Enhanced VLSI Assertion Generation: Conforming
to High-Level Specifications and Reducing LLM
Hallucinations with RAG

Hafiz Abdul Quddus*, Md Sanowar Hossain, Ziya Cevahir, Alexander Jesser, Md Nur Amin
Institute for Intelligent Cyber-Physical Systems (ICPS)
Heilbronn University of Applied Sciences
Kiinzelsau, Germany
{hafiz-abdul.quddus,md-sanowar.hossain, ziya.cevahir, alexander.jesser, md-nur.amin} @hs-heilbronn.de

Abstract—Assertion-based verification (ABV) is widely used
in VLSI design. However, manual assertion writing is time-
consuming and may not adhere to high-level specifications. Gen-
erative Al techniques like LLMs automate this but can introduce
hallucination. We propose an automatic assertion generation
framework using Retrieval-Augmented Generation (RAG) and
LLMs. It generates assertions from designer-tailored specifica-
tions, ensuring conformance with high-level specifications and
reducing hallucinations. We applied this to an AXI4-Lite protocol
case study, verifying SystemVerilog Assertions (SVAs) against
golden RTL using Bounded Model Checking (BMC). Results
showed improved accuracy, conformance, and integration with
ABV.

Index Terms—Automated-Assertion Generation, Large Lan-
guage Models (LLMs), Retrieval-Augmented Generation (RAG),
High-Level Specifications (HLS), Designer-tailored Specifications,
SystemVerilog Assertions (SVAs), VLSI Design Flow, Bounded
Model Checker (BMC).

I. INTRODUCTION

The Very Large Scale Integration (VLSI) design flow is
pivotal for the development of complex chips, offering a
structured view of design stages and Electronic Design Au-
tomation (EDA) tools to stakeholders [1]. The process starts
with collecting customer requirements and system constraints
by the system architect to prepare a high-level specification
(HLS) document(s), typically in natural language. The de-
signer interprets this HLS document to develop the RTL de-
sign. Additionally, the HLS serves as the golden specification
in the verification flow. However, the ambiguity inherent in
the natural language of HLS can lead to misunderstandings
and potential bugs. The combined design and verification flow,
shown in Fig 1, illustrates that the understanding gap between
the designer and architect can introduce errors in subsequent
stages, such as RTL to Netlist and physical layout translations.
There can be several industry standards for specification analy-
sis and languages to fill the gap in understanding [2]. However,
design implementation conforming to the HLS remains an
open challenge.

This work was funded by the BMBF of Germany (Grant 16ME(0783) under
the Ki4BoardNet project. See https://www.edacentrum.de/ki4boardnet/. The
authors are solely responsible for the content.

*Corresponding Author
Implementation: https://github.com/HafizAQ/RAG-LLM-SPC-SVA

High-level
Specifications .
~d - --- S ~

<Lt - = N
ST = - & =
- = = Co U 35
2. = - heN s
: : Sa £
@ : e : - P) 3
= = > 5
Designer/ - Gap in = Arcr: e
Verification Engineer = nder 9| = 2% v <
v A 4 3
CE N =

ZJ = Design Intent

Pre-RTL 'D‘ Verification v

LU
RTL Design &
Implementation

Implementation
Verification

Fig. 1. Understanding Gap with VLSI Design & Verification Flow:
Specification-Centric Architect vs. Implementation-Centric Designer

Assertion-based verification (ABV) has emerged as a pow-
erful technique that enhances controllability and observability
in the design, making it highly effective for functional verifica-
tion and bug detection in VLSI [1]. Similarly, both simulation
and formal design validation settings can benefit from the
application of ABV. This paper focuses on formal ABV, where
no testbench is needed. To explore the RTL design state space
against predefined assertions, ABV employs Formal Property
Verification (FPV) with model checking [3]. Moreover, ABV
can be applied at both pre-RTL and RTL stages for verifying
design intent and implementation, as shown in Fig. 1. Under
ABY, the designers-tailored specification sentences are trans-
lated into assertions to verify the design intents and RTL im-
plementation processes. However, manually writing assertions
is time-consuming and error-prone. Even with automation,
incorrectly defined assertions can lead to false positives in
design verification [4]. Although generative Al, such as LLMs,
can generate assertions from design specifications, it can be
hallucinations [5].

We summarize the challenges in two ways: first, assertion
generation on the designer side should be consistent with the
HLS document to bridge the gap of understanding between
architects and designers, and second, to address the hallucina-
tion in automated assertion generation using LLMs. This paper
addresses these challenges by combining transformer-based

LLMs with the NLP approach as Retrieval-Augmented Gener-
ation (RAG) for assertion generation. Our framework leverages
RAG to store and retrieve HLS document(s) contextually
and consult them for conformity. HLS documents, as RAG’s
contextual knowledge, are used with LLM’s expressiveness
to automate assertion generation. They establish conformance
with HLS and reduce hallucination by semantically providing
contextual awareness. We implement the proposed approach
to the open-source AXI4-Lite protocol and evaluate it with a
bounded model checker (BMC). The results demonstrate the
effectiveness of our strategy in generating quality assertions
consistent with HLS, reducing LLM hallucinations, and en-
hancing VLSI design verification.

The rest of the paper is structured as follows: Section
IT discusses related work on automated assertion generation,
highlighting the research gap. Section III details the proposed
approach, while Section IV describes the experimental setup,
implementation, and evaluation. Section V presents the various
aspects of our approach relevant to the EDA community.
Finally, Section VI concludes with potential future work.

II. RELATED WORK

Poorly written assertions can deceive the ABV process,
requiring high-quality assertion writing [4]. Assertion quality
can be determined by its coverage through the design corner
cases and how well it conforms to its specification [4]. Align-
ing verification with high-level specifications is also critical
[2].

To address these challenges, the literature highlights three
main approaches for writing quality assertions: manual/
language-based, template-based, and Al-based [3]. The manual
way of writing assertions is confined to specific languages such
as SystemVerilog Assertions (SVA) [4] and Property Specifi-
cation Language (PSL) [6]. These approaches are very time-
consuming and have become even more challenging when
dealing with complex temporal logic from the specification.
On the other hand, template-based approaches allow us to
write assertions for multiple languages, such as OVL (Open
Verification Language) [7]. However, these are limited to a
specific scenario and can look at critical corner cases in the
design.

Al-based methods, particularly those using Natural Lan-
guage Processing (NLP) and LLMs, are prominent in this
automation. As assertion generation is an NLP task, it has
been an active area of research. For example, [8] proposed
assertion generation using a dialogue between the NLP tool
and the designer. On the other hand, the work of [9] involved
latent representation of the language and FSM representation
to extract the assertions out of it. Hybrid approaches combine
rule-based systems with machine learning, as demonstrated in
[10], which integrates spicy rules with GPT-3 to convert spec-
ification sentences into SVA language. Similarly, the research
by [11] combined information retrieval and deep learning to
generate assertions. These NLP methods offer automation but
require extensive domain-specific data and training.

The study by [12] has discussed the applicability of LLMs
in design, verification, and optimization; it describes how
LLMs have shown transformative potential in EDA processes.
For example, the work of [13] focuses on domain-adapted
LLMs for assertion generation. However, this required data
for training and adapting the existing foundation models for
our task.

The approaches of [8] [10] focus on pre-RTL design for
assertion generation, aiming for functional verification; on the
other hand, [14] shows on RTL to generate assertions, but here
it aims to verify the security assertion of that RTL. Very little
work is involved in generating assertions from the specification
documents using LLM. For example, more recently, the inves-
tigation conducted by [15] has generated assertions using mul-
tiple LLMs while solely on HLS documents without involving
designer intent. Moreover, for example, the analysis presented
in [16] showed RAG’s application to reduce hallucinations in
structured outputs. Similarly, The study of [17] introduces a
multi-level specification framework to address understanding
gaps between architects and designers.

These diverse methodologies underscore the evolving land-
scape of automated assertion generation. However, many of
these approaches overlook the designer’s intent or struggle
with hallucinations in generated assertions. This gap in the
literature sets the stage for our proposed framework using
RAG and LLMs (given in Section III) to enhance VLSI design
verification by bridging the understanding gap and improving
the accuracy of generated assertions.

III. PROPOSED APPROACH
A. Abstract Workflow

To overcome the gap in the literature, we propose RAG in
combination with LLMs for better quality assertion generation
consistent with the HLS context. Fig. 2 illustrates the pipeline
flow of our proposed RAG-LLM framework for assertion
generation. Our proposed approach can be divided into two
broader categories: the RAG part and the LLM part. For
RAG, we aim to store the semantic context of HLS documents
and possibly other relevant documents that could be useful
in the synthesizing and decomposition processes in the VLSI
design flow. On the other hand, the LLM part involves using
actual specifications tailored by the designer or verification
engineer that we intend to translate into assertion. The quality
is evaluated by using the FPV technique against the golden
design. The details of these parts are given in the following
Sections.

B. RAG-Part: HLS

From Fig.2, RAG-Part starts by taking HLS documents
from the architect’s side and given to the OpenAl chunker
(Tiktoken) to fit the context window of the LLM easily, as
shown in Step 1. In Steps 2 and 3, LLM-1 and LLM-2 do
the processing over the chunk, respectively. LLM-1 acts as a
Spec Analyzer that extracts useful specs-related information
from the chunks and passes extracted specs to LLM-2. That
acts as a Signal Mapper to make extracted spec consistency

— () (2) ||| chunks 1E
> Sh >
Specification p— Spec Analyzer
Documents Chunking \§/ LLM-1
Architect Side V é
(3
o 2 l'l
Chunks [(6) Specs
Specs |
e ‘/'777‘\‘ —
S —— @ . Specs |4 -
S ol [| &2 =x] 3
. Signal Mapper | - I
Vector Store Embeddings LLM-2 O TS -
& Golden RTL
... Design
LLM-Part: Designers Specs >-----------.., |1’3
b4
@ w > e @& > ,~ / Verified
Specifications SVA Generator Generated Evaluation \ x
Set : LLM-3 SVAs (FPV) Counter
Designer Side e eeeeeesese s sesaeeseeaeesesesesassssesasanenananann” Example

Fig. 2. Proposed Approach: RAG-LLM Assertion Generation

with HDL keywords and gives output Specs-Signals against
chunks (shown in Steps 3 and 4). These steps make chunks
more representable and better searchable for retrieval involving
keywords. After that, In Steps 5 and 6, Specs-Signals are
attached to their relevant chunk and passed as Chunks-Spec for
embedding (semantic representation). We implement OpenAl
embedding keys because they are comparable to our LLMs
(GPT3.5 from OpenAl). Step 7 stores the HLS embeddings
in an open-source ChromaDB vector database. The whole
RAG process is implemented using an open-source LangChain
framework. This RAG part has become an active source of
knowledge to contextualize the upcoming assertion generation
over designer-side specifications given in LLM-Part.

C. LLM-Part: Designers Specs

In LLM-Part, designer-tailored specifications are input; the
first is embedded and sent to ChromaDB (Vector Store) as a
query. The query returns the semantically similar HLS context,
illustrated in Steps 8 and 9. Then, in Step 10, our actual design
side specification, which we intended to generate assertions
(SVA), is given to our main LLM-3, the SVA generator. This
LLM-3, with a custom prompt, is now more potent because the
specification is to translate into SVA, in addition to its context
from HLS; in the end, Step 11 generates SVA consistent with
its HLS. Further, in the next part, the quality of the generated
assertion can be evaluated against the golden RTL design.

D. Evaluation-Part: FPV

In evaluation Steps 12 and 13, the quality of the generated
assertions is checked by applying the formal property verifica-
tion (FPV) technique using a bounded Model Checker (BMC).
The generated assertions are checked against the golden RTL
design via code instrumentation. If the specification is consis-
tent with HLS documents, no counterexample is found. The
results show (given in Section IV) the effectiveness of our
approach. For implementing FPV, we use the Tabby CAD tool
powered by YosysHQ that provides a set of tools, including an

open-source software suite [18]. One of the main reasons for
choosing this tool was the multiple choice of tool selection
and usage options such as proof engine and task selection.
Most tools are open-source. We applied our approach to open-
source AMBA, AXI4-Lite bus communication protocols; this
is the sub-protocol of a more extensive class of communication
protocols Ax3, AXI4, AXIS, and all of their specifications are
available by ARM [19].

Further detail on implementation tools and technologies is
given in Section IV-A

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The HLS document AXI4-Lite protocol [19] was in PDF;
we first translated it into markdown(.md) format along with
table and figures by applying state-of-the-art OCR techniques
with LLM support. By doing this, we preserve the nature of
the HLS document. On the other hand, The designer-tailored
specifications were in a .txt file. Then, the whole RAG setup
was implemented using the Langchain framework [20]. Table
I summarizes the tools and technologies used to implement
the two leading technologies, RAG and LLM, merged to gen-
eration design/ domain-specific quality assertion (SVA). We
used pre-trained language models to generate SystemVerilog
Assertions (SVA) for an open-source case study, with most
tools also being open-source. Our central methodology uses
a relatively economical Chat-completion API of the GPT 3.5
pre-trained model; with RAG, it becomes powerful. We chose
the GPT model because these foundation models are state-of-
the-art on most benchmarks. The setup and experiments were
performed on Google Collab with T4 GPU support.

This experiment uses custom prompt engineering methods
such as chain-of-thoughts and zero-shot learning to guide the
LLMs to act as roles dedicated to them and get output in
specific template formats. Using prompting, we tune LLM-1
(Spec Analyzer), LLM-2 (Signal Mapper), and LLM-3 (SVA-
Generator). Our custom prompts are similar to the given in the

NLP Approaches NLP Tools/ Technologies

NLP Tasks

Pre-processing Google OCR with GenAl, NLTK with Sklearn

Text extraction, text pre-processing

RAG-implementation

Tiktoken, OpenAl Embeddings, ChromaDV (LangChain)

Chunking, embeddings, storing in vector database, and querying

LLM-implementation OpenAl GPT3.5, Chain-of-thought Fine-tuning

Pre-trained language models, prompt engineering

TABLE I
SUMMARY OF EXPERIMENTAL SETUP

paper (using role and template-strategy) [15]. We added some
extra constraints in the output template for getting assertions in
concurrent SVA form to verify the formal temporal properties/
design intents of the signals. As LLM is inherently based on
probability distribution in transformer architecture, it could
deviate from its defined prompt template/ format, more likely
when it starts maintaining the history. We performed our
experiments with prompts five times to minimize this risk in
a real scenario. We selected the results based on a 3-time
occurrence at least, especially in case of the wrong examples.
For example, to check the ability of our approach, we have
given some wrong examples from designer-side specifications
that were inconsistent with HLS. Some evaluation criteria are
defined in Section IV-B.

B. Evaluation Criteria

The literature commonly uses statistical evaluation metrics
like Bleu and Meteor in NLP tasks. However, these metrics are
not worth measuring hallucinations or the quality of generated
assertions using LLM. Because statistical metrics rely on n-
gram string comparison, it could be possible that different
styles of assertions may have identical specifications. More-
over, no concrete benchmark is available for comparing the
conformance to HLS (possible future research). Furthermore,
this study does not deal with the coverage metrics, like calcu-
lating the cone of influence (COI) in SVA, because they go to
the dynamic analysis side [21]. So, we have explored two met-
rics to measure the hallucination generated by conformance
to HLS: human evaluation and applying formal verification
such as FPV. In the following, we design evaluation metrics
for measuring the tasks, such as hallucination-reduction and
HLS-Conformity.

1) Evaluation Metrics:

o Visual Evaluation (VE): The hallucinated assertions
include extra symbols or assumptions inconsistent with
the HLS. The visual evaluation (VE) metric involves
visually inspecting the assertions by a VLSI designer or
verification engineer. Irrelevant symbols from hallucina-
tions are highlighted in red, while information consistent
with the HLS is green. This metric provides insight into
the quality of the generated assertions.

« Bounded model checker (BMC): This tool checks the
correctness of the generated assertions against the golden
RTL design. The verified status shows that the generated
assertion has been satisfied by the RTL design (colored
green). A counter-example (colored red) indicates that
the golden design does not meet the generated assertion/
property. A fail response highlights that the generated
assertion is not executable (colored red). This metric

is pivotal in building confidence in the LLM-generated
assertions.

Under the given evaluation metrics, we can summarize our
evaluation tasks as below:
2) Evaluation Tasks:

« Hallucination-Reduction: To check the quality of the
generated assertion, hallucination is our mean; when the
model gives un-useful responses, they can mislead our
ABV process. Both evaluation metrics, VE and BMC,
will be applied to measure the effectiveness of hallucina-
tion reduction using our RAG-LLM approach.

o HLS-Conformity: Checking the Conformance of the
generated assertion to the context of the HLS document.
Here, we also apply both evaluation metrics, VE and
BMC, to evaluate the approach’s effectiveness.

C. Evaluation Results

To assess the effectiveness of the proposed RAG-LLM ap-
proach for assertion generation, we applied it to the AXI4-Lite
protocol case study. We collected and prepared open-source
HLS documents, designer-side specifications, and the golden
RTL design from [19], [22]. Extensive experiments have been
conducted, with ongoing development and evaluation. The
details can be found on our GitHub repository. The following
sections present the evaluation results using defined evaluation
metrics as proof of concept.

1) Hallucination-Reduction Results: For establishing the
hallucination reduction results. We compare the evaluation
results of the proposed approach to GPT 3.5 and GPT 4
models, as examples shown in Table II. Using evaluation
metrics (VE and BMC), the table demonstrates that our
method generates more context-aware and accurate assertions
(green) compared to GPT-3.5 and GPT-4. For example, GPT-
3.5 produced assumptions (hallucinations) marked in red,
assigning random bits to address signals and failing BMC
with counterexamples (CE). While GPT-4 performed better. It
still generated some misleading assertions. In specification 1,
our approach used !$isunknown to handle signals accurately,
whereas GPT-4 missed this, leading to potential false positives
in formal BMC checks.

2) HLS-Conformity Results: Similarly, we conduct exper-
iments on sample specification to evaluate the conformance
of the generated assertions to the HLS. Table III shows
seven sample specifications translated into SVA. The first
five specifications were successfully translated, with the HLS-
Conformance Excerpt column (green) indicating alignment
with the high-level design specification achieved through RAG
and LLMs. We used the FPV approach with BMC to verify
these assertions against the golden RTL design, with no
counterexamples confirming the specifications. We applied two

No. | Spec GPT 35 GPT 4 Our Approach Evaluation
Criteria

1 Ensure property pl; (posedge clk) dis- | property pl;(posedge clk) disable iff (reset) | property pl; (posedge | Visual
AWVALID is | able iff (rst_n === 0) (AWVALID | (AWVALID && !AWADDR valid) |->0; | clk) disable iff | Evaluation-
never == 1'bl) |->(AWADDR == 1'bl); | endproperty assert property (pl) else $er- | (!rstn) (AWVALID | VE
asserted endproperty assert property (pl); ror(”Assertion failed: AWVALID is asserted | |->!$isunknown(AWADDR});(Human)
without without AWADDR being valid”); endproperty assert
AWADDR property (pl);
being valid Assumptions + Failed Misleading CEs Verified BMC

5 Ensure property p2; (posedge clk) dis- | property p2; (posedge clk) disable iff (reset) | Property p2; (posedge | Visual
ARVALID is able iff (rst.n === 0) (AR- | ARVALID |->ARADDR_valid; endproperty | clk) disable iff | Evaluation-
never VALID == 1'bl) |->(ARADDR | assert property (p2) else error(”Assertion | (!rstn) ('ARVALID | VE
asserted == 1'bl);endproperty assert prop- | failed: ARVALID is asserted without | |->!$isunknown(ARADDR));(Human)
without erty (p2); ARADDR being valid”); endproperty assert
ARADDR property (p2)
being valid Hallucination + Failed Misleading CEs Verified BMC

TABLE I
HALLUCINATION-REDUCTION :SUMMARY OF THE TWO SPECS RESULTS

No. | Spec HLS-Conformance Excerpt SVA FPV(BMC)

1 Ensure AWVALID is | Signals AWVALID and AWADDR which are used | property pl;(posedge clk) disable iff | Verified
never asserted with- | in the AXI write address channel. The context also | (!rstn)(AWVALID |-=>1$isunknown(AWADDR));
out AWADDR being | explains that these signals work together to ensure | endproperty assert property (pl);
valid proper write address information is transmitted.

This aligns with the requirement in the speci-
fication sentence to ensure AWVALID is never
asserted without AWADDR being valid.

2 Ensure ARVALID is | - Conforming: The given SystemVerilog assertion | Property p2; (posedge clk) disable iff (!rstn) ('AR- | Verified
never asserted with- | is consistent with the specification since it ensures | VALID |->!$isunknown(ARADDR)); endproperty as-
out ARADDR being | RREADY is only asserted when RVALID is high | sert property (p2) else $error(’ARVALID asserted
valid by using the global clock signal ’clk’ and global | without valid ARADDR”);

reset signal ’rstn’.

3 Ensure WVALID is | - Signal WVALID fulfills the condition specified | Property p3; (posedge clk) disable iff (!rstn) | Verified
never asserted with- | in the assertion as it is never asserted without | WVALID |[->WVALID && !$isunknown(
out WDATA being | WDATA being valid. WDATA);endproperty assert property (p3);
valid

4 Ensure RREADY is | The given SystemVerilog assertion is consistent | property p4; (posedge clk) disable iff (Irstn) | Verified
asserted only when | with the specification since it ensures RREADY | (RREADY |->RVALID)); endproperty assert property
RVALID is high is only asserted when RVALID is high by using | (p4) else $error("RREADY is asserted when RVALID

the global clock signal ’clk’ and global reset signal | is low!”);
rstn’.

5 When AWVALID and | Conforming: In both Spec 1 and Spec 2, AW- | property p5; (posedge clk) disable iff (lrstn) // | Verified
AWREADY are high | VALID is defined as Master Write address valid | Global clock and reset AWVALID && AWREADY
at the same time, the | and AWREADY is defined as Slave Write address | && $rose(clk) |->##1 |AWVALID;endproperty assert
next cycle AWVALID | ready, which confirms to the requirement in the | property (p5);
goes low spec.

6 Ensure BREADY is | This context does not provide specific information | property p6; logic BVALID; logic BREADY; (posedge | Counter
asserted only when | related to BREADY and BVALID signals. clk) disable iff (Irstn) (BREADY |->##1 BVALID); | Example
BVALID is high endproperty assert property (p6) else $error(BREADY | (CE)

is asserted when BVALID is not high);

7 Ensure RREADY is | The provided specification context does not con- | property p7; @(posedge clk) disable iff (!rstn) (| Counter
asserted only when | tain direct information related to RREADY and | .AWVALID && !AWREADY) |->!WREADY; end- | Example
BVALID is high BVALID signals to confirm conformity with the | property assert property (p7) else $error(”Violation: | (CE)

generated SVA. RREADY is asserted when BVALID is low”);

TABLE III
HLS-CONFORMITY: SUMMARY OF THE RESULTS (RAG-LLM)

incorrect specifications (specs 6 and 7) for further validation.
These did not conform to the HLS, indicated by the red color,
and generated assertions that failed with counter-examples
in every case, demonstrating our approach’s effectiveness in
correct and incorrect scenarios.

V. DISCUSSION

This research uses an RAG implementation approach for a
high-level specification that could perform well with advanced
language models such as GPTs and Llama3. A small language/
foundation model may not be practical or expressive because
of its limited ability to extract text. There is uncertainty in
the models; we tried to confine the model output using the

prompting technique, but LLM could be wired in its behavior.
If LLM models start learning, the uncertainty could increase.
There needs to be more certainty about the data on which
language models were trained.

This technique’s Broader benefit can be its use in subsequent
design processes in VLSI other than assertion generation. For
example, this technique could be used for RTL debugging,
synthesizing RTL designs, or checking conformance. Also, this
approach has a benefit over the traditional assertion generation,
which uses VectorDB for querying through search engines and
search based on semantically due to semantic representation
of the knowledge as in embedding space. That could be easily

accessible via queries and similarity search techniques such as
cosine similarity search.

The approach helps identify inconsistency, incorrectness,
and incompleteness in the specification itself because it could
be compared with all related design documents using our pro-
posed methodology concept of RAG. It is also a cost-effective
solution because our approach used GPT 3.5 API with RAG
and custom prompt, outperforming the other techniques on
zero short prompting. In the future, we can shift this setup to
open-source LLMs such as the Llama4 model and get valuable
insights and comparisons.

The proposed approach can also be integrated with ex-
isting EDA tools and VLSI workflow because of its nature
of language prompting ability and adjustability against the
prompt. There is no involvement in the preparation of the
training dataset. It is a self-interpretative technique for gener-
ated assertions. When the specification standard changes, the
designer can check the conformance of generated assertions
under the latest specification documents. This technique gives
the designer more freedom to enter the design implementation
and verification. Designers can provide immediate feedback
and refine specifications, leading to a continuous improvement
loop. This loop enhances the design and the verification
process by focusing on specific design intents concerning the
designer.

VI. CONCLUSION & FUTURE WORK

In this research, we proposed an innovative assertion gen-
eration framework from design specification by leveraging the
RAG, a crucial NLP technique. The high-level specification
(HLS) document(s) are embedded and stored in vectorDB
as contextual knowledge to support the framework. This
knowledge-based approach was an overall reference in con-
formance with the other VLSI design stages. Reducing LLM
hallucination regarding design specification, RAG provides a
knowledge source while generating assertions. To evaluate
our approach, we implemented the proposed approach using
FPV with a bounded model checker to check the functional
correctness of the generated assertions against the gold RTL
design. We implemented our approach to the AXI4-Lite bus
communication protocol. We evaluated the conformance of
the generated assertions to the HLS. We applied some wrong
examples, which were also inconsistent with the HLS; in
that case, the FPV checker showed a counter-example. In
conclusion, this research is a step toward improving reliability
and conformity to the HLS documents.

Future Work: We can first define or prepare benchmarks
for better evaluation and implement them in the RTL design
generation process. Secondly, in the future, we will implement
this approach on more extensive industrial case studies from
the automotive industry. Checking conformity with safety
standards would be an exciting direction. Lastly, we plan to
perform a detailed analysis of SVAs of multi-cycle, condi-
tional, and sequential constraints, which could be very useful
in exploring the corner cases of the designs and improving our
verification.

ETHICAL CONSIDERATION

Our approach is to reduce the hallucination and improve
conformance with high-level specifications; we don’t claim
the risk of harm due to hallucination eliminated.

REFERENCES

[1] Saurabh, S. (2023). Introduction to VLSI design flow. Cambridge
University Press.

[2] Dasgupta, P., & DasGupta, P. (2006). A roadmap for formal property
verification (pp. 217-241). Springer Netherlands.

[3] Witharana, H., Lyu, Y., Charles, S., & Mishra, P. (2022). A survey
on assertion-based hardware verification. ACM Computing Surveys
(CSUR), 54(11s), 1-33.

[4] Mehta, A. B. (2014). SystemVerilog assertions and functional coverage.
In Springer eBooks. https://doi.org/10.1007/978-1-4614-7324-4

[5] Rawte, V., Sheth, A., & Das, A. (2023). A survey of hallucination in
large foundation models. arXiv preprint arXiv:2309.05922.

[6] Eisner, C., & Fisman, D. (2007). A practical introduction to PSL.
Springer Science & Business Media.

[71 2024. Open Verification Language.
https://www.accellera.org/downloads/standards/ovl. Accessed:2024-
07-01.

[8] Keszocze, O., & Harris, I. G. (2019, September). Chatbot-based assertion
generation from natural language specifications. In 2019 Forum for
Specification and Design Languages (FDL)(pp. 1-6). IEEE.

[9] Frederiksen, S. J., Aromando, J., & Hsiao, M. S. (2020, November).
Automated assertion generation from natural language specifications. In
2020 IEEE International Test Conference (ITC)(pp. 1-5). IEEE.

[10] Aditi, F., & Hsiao, M. S. (2022, November). Hybrid rule-based and
machine learning system for assertion generation from natural language
specifications. In 2022 IEEE 31st Asian Test Symposium (ATS) (pp.
126-131). IEEE.

[11] Yu, H., Lou, Y., Sun, K., Ran, D., Xie, T., Hao, D, ... & Wang, Q. (2022,
May). Automated assertion generation via information retrieval and its
integration with deep learning. In Proceedings of the 44th International
Conference on Software Engineering (pp. 163-174).

[12] He, Z., & Yu, B. (2024, March). Large Language Models for EDA:
Future or Mirage?. In Proceedings of the 2024 International Symposium
on Physical Design (pp. 65-66)

[13] Liu, M., Kang, M., Hamad, G. B., Suhaib, S., & Ren, H. (2024, April).
Domain-Adapted LLMs for VLSI Design and Verification: A Case Study
on Formal Verification. In 2024 IEEE 42nd VLSI Test Symposium
(VTS) (pp. 1-4). IEEE.

[14] Kande, R., Pearce, H., Tan, B., Dolan-Gavitt, B., Thakur, S., Karri, R.,
& Rajendran, J. (2023). Llm-assisted generation of hardware assertions.
arXiv preprint arXiv:2306.14027.

[15] Fang, W., Li, M., Li, M., Yan, Z., Liu, S., Zhang, H., & Xie, Z.
(2024). Assertllm: Generating and evaluating hardware verification
assertions from design specifications via multi-llms. arXiv preprint
arXiv:2402.00386.

[16] Ayala, O., & Bechard, P. (2024, June). Reducing hallucination in struc-
tured outputs via Retrieval-Augmented Generation. In Proceedings of
the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume
6: Industry Track) (pp. 228-238).

[17] Li, M., Fang, W., Zhang, Q., & Xie, Z. (2024). Specllm: Exploring
generation and review of vlsi design specification with large language
model. arXiv preprint arXiv:2401.13266.

[18] Tabby cad datasheet. About. (n.d.). https://www.yosyshq.com/tabby-cad-
datasheet

[19] ARM. (2011). AMBA AXI and ACE Protocol specification.
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/1abs/refs/
AXI4_specification.pdf

[20] Inc., L. (n.d.). LangChain. LangChain. Retrieved June 20, 2024, from
https://python.langchain.com/v0.1/docs/get_started/introduction

[21] Orenes-Vera, M., Martonosi, M., & Wentzlaff, D. (2023). Using 1lms to
facilitate formal verification of rtl. arXiv e-prints, arXiv-2309.

[22] Vavintaparthi, B. R. (2023, December 21). Verification-of-AXI4-
Lite-Bus-Protocol-using-System-Verilog-Assertions. Retrieved June 20,
2024, from https://github.com/balaji-vbr/Verification-of-AXI4-Lite-Bus-
Protocol-using-System-Verilog-Assertions.

