

A Faster and Efficient Timing Constraint

Verification Methodology for GFX SOCs

Vineeth B, Deepmala Sachan
Intel Technology India Pvt. Ltd.

Bengaluru, Karnataka

{vineeth.b|deepmala.sachan}@intel.com

Abstract- It is of the utmost importance to ensure that timing constraints for GFX SOCs are accurate for proper

synthesis results and timing closure so that the design meets the desired performance requirements. A gate-level

simulation (GLS) is traditionally used to verify timing constraints. Simulations such as these require long run times,

offers less coverage, occur much too late in the design cycle, and require a lot of effort to debug failures, which results in a

longer turnaround time (TAT) to uncover and fix timing constraints issues. The paper presents a methodology for

verifying timing constraints at an earlier stage of design cycle that is faster and more efficient. The proposed methodology

includes constraint linting to identify clock propagation issues and unmapped constraints, formal verification of timing

exceptions, generating assertions corresponding to exceptions that fail formal verification, and verification of the

assertions in simulation by running the entire regression suite to identify incorrect timing exceptions.

Keywords—RTL design; Timing constraints; Timing exceptions; Design constraints; Assertions; Simulation;

I. INTRODUCTION AND BACKGROUND

GFX SOCs are complex, high-performance designs with multiple clock domains, numerous functional units,

and intricate interactions between different modules that often involve timing dependencies. The different IP

modules can be coming from multiple internal as well as external vendors and would be delivered along with their

respective timing collateral. However, there is no guarantee that these constraints would hold true when the IPs are

fully integrated into the final SOC as per the design requirements. Therefore, timing constraint verification is very

crucial to ensure design stability by identifying potential timing violations and avoiding issues such as data

corruption, race conditions, and functional failures.

The conventional method to verify timing constraints is gate-level simulation (GLS). In GLS, the gate level

netlist of the design along with respective timing information is simulated using proper testcases to identify any

potential timing issues. However, such simulations require long run times and often offers less coverage [1]. Also, it

occurs too late in the design development cycle and requires lot of effort to debug the failures. This makes it very

difficult to close all the timing violations within the scheduled project timeline and can lead to potential silicon

escapes and costly re-spin of the silicon. Therefore, the several disadvantages of GLS dictates the need for a faster

and efficient methodology for verifying the timing constraints.

The previous efforts include strategies [2] intended to lessen the risk and effort required for GLS while

verifying timing constraints based on the shortcomings discovered during numerous projects. However, these

techniques do not provide a generic solution and only alleviate some of the disadvantages of GLS. The methodology

presented in this paper, on the other hand, provides a quick and effective method for verifying timing constraints,

overcoming the limitations of GLS-based verification, and considerably reduces the time required to find and

resolve all the timing constraint issues, thereby providing a significant shift-left in the overall timing closure of the

design. Section II describes the formal verification methodology, followed by timing exception assertion verification

methodology in section III. The results are presented in section IV based on which paper is concluded in section V.

II. TIMING CONSTRAINT VERIFICATION

A. Proposed Methodology

The proposed methodology for timing constraint verification is depicted in Figure 1. The primary inputs are

RTL file list, HIP collateral, timing constraints, design constraints and the block level configuration file. The HIP

collateral has liberty files corresponding to multiple corners and scenarios for each HIP module and hence if directly

used as input to the constraint verification flow, it can lead to crashes due to memory issues. To avoid such issues,

the HIP collateral must be uniquified by maintaining only a single liberty file for each HIP module before giving as

input to the flow. The timing constraints are provided by the full chip timing team (FCT) team. The block level

configuration file has all the flow options as well as all the TCL variables that are required to properly source the

FCT delivered timing constraints.

During timing constraint verification, the constraints are first mapped to RTL and all the unmapped constraints

are reported. These can be mainly due to following two reasons:

1) Syntax issues

2) Hierarchy mismatches between RTL and netlist

All the syntax issues must be fixed, and the hierarchy differences should be resolved by providing a mapping file

which maps corresponding hierarchies in RTL with netlist. After the constraint mapping is done, several clock

linting checks are performed to identify issues with clock propagation in the design. All the clock warnings should

be reviewed, and the critical issues should be fixed in constraints and appropriate waivers should be added for the

rest of the violations. Once all the unmapped constraints and clock propagation issues are resolved, formal

verification of timing exception is done, and assertions are generated for all the exceptions that fails the formal

verification. The generated assertions are then separated into functional and DFT assertions and must be verified in

functional and DFT simulation regressions respectively.

B. Formal Verification Improvements

There are many scenarios where the flow may require additional inputs to formally verify a timing path. In the

absence of such inputs the number of formally failing exceptions as well as the corresponding assertions generated

would be large and consequently requires huge effort to validate them in simulation. The different methods to

improve formal verification of timing exceptions are discussed below:

Yes

FE to BE

Handoff Stages

RTL Filelist
HIP

Collateral

Formal

Verification

Uniquify HIP

Liberty Filelist

Unmapped

Constraints Waiver

Generation

Clock Warnings

Waiver Generation

Block Settings

File Generation

Clock

Warnings

Verification

Warnings

FCT Review

Constraint Fix

Required ?

Design

Constraints

No

Separate

Functional & DFT

Assertions

Verify

Assertions

Timing

Constraints

Unmapped

Constraints

AssertionsRTL Review

Figure 1: Timing Constraint Verification Methodology

1) Specifying the list of synchronizer cells in the design: The formal verification passes for all timing

paths having synchronizer cell as the end point.

2) Specifying constraints on input ports and asynchronous reset ports impacting formal verification based

on the verification warnings review:

a. Input ports must be constrained to its legal values.

b. Asynchronous reset ports must be constrained to its non-reset value.

In the absence of such constraints, the tool may propagate more clocks and constants throughout the

design than is appropriate for the constraints being verified.

3) Applying constraints from Clock Domain Crossing (CDC) analysis to eliminate non-functional (DFX)

paths from verification.

4) Adding specific endpoint waivers based on RTL feedback where it is ensured by qualifiers that

endpoint metastability is not propagated to the downstream logic.

C. Noise Elimination from Formal Verification

During the formal verification, the tool eliminates noise by identifying the timing exceptions that do not require

formal verification based on certain criteria. The different such scenarios are described below:

1) NO PATH Exceptions: These exceptions for which:

a. No valid startpoints/endpoints were found in the design, or they are not clocked.

b. There is no sensitizable combinational path found between startpoint and endpoint.

2) SKIPPED Exceptions

a. Async Clocks: These are exceptions having asynchronous launch and capture clocks.

b. I/O Ports: These are exceptions that cannot be verified at current block level and can only be

verified at a higher level where the tool is able to see the logic that drives the input ports.

c. MCP Hold < Setup: These are MCPs having hold shift value less than setup shift value of a

corresponding MCP. In such cases the hold MCP does not relax timing on the path anymore

than the setup MCP already does.

d. Duplicate: Any duplicate exceptions are skipped from formal verification.

3) WAIVED Exceptions: These corresponds to timing don’t care exceptions that cannot be formally

proven and should be excluded from the verification process upfront.

II. TIMING EXCEPTION ASSERTION VERIFICATION

A. Proposed Methodology

The proposed methodology for timing exception verification is depicted in Figure 2. Once the formal

Unmapped

Constraint Waivers

RTL Filelist and

HIP Collateral

Clock Warning

Waivers

Timing Constraints

Formally

Failed MCPs

Formally

Passed MCPs

Assertion

Generation
Assertions

Simulation

PASSED

Assertions

FAILED

Assertions

Assertions

Not Covered

Entire Regression

Suite

Design Constraints

Add Testcases to

improve Coverage

Report Assertion

Failures to RTL/FCT

team to fix the MCP

Figure 2: Timing Exception Assertion Verification Methodology

verification of timing exceptions is completed, assertions are generated for all the exceptions that has failed the

formal verification. These assertions capture the functional behavior of the design that must be satisfied for the

exceptions they are associated with to be correct. The assertions are then verified in functional simulation by

running the entire verification regression suite of the design. The false path (FP) assertions check that the condition

required to propagate a transition from startpoint to endpoint can never be true. The multi-cycle path (MCP)

assertions check that when the startpoint transitions then, either in that cycle the condition required to propagate the

change from the startpoint to the endpoint should not be true, or in the next cycle the endpoint should not transition.

Thus, any assertion failure in functional simulation regression would represent real-world situations where the

specified exception behavior does not hold. In this way, all the incorrect timing exceptions can be identified from

the original timing constraints.

B. Plugging-in Assertions in RTL Simulations

The standard cells used in the design have different implementations in RTL synthesis and simulation models.

Since the assertions are generated from the synthesis model, if they are directly used in simulation, then it would

result in cross-module reference resolution errors (XMREs). Such issues can be resolved by restricting the tool from

tapping the internal signals of standard cells and refer signals only at the boundary of standard cell wrappers while

generating the assertions. However, the signals inside standard cell wrappers are still tapped if there are any

sequential elements present between the signal and its input ports. In such cases, an additional mapping file must be

provided which maps the synthesis hierarchy to the corresponding simulation hierarchy so that the assertions are

generated with proper simulation hierarchies and can be directly used in simulation.

C. Signing off the Uncovered Assertions

The sign-off criteria for uncovered assertions is shown in Figure 3. The assertions that remain uncovered during

functional simulation regression can be because of the following two scenarios:

1) Exception startpoint has not toggled.

In such cases, all the untoggled exception startpoints must be reviewed and confirmed if these are

indeed static signals or not. If they are, they must be constrained as such for the formal verification so

that formal verification passes for all the timing paths with static starpoints and assertions are not

generated for these paths. If they are not static, then proper testcases should be run that can cover the

startpoints and verify the assertions.

2) Launch clock not reaching the startpoint.

In such cases, all the uncovered assertions must be reviewed and confirmed that the launch clocks are

not expected to reach the respective startpoints. Otherwise, additional testcases must be run to cover

these assertions.

Assertions

Assertion

Verification

in

Simulation

PASSED

Assertions

FAILED

Assertions

UNCOVERED

Assertions

Timing

Exception

Formal

Verification

Startpoint Not

Toggled

Launch Clock Not

Reaching Startpoint

If STATIC

If Expected

Add Additional Testcases

to Cover the Uncovered

Assertions

Add Design

Constraint

No

No

Yes

Yes

Sign-off

Figure 3: Uncovered Assertions Sign-off Criteria

IV. RESULTS

 The GFX SOC design under consideration had nearly 2M timing constraints including more than 600 master

clocks, 1100 generated clocks and 20K MCP specifications. The timing constraint formal verification was done at

the partition level as per the proposed methodology. The unmapped constraints and clock propagation issues

reported were reviewed with FCT team and the critical ones were fixed in the timing constraints while waivers were

added for the rest of the violations, thereby ensuring zero clock propagation issues and 100% timing constraints

mapping across all the SOC partitions by the time of final RTL milestone release. The several unmapped constraints

and clock warnings that were fixed in the timing constraints are tabulated in Table 1.

 The MCP formal verification results are tabulated in Table 2. More than 5K MCPs have failed the formal

verification corresponding to which a total number of 250K assertions were generated. The formally failed MCPs

were separated into functional and DFT related MCPs after reviewing with DFT team. Out of the 5K formally failed

MCPs, 72 were functional (non-DFT) MCPs corresponding to which there were 6602 assertions in total. These

assertions were integrated into functional simulation regressions where 154 assertion failures were observed. All the

assertions failures in simulation were correlated back to 7 MCPs. The simulation failures were debugged with the

RTL team after generating FSBD for all the failing testcases and the incorrect MCPs were fixed in the timing

constraints and were incrementally verified. Rest of the assertions have either passed or remained uncovered in

simulation. For the uncovered assertions, the startpoints were reviewed with RTL team. For all the non-static

startpoints, additional testcases were run and got them covered while the rest of the startpoints were reviewed to be

static signals. The assertion validation results are tabulated in Table 3.

Table 1: Unmapped Constraints and Clock Warnings Fixed in Timing Constraints

Issue Description No. of Issues Fixed

1 Syntax Error in SDC Constraint 5

2 Net has clock-like behavior, but no clock propagates to it 7

3 Clock propagation was stopped by a clock 2

4 Generated clock has an invalid edge specification 1

5 There is a clock-to-clock false path, but the clocks have the same master clock and are

not exclusive

16

6 The clock crossing from clock to clock has been specified as logically exclusive, but

there is a nonexclusive crossing between these clocks

2400

7 Clocks have been specified as physically exclusive, but they can co-exist in the design

at the same time

2

8 Clocks are logically exclusive, but they have not been specified as such 17

Table 2: SOC MCP Formal Verification Results

Total Number of

MCPs

No. of

PASSING

MCPs

No. of

FAILING MCPs

No. of

NO PATH

MCPs

No. of

SKIPPED MCPs

No. of

WAIVED MCPs

21743 12774 5879 145 753 145

Table 3: SOC Functional (non-DFT) MCP Assertion Verification Results

No. of Functional

(non-DFT) MCP

Formal Failures

No. of Assertions Generated

corresponding to Functional

(non-DFT) MCPs

No. of

PASSED

Assertions

No. of

FAILED

Assertions

No. of

UNCOVERED

Assertions

No. of MCPs

corresponding to

Assertion Failures

72 6602 1494 154 4954 7

V. CONCLUSION

 The proposed methodology has provided a faster and more efficient way for timing constraint verification that

can be deployed at early stages of the design development cycle. The proposed methodology has enabled to identify

and resolve all the unmapped constraints and clock propagation issues as well as formally verify the timing

exception by the final RTL milestone release, thereby achieving significant shift-left in the overall timing closure.

All the incorrect timing exceptions were identified by assertion verification in the functional simulation before the

timing closure of the design, preventing any potential silicon escapes and costly re-spins. Therefore, the proposed

methodology has improved the overall accuracy and reliability of timing constraints, leading to a higher quality

design. The proposed methodology is scalable, and its application can be extended beyond the GFX SOCs. Its

principles and techniques can be easily applied to other complex SOC designs, leading to improved timing

constraint verification efficiency and reduced time-to-market for a wide range of semiconductor products.

REFERENCES

[1] A. Khandelwal, A. Gaur and D. Mahajan, "Gate level simulations: verification flow and challenges," EDN, 5

March 2014. [Online]. Available: https://www.edn.com/gate-level-simulations-verification-flow-and-

challenges/.

[2] P. Limmer, D. Moeller, M. Mueller and C. Roettgermann, "Validation of Timing Constraints on RTL: Reducing

Risk and Effort on Gate-Level," in DVCON Europe, 2016.

