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Abstract- Conventional Simulation environment follows Register Transfer Level (RTL) based design approach for the 

verification of SoC chipsets as it offers more granularity and profound insight of the design. But this type of verification 
approach is vulnerable in identifying the delays, switching activity for power estimation. Hence, in order to tackle these 
kind of potential issues, Gate Level Simulation is employed to evaluate certain Intellectual Property (IP) features of a 

System on Chip (SoC). However, it is tedious and time-consuming as the verification of a single scenario takes weeks to 
complete in Gate Level Simulation (GLS) environment. Gate Level Emulation (GLE) approach is efficient and effective as 
emulator runs on the actual hardware, driver clock frequency is in the range of MHz as opposed to the simulation which 

is in Hz range, thus making the execution and validation time faster. The verification results obtained is more accurate 
and reliable as the emulator is close to the actual silicon. In this paper, we will delineate the techniques of integrating the 
Netlist Design files in emulation environment, validate a set of use cases, and compare the results with simulation based 

verification. The verification time is significantly improved by an order of 70-90X in Gate Level Emulation. The emulator 
on which these scenarios are executed is Synopsys ZeBu [5]. 
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I. INTRODUCTION 

As the complexity of design is increasing rapidly across various SoCs, the time to market of the chip is also 

getting delayed, and the validation of SoC features after the silicon tape-out takes a lot of time. Even if some bugs 

are identified at this stage, the re-spin of the SoC results in a huge time loss and would incur a significant financial 

loss to the Company. Therefore, Pre-Silicon Verification is crucial as it allows for the identification of defects and 

their resolution prior to chip production. Simulation and Emulation environments are widely used in Pre-Silicon 

verification to verify the SoC functionality before chip fabrication. 

Verification is usually performed in different levels of design abstraction. The Register Transfer Logic (RTL) 

based verification represents the behavioural aspects and functionality check of an initial design. As shown in the 

Fig. 1, it takes less time to execute the test scenarios and provide the design with better understanding and debug 

support. However, the coverage is limited and this level of abstraction affect the accuracy of the results obtained as 

it omits some intricacies of the underlying circuit and non-idealities, physical effects present in real circuits are not 

taken into consideration. Another approach is Transistor Level Verification in which most of the logics are designed 

at gate level or higher, using well-tested standard cells. However, custom logic arrays are designed at the transistor 

level rather than the gate level which delivers more precise output of a design. Though this type of verification 

approach offers high accuracy and detailed analysis, but requires significant effort, expertise and computational 

resources. It also adds complexity to the verification process. Hence, the Gate Level Verification approach is used to 

overcome the trade-off between the aforementioned levels of design abstraction. As the circuit connections of an 

electronic chip are in the form of gates, this verification is henceforth called Gate Level Verification which 

represents the logical aspects of design and comes after the synthesis stage. It plays a crucial role in validating the 

correctness, timing behaviour and physical compatibility of the design. It also helps uncover the low-level bugs, 

optimize the design and ensure the proper functioning of complex SoCs.   



 
 

 
Figure 1: Different Abstraction Levels of Verification 

In this guide, we propose a methodology to integrate the full SoC netlist on Emulation environment for complex 

SoCs having billions of gates. We will demonstrate a set of application scenarios executing on GLE and compare 

their execution time between GLE and GLS environment.  

 

II. GATE LEVEL NETLIST 

A network or a net in short form is a grouping of two or more connected elements. A netlist in an electronic 

design describes individual logic gates and their interconnections. It specifies the gates used in the circuit, their input 

and output connections, and the logical functions performed by each gate. A Gate Level Netlist is a representation of 

a design at the lowest level of abstraction. 

The connections between each component in the design are listed in a machine-readable file called a netlist. The 

netlist representation of a circuit, which is typically obtained using logic synthesis, is referred to as being at the gate 

level. Thus, RTL emulation is pre-synthesis, whereas Gate Level Emulation is post-synthesis. A complete 

connection list of gates and IP models with full functional and timing behaviour can be found in the netlist view and 

a typical Netlist representation of a circuit is as shown in the Fig. 2.  

 
Figure 2: Typical Netlist Representation of a Circuit 

 

III. RELATED WORK 

Kriti Sundar Das, Padmini Prakash, Abhimanyusinh Zala [1] from Intel India Technology Pvt. Ltd., Bangalore, 

India have proposed a vector-mode based GLE for Design-for-Testability (DFT) like Memory Built-In Self Test 

(MBIST) and Automatic Test Pattern Generator (ATPG) pattern sets in 2021 IEEE International Test Conference 

India (ITC India). But the authors have confined and limited to validate the DFT features only that too on smaller 

SoCs with a gate count of around 50M. 

IV. GLE IMPLEMENTATION 

A. Implementation Pre-requisites 

1. Standard Cell Libraries:  

Standard Cell Libraries are represented as collections of predefined cells with their corresponding 

connectivity information that are used to design complex circuits. These elements typically include Cell 

instantiations and of different cell types such as logic gates, flip-flops and latches. Some Standard Cell 



 
 

Library may also contain specialized cells like multiplexers, decoders, adders and more. These libraries must 

be passed along with the design netlist files failing which the compilation would fail in the front-end parsing 

stage.  

2. Memory Models: 

Gate Level memory models describe the behavior and functionality of memory elements using a 

combination of logic gates and their interconnections. These models are usually optimized for specific 

technology node. The technology node affects the characteristics and properties of memory models including 

their performance, power consumption and reliability. Hence, the memory models are to be selected based on 

the target technology node to ensure it meets the performance and power requirements. 

Also, the memory models have to be compatible and synthesizable with an emulation compiler. 

3. Memory and Physical Layer (PHY) I/O Models: 

RTL Memory and PHY I/O Models provide a higher level description of the behavior and data flow across 

memory elements, interfaces (Double Data Rate Physical Layer DDR PHY) while Gate Level Memory and 

PHY I/O Models provide a low level representation capturing the actual logic gates and their characteristics. 

As these models are different from RTL to Gate Level, Netlist compatibility I/O Models must be considered 

for our compilation. 

Actual cell delays are to be maintained in the Netlist I/O Models for proper read and write operations. 

These models must be updated with synthesizable logic and compatible to our Emulation environment. 

To support Scan Chain testing, these synthesized Netlist models should contain the Scan logics. 

4. RTL to Netlist (R2N) Mapping Report: 

This report deals with the signal polarity and gives the information on how the signals are connected in 

RTL and Netlist. It is essential to have this report for the validation of any scenario, failing which leads to the 

undesired results. 

B. Implementation Flow 

 
Figure 3. Netlist Database Generation Flow 

 

As shown in the Fig. 3, the GLE based compilation is implemented as follows:  

1. Design Preparation: 

Design Netlist Files, Synthesizable Memory models, Standard Cell Libraries, Synthesizable Analog Models 

are the inputs required to generate a Design Under Test (DUT) Database. Memory Models contain 

synthesizable equivalent of Application Specific Integrated Circuit (ASIC) memory cells. All the Analog 



 
 

models of the SoC are converted into synthesizable models. In the Test Bench we instantiate DUT and all 

requisite Transactors in the SoC. There are design primitive library files which contains cell information of 

GLE Netlist. This must be given as Verilog input to the emulator front end process. 

2. Front-End Process: 

The goal of the Front-End process is to extract the necessary information from the design source code, 

perform basic checks, optimizes and mapped to utilise the Field Programmable Gate Array (FPGA) resources 

effectively. 

Design Netlist is elaborated and synthesized to Electronic Design Interchange Format (EDIF), and the 

relevant gates are optimized during Front-End compilation process. It is then converted to FPGA primitives. 

The detailed steps that are involved in the Front-End process stage is as shown in the Fig. 4 

 
Figure 4: VCS Front End Flow 

i. Compile:  

    Compilation is the process of the converting a Hardware Description Language (HDL) such as 

Verilog Hardware Description Language (VHDL) into a configuration file that can be used to program 

in the FPGA devices. This process is crucial as it transforms the high level design description into a 

specific configuration that can be programmed onto the FPGA. 

ii. Elaboration:  

    The Elaboration stage improves performance even further. It converts the RTL code into modules. 

This technique maps the logic with General Technology (GTECH), a technology independent cell. It 

determines whether the design is compatible and if it is not, the compilation flow is terminated.  

iii. Optimisation:  

    Optimisation improves the efficiency and speed of emulation. This process eliminates the 

unnecessary circuits which are not been used and helps in reducing the gates occupancy as shown in 

Fig. 5. Thus, this process aims in minimizing the hardware resources utilization whilst maintaining the 

emulated design accurately. 

 

 
Figure 5: Optimisation Techniques 

iv. Synthesis:  

        In the emulation flow, synthesis refers to the process of converting a high level hardware 



 
 

description language to lower level representation that can be programmed and fit into a FPGA device. 

During synthesis the HDL code is analysed and optimised to generate a netlist representation. 

v. Mapping:  

  In this Mapping stage, the HDL code is mapped onto the specific resources available in the target 

FPGA device. This step determines which logic elements and interconnections in the FPGA will be 

used to implement the desired functionality. 

 

3. Back End Process: 

In Back-End compilation process, the tool inserts all the logic related to clocking and memory 

mapping. The EDIF Netlist from output of the Front-End process is partitioned to multiple FPGA modules.  

i. Clocks: 

The emulation compiler identifies and analyses the different clock domains present in the design 

for handling the clocks in back-end process. To ensure the proper synchronization, the compiler inserts 

appropriate synchronization mechanisms. It also handles the timing of events or interrupts within the 

design to ensure that events occur at the expected time relative to the system clocks. 

ii. Memory Models: 

The compiler analyses the memory architecture of a target system and this process ensures that 

memory accesses in the design are handled correctly and accurately reflect the behaviour of original 

hardware. 

iii. Partitioning: 

The design Netlist file is divided into separate partitions or modules. Each partition represents a 

distinct unit of functionality or any component of an input file that can be executed independently. 

4. Place and Routing: 

Place and Route refers to the combined process of placing the logical components of a design onto 

specific locations on the FPGA chip and routing the interconnections between these components. 

i. Placement (Place):  

Placement involves determining the physical location of each logical component (Gates, Flip-

Flops, memories, etc.) on the FPGA chip. The placement step aims to assign the components in a way 

that optimizes for factors like signal routing, resource utilization, and performance considerations. 

ii. Routing (Route):  

After the placement step, the routing process establishes the physical connections (wiring) 

between the placed components. It determines the routing tracks, which are the paths through which 

signals travel to connect the inputs and outputs of the various components. 

The generated bit stream files are finally loaded onto the emulator hardware at run time. This involves 

configuring the emulator hardware with the appropriate settings, initializing the design and establishing the 

communication with any test benches or some external debuggers. 

 

V. GLE ACCELERATION 

A. Compile Time Acceleration 

Compilation of Netlist based designs takes longer than the conventional RTL design compilation. This is 

because of the following reasons: 

1. The complexity increase in Gate Level designs requires more computational resources and time for synthesis. 

2. The finer granularity of Gate Level designs results in a large number of components to analyse, optimize 

which leads to higher compile time. 

3. The Gate Level designs have larger netlist sizes compared to RTL designs. Therefore, processing larger 

netlists requires more computational resources and time during compilation. 

 

Resolution: 

A Multi-core and Multi-Thread support is used which helps in saving the compile time in an emulator. By 

leveraging the capabilities of multiple cores and threads, emulator can distribute the workload across them, 

enabling parallel processing and reducing the overall compilation time. 



 
 

 
Figure 6: Netlist Compilation Time Comparison 

B. Run Time Acceleration 

The insertion of Scan Cells in a design can potentially affect the performance of an emulator due to the 

several listed factors: 

1. Insertion of Scan cells adds additional circuitry which increases the complexity and size of the design. This 

can lead to the slower Emulation speeds. 

2. Scan cells can introduce additional flip-flops and longer signal paths that impacts the critical paths in the 

design. Critical paths are the longest paths in a circuit that determine the maximum operating frequency. 

Hence, it limits the achievable operating frequency. 

3. Insertion of Scan cells can introduce additional clock domains and clocking requirements in the design. 

Ensuring proper synchronization and timing between these clocks in Emulation can be challenging which 

results in degradation of Performance. 

Resolution: 

In order to overcome this and enhance the driver clock frequency, an approach wherein D Flip Flops for a 

set of test signals in different blocks of SoC are added to be sampled by the fastest design clock. This helps the 

compiler to improve the compile time and performance as it splits the timing paths.  
 

TABLE I: COMPILE TIME AND DRIVER CLOCK FREQUENCY COMPARISON 

 
 

 
Figure 7: Driver Clock Frequency Comparison 

The increase in the driver clock frequency and less compile time after optimization techniques can be observed 

from the Table I and Fig. 1. 



 
 

VI. GLE APPLICATION SCENARIOS 

1. Logging the Scan Information (SCANDUMP) from any block or entire SoC directly from an external 

debugger, which is more reliable. (Scenario 1) 

2. Switching Activity Interchange Format (SAIF) based Power Estimation. (Scenario 2) 

3. To determine whether a design is functional. (Scenario 3) 

A. Scenario 1 

Another use case is SCANDUMP of a SoC from an external debugger. This mechanism allows us to log 

the real scan data of an individual block or multiple blocks through debug port in Joint Test Action Group 

(JTAG) protocol. Each block (Camera, CPU, and USB) has its own DFT circuit and all these blocks are inter-

connected with TOP JTAG. This TOP_JTAG has an eternal debug interface through which the scan data can be 

captured from an external debugger which is essential in case of a SoC hung to analyse and detect the 

malfunction of a SoC. 

To implement the above application scenario, the methodology as shown in the Fig. 8 has to be followed. 

B. Scenario 2 

SAIF file formats are used to represent the switching activities in SoCs. It provides information about the 

toggle count of each signal which is valuable for estimating power consumption. It is vital in assessing the 

power consumption at different stages of verification thereby making the decisions for Power Optimization. 

C. Scenario 3 

Ensuring that the primary processor boots up successfully without any uninitialized values. This is 

accomplished by asserting a Power-On Reset signal, after which the Central Processing Unit (CPU) proceeds to 

Reset Vector locations to fetch and decode the instructions. The bootloader then executes and initializes the 

processor internal registers, memory controllers and cache. 

 

Figure 8: SoC SCANDUMP Capture Mechanism 

VII. RESULTS 

Observations with regard to Exynos Flagship SoC is as follows: 

i. SoC SCANDUMP capture in 54mins. 

ii. Accurate switching activity capture in 42mins for a Multimedia block of SoC 

iii. Basic Processor boot up sequence is completed in 12mins. 
 



 
 

TABLE II. GLS VS GLE TIME COMPARISON 

Application 

Scenarios GLS (Hrs) GLE (Hrs) 

Scenario 1 UNREALISTIC 0.9 

Scenario 2 UNREALISTIC 2.2 

Scenario 3 12 0.25 

 

Figure 9. GLS vs GLE Execution Time Comparison 

VIII. CONCLUSION AND FUTURE WORK 

A Methodology flow is proposed for integrating full SoC netlist files to create a compiled database with the aid of 

an emulator compiler and map these files on the actual hardware for complex SoCs consisting of billions of gates. 

Additionally, real use case scenarios like capturing the SCANDUMP of a SoC which is vital for debugging in 

case of a SoC hung, precise switching activity capture for accurate Power Estimation, CPU Boot up are validated 

efficiently. As compared to simulation that takes days to complete the verification, execution time for emulation 

takes only in order of minutes. As a result, we are able to effectively validate the long-running scenarios with Gate 

level netlist enabled on emulation environment and detect the SoC issues early during the pre-silicon stage only. 

There’s no support of full timing Standard Delay Format (SDF) currently in Emulation environment and all the 

delays will be ignored by the compiler. Hence, the zero delay or unit delay netlist files are used to validate all of the 

scenarios.  

There’s a mechanism to accurately capture the prime power using a glitch generated on the ZeBu empower 

emulator test bench. This will be examined as a future enhancement to the emulation environment which assists in 

the Power Analysis. 

In advancements to these, we will be working on Unified Power Format (UPF) enablement integrated with GLE. 

This helps us to validate all the power scenarios.  
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