technology changes demands change in how
various blocks in System on chip (SoC) are connected. The Advanced Micro controller
Bus Architecture (AMBA) bus protocols is an example of interconnect specifications from
ARM that standardizes on chip communication mechanisms between various functional
blocks (or IP) for building high performance SOC designs. Over the years AMBA protocols
as well have undergone updates and some new protocols are also introduced on the
way. Due to this even if an IP does not have significant logic change, to be compliant
with latest SoC architecture, IP’s input or output protocol gets updated. This calls for
verification changes which must be done along with design update. Common proposal
for this kind of change is to add a bridge to do conversion between two protocols. UVM
component layering concept enables conversion of one complicated protocol
transaction items into other type of protocol transaction items. With layering
component, we can develop efficient reusable verification component to replace RTL
block under development which does protocol conversion. This allows left shifting
verification framework development effort which can reduces time to market with
parallel development.

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

e Related Work:
Consider a typical system where there is a processing element, usual 10 devices,
hardware accelerator to ease processing load and MMU to oversee memory
management. Over the time processor architecture evolves and there is need of higher
bandwidth communication between these elements. An example is recent ARM
processor having native CHI interface compared to older ARM processors where ACE or
AXI was native interface. To cater increased bandwidth needs interconnect and
subsystem which are near to processor must upgrade to newer protocols to maintain
high bandwidth flow eventually. Take an example where system shown in Figure 1
Typical system architecture has upgraded CPU which forces hardware accelerator IP also
to upgrade to newer interface specification. Hardware accelerator subsystem adapt to
this change by adding a protocol conversion module within IP.

AN
Ingress IP Memo
g MMU ry

/ - = -

= = =

protocol conv

Hardware
accelerator

CPU Egress IP

Figure 1 Typical system architecture

When Ips/Subsystems are upgraded in such a way, verification can be done in three

ways.

1. We can verify subsystem without bridge/protocol converter, which means
bridge verification must be done at full chip. This will increase risk of finding
integration bugs at full chip which will be very late.

2. We can start verification with legacy IP only and later add bridge in subsystem
testbench; which will duplicate work on input interface and all work done on
legacy interface has to be thrown out.

3. The other approach is to use layering component which will take place of
protocol convertor module and start developing verification collaterals such as
tests & sequences which will allow bridge to be included in subsystem
verification environment as soon as its ready without doing any redundant work.

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

e Layering Component:
A Layering component is slightly different component than usual UVM agent. Layered
component allows verification engineer to code sequence in one protocol and execute it
on completely different protocol driver. User sequence which will be coded on protocol A
will be running on sequencer of type protocol A, instead of driving it on protocol A
driver, UVM layering component first converts sequence item to protocol B and starts it
on Protocol B sequencer which will eventually be run on protocol B driver.

Protocol A Layer
Protocol A
Sequences
Mon D Seqr |
(unused) ‘ —
Protocol Protocol
Response Request
Converter Converter
(De-Layering) (Layering)
|
N A
Protocol B Layer
Seqr
Mon
Drv

Figure 2 UVM Layering component

With layering component, we can start verification development on new protocol and
sequence executed with new protocol will be converted to legacy protocol by layering
component. Converted sequence is then executed on legacy sequencer. This way we can
start verification without the availability of actual bridge module. All the test cases and
sequence can be developed on new protocol. When Bridge development is completed,
we can simply integrate bridge and start stressing it with already stabilized test &
sequence suite.

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

o Application:
Case Study 1: CHI2AXI Protocol Converter
Opcode[6] Opcode[5:0] Opcode Field Value |Comment READ |ArBURST ArLOCK |Write AWBURST |AWLOCK
0 4 4 ReadNoSnp Y INCR/FIXED [2'b00/2'b [X X X
01
0 5 5 PCrdReturn TERMINATED AT HN NO EFFECT on AXI(Credit management opcode)
0 17 11 ReadND&npSEp —— b INCR]FIXED 2'b00 X X X
o 28 ic WriteNoSnpPtl _— X X Y INCR/FIXED |2'b00/2'b01
o 29 1D WriteNoSnpFull X X X Y INCR/FIXED |2'b00/2'b01
1 4 a4 WriteNoSnpZero X X X Y INCR/FIXED |2'b00/2'b01
Table 1 CHI to AXI control attribute conversion
CHI
MemAttr[1] |MemAttr[3] [MemAttr[2] |MemAttr[0] [SnpAttr Likel Oder[1] Order[0] | Comment
; \inar:d ArCache[3] | Arcache[2] | Arcache[1] | ArCache[0] | AwCache[3]|AwCache[2]| AwCache[1]
Device Allocate Cacheable |EwA
0 0| 0f 0| 0f 1 1|Device nRnE 0| 0| 0| 0] 0f 0] 0 0
L 0 0| 1 0| 0f 1] 1|Device nRE 0| 0| 0| 1| 0f 0] 0 1
0| 0 1 0 0] X| 0|Device RE 0 0| 0| 1| 0] 0 0] 1]
Non-Cacheable
0| 0 0] 0| 0] X| 0|Non 0 0| 1 0| 0] 0 1 0
Non-Cacheable
0| 0 1 0 0] X| 0 0 1 1f 0] 0 1 1
Non-snocpable
write back no-
0] 1 1] 0| 0] X| 0]allocate 1 0 1 1 0] 1 1 1]
2 Non-snoopable
write back
1| 1] 1 0| 0f X| 0lallocate 1] 1] 1 1] 1 1 1| 1
Table 2 CHI to AXI Memory attribute conversion
CHI AXI1
Order Meaning for RN to HN Meaning for AXIl4 Request-Response
2'b00 MO Ordering Required (8]e]s]
2'b01 RESERVED RESERVED
2'bl0 Request Order/Ordered Write Observation INORDER/DOO
2'b11 Endpoint Order INORDER/OOO
Table 3 CHI to AXI ordering attribute conversion
CHI AXI Comment
N5 Commen
t AxPROT[1]
non-
1|secure 1|non-secure
O|secure O|secure

Table 4 CHI to AXI protection conversion

2023

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

CHI AXI Comment

Excl Comment

Supported Opcodes with Exclusive
1. ReadNoSnp

2. WriteNoSnp
Separate data & response are not supported with Excl as per protocol
0| RespErr field in the response is used for conveying response for exclusive transaction 8]

Table 5 CHI to AXI Excl conversion

e CHI2AXI Layering Architecture:
Figure 3 CHI to AXI Layering Internal Architecture shows the block diagram of CHI2AXI UVM
layering component. This is complete reusable component which does conversion of CHI
transaction items into AXI transaction items. CHI transactions are generated from CHI vip
sequences and converted to AXI transactions from UVM layering component.

subsystem
base test
< s
subsystem ™
env \

chivip \ chi2axi layering \ axi vip
chireq |

comp
conv_ |

Figure 3 CHI to AXI Layering Internal Architecture

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

¢ Flow Diagram:

axi_driver

(1) get_next_item()

||

item_done()

(4a)

_\‘

axi_seqr

choose a transaction
to be executed

seauet=

_(2a) :
[convert chi request to
| axirequest |

(2b)

rgrart cmizaxt
\ on

)
nnnv_seva\‘l

chi_sequence
(1)

start_item(chi_req)

=———— | Randomize chi_req

(2)

finish_item(chi_req)

(4b)
get_response

(optional)

Figure 4 CHI to AXI Protocol Conversion Layering Flow

User will write all tests and sequence in CHI (newer)

1. At the start of run phase axi driver will be ready and waiting for sequence item to
appear. Similarly, test will call a sequence which will randomize a sequence item.

2. Asequence item will be then start on chi sequencer which will first convert @ the
CHI sequence item to AXI sequence item and instead of sending it to CHI driver will
start converted axi sequence item on axi sequencer

3. Axisequencer then pass on this item to driver which will drive the protocol level
transaction.

4. Once done driver will inform sequencer completion of sequence item processing by
calling item_done()“?). Optionally driver can also send response back to driver if
get_response()* is called by sequence.

e Code Snippets:
o Test Case main phase:
As shown in Figure 3 CHI to AXI Layering Internal Architecture, below main function
where actual CHI sequence started in test case which is extended from subsystem
base test.

virtual task main phase (uvm phase phase);
phase.raise objection(this);

2023

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

//start test sequence on the CHI sequencer inside layering component
chiZaxi seqg.start(env.layering env.chiZaxi layering
_comp.chi sqr);
phase.drop objection(this);
endtask : main phase

o Toplevelenv:
As shown in Figure 3 CHI to AXI Layering Internal Architecture, creating the Layering
agent (chi2axi converter) handle in subsystem level env and setting the axi agent
object required for the converter.

layering env =

chiZaxiact pkg::env c::type id::create("layering env",
this);

layering env.set axi agent (axi master agent);

//Analysis port connected to receive the response transaction from AXI VIP.
"AXI RSP CONNECT (axi master agent,layering env)

o Layering Agent:
As shown in Figure 3 CHI to AXI Layering Internal Architecture, chi2axi_layering_comp
implementation :

class chiZaxiact layering agent extends uvm component;
//Declaration of analysis port for chi/axi req/rsp transaction items
uvm _analysis port #(req item c) chi req ap;
uvm analysis port #(rsp item c) chi rsp ap;
uvm_analysis imp axi rsp
(denaliCdn_axiTransaction,chiZaxiact layering agent)
axil rsp port;
//local axi agent handle
axl agent t axi agent;

//Receiving axi rsp transactions from AP
virtual function void write axi rsp(denaliCdn axiTransaction
axi rsp);
axi trans g.push back(axi rsp);
endfunction

virtual task run phase (uvm phase phase);
chiZaxiact conv_seq chiZaxi seq;

chiZaxi seq =
chiZaxiact conv_seq::type id::create("chiZaxi seq");

// connect chi2axi conversion sequences to their respective upstream sequencers
axi sgr = axi agent.seqr;
forever begin
chi sgr.get next item(chi transaction);

chiZaxi seqg.chi trans = chi transaction;

2023

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

// start the chi2axi conversion sequences
chiZaxi seg.start(axi sqr);
chi sgr.item done();

// waiting for the axi response
wailt (axi trans g.size());
Scast(axi rsp transaction,axi trans g.pop front());
axiz2chi rsp translator();
end
endtask
endclass

o Conversion Sequence
As shown in Figure 3 CHI to AXI Layering Internal Architecture, conversion sequence
running in forever loop in Layering component class which is having actual conversion
logic as per Table 1, Table 2, Table 3, Table 4, Table 5.
class chiZaxiact conv_seq extends uvm sequence
(denaliCdn axiTransaction);
‘uvm_object utils(chiZaxiact conv_seq);

virtual task body();
axi trans =
denaliCdn_axiTransaction::type id::create();
start item(axi trans);
chi2axi req translator();
finish item(axi trans);
endtask
endclass

e Results:
o Initiated CHI Transaction:

LinkType denaliChilinkTypeT 32 DENALI_CHI_LINKTYPE_Rn2Hn

LinkInterface denaliChilinkInterfaceT 32 DENALI_CHI_LINKINTERFACE_ FULL

Orientation denaliChiOrientationT 32 DENALI CHI ORIENTATION DOWNSTREAM

SpecVersion integral 3 ‘he

QoS integral 4 ‘ha

TgtID integral 11 ‘hl

SrcID integral 11 'ha

TxnID integral 12 ‘hl

ReqOpCode denaliChiReqOpCodeT 32 DENALI_CHI_REQOPCODE WriteNoSnpPtl

SnpOpCode denaliChiSnpOpCodeT 32 DENALI_CHI_SNPOPCODE_SnpShared

Size denaliChiSizeT 32 DENALI CHI SIZE WORD

Addr integral 64 'ha9cated30c8

SnpAddr integral 64 'h29f13b70f

NonSecure integral 1 'hl

LikelyShared integral 1 'h@

AllowRetry integral 1 'h@

Order integral 2 ‘he

MemAttr integral 4 'he

Data da(integral) 4 -

[0] integral 8 ‘h2b
[1] integral 8 'hb
[2] integral 8 'h7e
(31 integral 8 'hde

Figure 5 CHI Initiated Sequence Items

2023

DESIGN AND VERIFICATION™
V\

CONFERENCE AND EXHIBITION

o Converted AXI transaction:

Name | Value

- awready St
- awvalid S-St

wdata[15:0) 16'h0000->16'h062b
rwiast St0

wvalid St0->5t1
nwready St1--St0
e wste1:0] 2'h0->2'h3
 bresp[1:0] 2h0

bready st1
- bvalid St

S-S0

0->64h0000_Dagc_abed_30c8

st1

n
4h0

Figure 6 Converted AXI Interface fields

e (Case Study 2: Phy bypass component

Ingress
Interface
Sqr
Mon D
(unused) 7
A
Protocol Protocol
Request Response
Converter Converter (De-
(Layering) Layering)
|
Mon
> Seqr
Drv
Outgress
Interface

Figure 7 Phy bypass component

In typical SoC, for subsystems bring up; PHY block develops bottleneck for verification
progress because long initialization and training time. PHY developers do provide bypass
ideas but still it takes extra simulation time to get pass PHY module and do the actual
transaction on output interface. UVM component layering can be used in such case to
eliminate PHY complexity by catching PHY input transaction through a standard

2023

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

monitor, which will call translation function to output protocol and driving converted
transaction through output verification IP on output interface. With phy bypass
component, we can simply skip allinitialization, training and calibration steps and
directly go into data transfer phase.

e Conclusions:

o UVM Component layering provides solution to develop completely reusable
verification component.

o UVM Component layering Left shift’s verification cycle & providing opportunity to
stress various scenarios at Sub-system level TB; while doing so, we can catch issues
in incremental changes done is legacy designs.

o Layering Component can be used at IP/Sub-System level without any limitation.

o This methodology allows seamless integration of RTL as and when its ready.

After availability of RTL, we can optionally use this Layering component as a
transaction reference model.

o This architecture can be extended to do conversion from any to any Bus Protocol
and applications are endless.

