

Code-Test-Verify all for free –

Assertions + Verilator

Hemamalini Sundaram, Tech lead

Kasthuri Srinivas, Sr. Verification Engineer

 Supriya Ummadisetty, Sr. Verification Engineer

VerifWorks Pvt Ltd

Abstract- Protocols such as APB and AHB are widely used in System-on-Chip (SoC) designs. SystemVerilog Assertions

(SVA) are excellent candidates to capture these protocol requirements in concise, unambiguous, executable b specification.

Though these are freely available standards, lack of opensource tools supporting concurrent assertions has been a

significant hindrance to widespread use of SVA and checkers in general. Another challenge is the significant run-times

associated with debugging of such complex assertions especially when simulated with large SoC designs. In this work, we

present a verification methodology for the AMBA APB /AHB protocol checkers using SystemVerilog Assertions (SVA)

developed completely using open-source simulator – Verilator. We also present Unit testing as the way of testing each

assertion in isolation for correctness. The entire code base will be made available online for free

I. INTRODUCTION

Simulation-based design verification is a familiar method of functional verification. For this we need good and

efficient simulators. Simulators are software programs which mimic the DUT behavior and will run the verification

code. Though the simulation helps in the design analysis without risk, refinement of the design, enhancing the

accuracy, etc., cost of which is very high. The primary motivation for this paper is to enable the industries to explore

open-source simulators.

In this paper, Verilator- a super-fast open-source simulator is used along with advanced verification technologies such

as Assertion based Verification, Unit Testing, Debug automation etc. SVunit is also an open-source test framework

which supports the Verilog/SystemVerilog code development and UVM Verification Testbenches. SVUnit is also

used to write Unit Test Cases to verify Pass/Fail scenarios. One more open-source tool, SV waveterm is used to debug

the waves. The major advantage of this waveform debugging tool is that it provides the waveform in the logfile which

will help us save the debug time with a stand-alone waveform viewer.

One good application of this work can be the academia that can now learn SVA for free using opensource tools. Other

applications would be for teams to use Verilator as a development platform, especially for RTL designers.

II. IMPLEMENTATION APPROACH

The first challenge was to modify existing CIP code to work with the limited support of SVA features in Verilator.

Second was to port SVUnit framework (A SystemVerilog class-based Unit test framework) to compile in Verilator.

Once basic SVA is running in Verilator, we describe the challenge of “correctness” of each assertion by developing

Unit tests for PASS and FAIL scenarios for each property.

Test cases were developed in SVunit to verify the SVA that is used in checker IP. These test cases are developed for

both PASS and FAIL conditions of SVA.

III. CHECKER IP (CIP) IN VERILATOR

Checker IP is an IP that captures properties of a given protocol in the form of SystemVerilog asserts, covers and

assumes [T1, R1]. Motivation behind creating a CIP is to focus on the expected outcome of the DUT in terms of

expected behaviors, unexpected protocol violations, desired scenarios etc. In a CIP, we separate the “does-it-work”,

“are-we-done” queries from the means of doing it (either simulation or formal).

For standard protocol, such as ARM’s AMBA family [T1, R2], it is common to define a set of compliance checks

[T1, R3] from the specification itself. Given the number of systems being built around standard buses, it is imperative

for the industry to be able to leverage on a standard CIP that checks for a list of well-defined compliance rules.

However, a set of properties and asserts around them is not a reusable piece of CIP – they are simply a collection of

properties. There are several techniques and guidelines in making such a list of properties into an IP (CIP). To

differentiate from traditional VIP, we use the term Checker IP - CIP. CIP, strictly speaking, is a sub-set of standard

VIP. This CIP is designed such that it is Verilator compatible. The table below shows the assertion checks that is

developed for APB.

TABLE I: ASSERTION CHECKS DEVELOPED FOR APB

IV. UNIT TEST FOR EACH ASSERTION USING SVUNIT TESTING FRAMEWORK

Assertions are “checkers” of your design, or the core of “verifier” – but who will verify that verifier? Given that a

comprehensive CIP is a complex code, it requires thorough verification itself. We have developed a series of unit tests

inside Go2UVM framework [F3] to tackle this problem which is explained further in this section.

In a nutshell, this involves creating Pass and Fail trace for each assertion with a simple UVM test. These unit tests

should be smart enough to be self-checking. We have used a UVM report mocker from open-source SVUnit

framework [6] to self-check each unit test around assertions.

Consider APB protocol requirement on signal psel and penable, as shown in Figure –

Figure 1. APB PSEL AND PENABLE REQUIREMENT

The scenario here is whenever psel is high, in the following clock cycle penable should be high. The traditional SVA

can be coded as seen in the figure (F2) below

Figure 2. TRADITIONAL SVA CODE FOR ONE OF THE CHECKS

.

Unit test for the above assertion using SVunit along with GO2UVM framework macros is coded as follows

Figure 3. ASSERTION CHECK FOR psel and penable using SVUNIT.

V. RESULTS

The following screen shots show the results that we have obtained from executing the SVA with cip_enabled Verilator

simulator, SVunit test framework and SVwaveterm as a waveform debugging tool which are all open source. Figure

4 and 5 Shows the results of different assertion checks that have been coded for APB scenarios.

Figure 6 shows the waveform in SV Waveterm. We can see how the waveform is visible in the log file for an easy

and time saving debug.

Figure 4. PASS / FAIL RESULTS OF THE ASSERTIONS CHECKS

Figure 5. LOG FILE OF THE RESULTS

Figure 6. SV WAVETERM – WAVEFORMS IN THE LOG FILE

VI Summary

Design Verification with SystemVerilog Assertions has been popular in the industry for well over a decade. While

simple checkers can be developed quickly and used across design entities, a comprehensive CIP (Checker IP) uses a

good architecture and set of coding guidelines to keep them reusable. In this paper, we have shared our experience of

converting a plain set of properties to a reusable CIP and integrating into Verilator. We also shared how we used a

self-checking unit test framework to verify each assertion in a CIP.

REFERENCES
[1] SystemVerilog LRM - http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
[2] ARM AXI specification – https://www.arm.com/products/system-ip/amba-specifications
[3] ARM releases assertion models - https://www.arm.com/about/newsroom/12266.php
[4] Experiencing Checkers for a Cache Controller Design

http://systemverilog.us/DvCon2010/DvCon10_Checkers_paper.pdf

[5] Accellera Open Verification Library (OVL) http://accellera.org/activities/working-groups/ovl
[6] SystemVerilog Assertions handbook, www.systemverilog.us, www.verifnews.org/publications/book
[7] “What are $past compared to on first clock event?” http://bit.ly/2hkb7nV

[8] Go2UVM open-source test layer, www.go2uvm.org.

[9] SVUnit - http://www.agilesoc.com/open-source-projects/svunit/

http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/about/newsroom/12266.php
http://systemverilog.us/DvCon2010/DvCon10_Checkers_paper.pdf
http://accellera.org/activities/working-groups/ovl
http://www.systemverilog.us/
http://www.verifnews.org/publications/book
http://bit.ly/2hkb7nV
http://www.go2uvm.org/
http://www.agilesoc.com/open-source-projects/svunit/

