
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Securing Silicon: A Scalable, Platform-independent

Hardware Security Verification Methodology

Muhammad Abdullah Al Faisal

Chipglobe GmbH

Munich, Germany

al.faisal@chipglobe.com

Sebastian Simon

Infineon Technology GmbH & Co.

Dresden, Germany

Sebastian.Simon@infineon.com

Jaimini Nagar

Infineon Technology GmbH & Co.

Dresden, Germany

Jaimini.Nagar@infineon.com

Ulrich Heinkel

Technical University of Chemnitz

Chemnitz, Germany

Ulrich.heinkel@etit.tu-chemnitz.de

Thorsten Dworzak

Infineon Technologies AG

Munich, Germany

Thorsten.Dworzak@infineon.com

Djones Lettnin

Infineon Technologies AG

Munich, Germany
Djones.Lettnin@infineon.com

Abstract— Modern System-on-Chips (SoCs) are vulnerable

due to micro architectural weakness in Register Transfer Level

(RTL) implementation, having significant security risk to the

sensitive design asset. Various techniques like Formal-based

verification, Fuzzing and Information Flow Tracking have been

proposed to accomplish the hardware security verification.

Unfortunately, these techniques are not yet sufficiently

developed to address the full range of potential weaknesses

present in digital SoC designs. In this paper, we propose a novel

and scalable hardware security verification methodology that

formalize the security requirements, create use case scenarios

and a comprehensive set of meaningful tests using the portable

test and stimulus standard (PSS). The result shows that our

proposed methodology could detect hardware weakness of the

SoC design and incorporates stimuli coverage closure for

quantitative assessment of test intent.

Keywords— Hardware Security Verification, Portable Test

and Stimulus Standard, OpenTitan, Common Weakness

Enumeration

I. INTRODUCTION

Nowadays SoC designs have become more complex due to their
heterogeneous architecture that includes microprocessors, embedded
software, on-chip memory hierarchies, hardware accelerators, I/O,
and security controllers. Trustworthiness and hardware security are
being very important of the modern SoCs that are designed for
security-critical application, automotive, mobile, and service robots.
Hardware vulnerabilities and weaknesses of the design can be
exploited by attackers, e.g. stealing or manipulation of cryptographic
key by observing control and status registers. This can result into
harsh consequences such as damaging system’s behavior completely
and endanger human lives. Therefore, it is very crucial to verify the
security-critical functionality of the hardware design and to detect
weaknesses and security vulnerability. At present, various methods
for functional verification are being used to tackle security concerns
in the design involving manual review of design, formal verification,
simulation, and emulation. Model checking uses a mathematical
model of a design under verification and explores all possible
behaviors of the design. Recently, a comprehensive use of model
checking based formal verification method to verify the security-
critical features of a processor was presented [1]. However, code
reviews and formal verification methods involve significant manual
effort and scalability is also challenging with increasing design size
and complexity. Information flow of the security critical signals can
be verified by formalizing security requirements as taint-propagation
properties [2]. A security verification framework has been developed
to verify security properties which are generated using an information
flow tracking template [3], [4]. The information flow tracking
approach is very promising to find information leakage, but it is
overly conservative and could inaccurately report the existence of
flow in certain cases (i.e. false positive). A security verification
method must be efficient to find the hardware weakness and should
be scalable to the SoC level. It is intriguing to verify the design
against security properties like confidentiality, integrity, and

availability. Common Weakness Enumeration (CWE) is a list of
common hardware weakness that could have security ramification
developed by MITRE [6]. It is very crucial to find such weaknesses
of design at early stage during verification because hardware
weaknesses could lead to vulnerability and cause security breach.

 The proposed hardware security verification methodology
outlines a strategy for establishing a comprehensive security
verification plan and leverage Portable Test and Stimulus Standard
(PSS) to enhance reusability and scalability. The prime purpose of
the PSS is to define a domain-specific language (DSL) that is
declarative in nature for specifying verification intent [7]. It enables
engineers to create a unified representation of stimulus and test
scenarios, usable across various integration levels and configurations.
We have demonstrated the proposed methodology on an open source
SoC design, where it successfully uncovered a security vulnerability.
Furthermore, we have ensured the effectiveness of this methodology
by detecting security flaws that were deliberately introduced in the
design.

II. RELATED WORK

Security verification of the hardware design has become an
important phase of the current SoC design due to various security
threats and hardware attacks at different stages of the development
cycle. A detailed analysis of hardware security properties, hardware
security threats and countermeasures is presented in [5]. It explains
new challenges of design verification and opportunities of integrating
an additional dimension of security into robust hardware design and
verification.

Wang et al. discussed the application of the PSS to verify the
security features of RISC-V based SoC, the granular control of
permissions across multiple physical memory regions provided by
the Physical Memory Protection (PMP) unit in [8]. Their study
demonstrates the generation of a substantial volume of tests using
PSS model, which encompass both positive and negative security test
scenarios. While the study provides insights into the verification of
security features, it does not specifically address the application for
uncovering common hardware weaknesses or vulnerabilities in micro
architectural implementations. Hardware weaknesses could lead to
security risk, and it is very important to identify them early during
verification to ensure the trustworthiness of SoC designs. In our
proposed methodology, CWEs related to confidentiality and integrity
are systematically analyzed to derive a list of security requirements,
and the design under test is verified against them. Moreover, the
paper does not discuss about the specific strategies for maximizing
coverage or handling corner cases effectively. In our work, we have
integrated stimuli coverage closure for measurable evaluation of test
intent that boosts effectiveness of proposed methodology.

There has been formal verification work to verify RISC-V
architecture [1] and OpenRISC-1200 based SoC architecture [9].
Security analysis of the SoC using an assertion based formal
verification method is presented in these works. Security
requirements of the hardware design can be formalized as taint-
propagation properties prove them using formal verification tool [2],
[14]. Security properties of SoC bus implementation have been
derived from the bus protocol and prove them using formal

mailto:al.faisal@chipglobe.com
mailto:Sebastian.Simon@infineon.com
mailto:Jaimini.Nagar@infineon.com
mailto:Ulrich.heinkel@etit.tu-chemnitz.de
mailto:Thorsten.Dworzak@infineon.com
mailto:Djones.Lettnin@infineon.com

verification tool [13]. Nevertheless, it is challenging to scale up
formal verification method for the complex SoC designs and
formalized properties could not be ported or reused for other
verification platforms. The security requirements have been
formulated as a PSS model in our developed security verification
methodology that can be reused across various verification platforms
i.e., simulation, emulation, and FPGA prototyping. Moreover, a PSS
model facilitates generation of meaningful and comprehensive tests
for multiple test case scenarios that saves time spent for test writing.

A design and verification framework for SoC access control
systems based on the information flow approach was developed in
[3], [4]. An automation framework to generate the security properties
based on information flow tracking approach has been presented in
[12]. A security verification tool has generated a security model using
a security property template based on the information flow tracking
approach. The security model was integrated with a testbench for the
simulation and to prepare a report for property pass/fail. Researchers
have also referred to CWEs to find potential weakness in the design
during creating security properties. In this method, a coverage model
cannot be formulated for either functional coverage or code coverage.
We have included stimuli coverage closure for quantitative
assessment of test intents in our proposed security verification
approach.

III. METHODOLOGY

A. Overview of Methodology

The traditional verification process for digital designs starts with
developing a verification plan (vPlan) derived from the specifications
and hardware requirements, encompassing all verification items
essential for the verification. As depicted in Fig. 1, a security
verification plan is additionally incorporated in the verification plan
as the starting point for security verification. It entails outlining the
security requirements and a security coverage plan to monitor the
verification progress on the simulation platform. Once the security
vPlan is well-defined, the generation of a PSS model starts that
captures security requirements in the declarative domain-specific
language. The PSS model encapsulates an abstract behavior of
verification test intent of the design, relying on the requirements and
target implementation for test realization. It also includes checkers
and monitors that are essential for the test validation. The PSS model
incorporates coverage definition, a feature that allows for the tracking
of engaged stimuli and test scenario space coverage. This feature is a
key in pre-analyzing the coverage of generated tests before executing
them on verification platforms like simulation. It ensures the time-
efficiency and gives confidence that the tests can address intended
behaviors of the design under verification. In parallel of the RTL
(Register Transfer Level) design implementation by the design team
and ensuring the readiness of testbench environment, the generation
of tests from the PSS model can commence, aimed at the target
platform (simulation or emulation). When the tests are passed
successfully, a coverage report is produced on the simulation
platform. If the coverage objectives are met, the process advances to
the hardware implementation phase, signifying the completion of the
security verification process. On the other hand, if a test fails, the
design requires alterations to rectify the security flaws or weaknesses.
After these modifications, the generated test is run again to confirm
that there are no security bugs, or any micro-architectural weaknesses
present in the RTL implementation of digital design.

B. Security Verification Plan

The first and crucial step of the proposed methodology is to
establish a robust and comprehensive security verification plan as
shown in Fig. 1 and it is depicted in detail in Fig. 2. The security
verification plan encompasses the meticulous formulation of security
requirements, a scalable verification process to check them during the
design development process, and a security coverage plan for
monitoring the verification progress to ensure security signoff before
tape-out. Fig. 2 illustrates a comprehensive flow to achieve the
security requirements. It is explained in detail how we can derive a

list of security requirements and the process of reasoning about these

requirements in following text.

Design Asset Identification: A design asset can be defined as a
resource with a security critical value that is worth protecting from
an adversary. An asset may manifest as registers, modules, or ports
within a design IP. For an instance, on-device key (Secret/Private
key(s) of an encryption algorithm) or protected data (Sensitive user
data, meter reading), Device configuration (Service/Resource access
configuration) etc.

The choice of security assets varies design by design and for the
different abstraction layers. Mainly, the declaration of security assets
is heavily dependent on the security policies that will be defined at
different levels of integration for different components in SoC.

Threat Model: The next step is to develop the threat model. It is
crucial to articulate the relevant security concerns related to every
security asset defined at the first step. Hardware threats are vast and
must be assessed based on the asset and usage of the hardware under
design. The threat model is composed of a set of realistic assumptions
and definitions of what an adversary can and cannot do in the system.
Threat model can be classified and established based on the following
categories:

• Confidentiality violation: The flow of assets to an untrusted IP
or observable points is considered as a confidentiality violation.
Security assets associated with the cryptographic primitives can be
retrieved indirectly by monitoring the responses of the components
under scrutiny to a series of actions. This indicates that there is no
need for direct access to retrieve these security assets. The existence
of an insecure form of data or control flow causes confidentiality
violations.

• Integrity violation: Illegal modification or corruption of an asset
is regarded as an integrity violation. Unauthorized interaction
between trusted and untrusted IPs, illegal accesses to protected
memory addresses, protected states of a controller module, and out
of bound memory access fall under this threat model.

• Denial of Service (DOS)/Availability violation: Service or
connectivity disruption of the modules embedded in a SoC or in IP
can be categorized as a denial of service (DoS) threat. Numeric
exceptions (e.g., divide by zero) and deadlocks can make a resource
unavailable for a particular time and are examples of DoS threats.
Moreover, DoS attacks can introduce timing (latency) overhead for
recovery which can be utilized for leaking information or violating

access controls.

Potential Weaknesses Identification: After having identified
assets and established a threat model, the subsequent step involves
finding the points of weaknesses and vulnerabilities through which
an attacker might gain access to the asset for an exploitation. At this
stage, vulnerabilities may arise due to inadequate design practices, as

This work has been developed in the project VE-VIDES (project label

16ME0243K) which is partly funded within the Research Programme ICT

2020 by the German Federal Ministry of Education and Research (BMBF)

Fig. 1. Overview of Methodology

Fig. 2. Security Verification Plan

traditional design objectives often overlook security constraints and
issues in micro-architecture implementation. Identifying these
weaknesses is often challenging and time-consuming since it requires
understanding the design’s specification, the design’s
implementation, an understanding of the nuances in the correlation
between these two aspects, and which parts of the design are most
relevant to the threat model. To increase the chance of identifying
security critical weaknesses, the MITRE CWE database [6] serves as
a valuable resource. Once potential weaknesses related to the threat
model are identified, it is essential to map them to CWE numbers to
prepare security coverage. It is not always possible to incorporate the
identified assets and threat models with CWE as there may be some
weaknesses that are not yet listed in the database. However,
identifying and stating potential weaknesses is still important to
develop the security requirements.

Define security requirements and coverage plan: The last and
significant step of the process is to define security requirements for
the identified weaknesses in plain text. Once a mechanism is
identified as a potential weakness, a security requirement can be
expressed to address the weakness in the design. A coverage plan also
needs to be defined for monitoring the stimulus that is going to cover
by the test, as well as mechanism for assessing the extent to which
the security requirements have been fulfilled.

IV. METHODOLOGY APPLICATION

The proposed methodology is applied on a commercial-grade
System-on-Chip (SoC), an open-source Root of Trust (RoT) [10]
design to demonstrate the real-world applicability and effectiveness.
The implementation steps include formulating a security verification
plan, creating a PSS model based on security requirements, and
demonstrating the effectiveness of tests in the presence of
intentionally inserted bugs in the design.

A. Design under verification

The design selected for implementing the proposed methodology
is an Advanced Encryption Standard (AES) IP from Google’s
OpenTitan Root of Trust SoC. This SoC is utilized for Universal
Second Factor (U2F) security key authentication and Trusted
Platform Module (TPM) functionality, where the management of
sensitive data is a primary aspect. It relies on security IPs such as
AES and Keccak Message Authentication Code (KMAC). Among
these security IPs, AES stands out due to its complex design and size,
making it a suitable candidate for the application of the methodology.
The AES IP functions as a peripheral on the chip interconnect bus,
overseeing OpenTitan’s symmetric encryption and decryption
operations. It serves as a cryptographic accelerator, responding to
requests from the processor to encrypt or decrypt 16-byte blocks of
data. The AES unit supports AES-128/192/256 in ECB, CBC, CFB,
OFB, and CTR modes through a single shared data path, allowing
either encryption or decryption, but not both simultaneously [15].

The UVM was employed to create a testbench for the selected
design. The RTL and testbench code are accessible in the OpenTitan
Git repository [11]. To effectively apply this methodology, it was
necessary to make fine-tuned adjustments to the open-source code.

B. Security Verification Plan

The first step in the proposed methodology is to develop a
comprehensive security vPlan. The establishment of a security vPlan
is a manual process, and it should be formulated by following the
steps outlined in the Section III. Without a proper layout of these
steps, this security verification plan may become skewed towards a
functional verification plan.

The initial step in the process entails a thorough examination of
the design specification, coupled with a prior understanding of the
CWE database. This analysis is fundamental to grasp the potential
vulnerabilities within the design’s scope. After an in-depth analysis
of the design specification for the OpenTitan AES IP, we identified
five crucial assets within the design that need to be protected from
the potential adversaries. Once these assets are defined, we then
assume a threat model based on the attack surface. This could result

in multiple threats being associated with a single asset. To ensure
these assets have been thoroughly tested for specific weaknesses and
are free from vulnerabilities, they are subsequently mapped to the
CWEs. Therefore, the title for each weakness is maintained similar
to those in the CWEs database for consistency and ease of
understanding. After analyzing the considered assets and threat
models, we have outlined ten security requirements. These
requirements are focused on protecting confidentiality, integrity,
availability, and preventing access control breaches of the crucial
assets. Our security vPlan is depicted in Table I. It contains the
identified assets, related threats and weaknesses, as well as the
derived security requirement (SR) in plain language and the coverage
plan.

C. PSS model

A PSS model of the intended test of the design under verification
is prepared based on the security requirements listed in Table I.
Atomic actions are modeled to represent a set of behavior where the
constraining of stimuli is defined. Furthermore, coverage groups are
devised to track and cover the target stimuli and actions. All actions
are encapsulated within a component, which is part of a package. PSS
model interacts with foreign languages typically HVL (SV or e) for
simulation or C for embedded or emulation to initiate the behaviors
that leaf-level actions represent in a test scenario. The PSS abstract
model is expanded to define the intended implementation, where
executable sections are used to call external target functions, and

TABLE I. SECURITY VERIFICATION PLAN

Attribute Definition

 Asset Control register “CTRL SHADOWED”.

 Threat_1 Integrity violation, accessing the reserved bits
could potentially compromise the state of the
hardware.

1 Weakness CWE-1209: Failure to disable reserved bits
 S_Requirement The reserved bits inside the “CTRL

SHADOWED” should be nonwritable.
 Coverage plan Cover both write and read operations of

“CTRL SHADOWED”.

 Threat_2 Confidentiality violation, disclosure of
configuration data.

2 Weakness CWE-200: Exposure of sensitive information
to an unauthorized Actor.

 S_Requirement Control register should “CTRL
SHADOWED” remain unobservable.

 Coverage plan Cover all valid settings of “CTRL
SHADOWED” register.

 Asset Key registers “KEY SHARE0 and KEY
SHARE1”.

 Threat_1 Confidentiality and access control violation,
software has the capability to read out key
information.

3 Weakness CWE-1262: Improper access control for
register interface.

 S_Requirement The key register should remain unreadable.
 Coverage plan Cover write to all 16 key registers and also

cover read actions for reading from all these
registers.

 Threat_2 Confidentiality violation, disclosure of key.
4 Weakness CWE-200: Exposure of sensitive information

to an unauthorized actor.
 S_Requirement key register should remain unobservable.
 Coverage plan Cover write to all key register and actions.

 Asset Data registers “DATA IN”.
 Threat_1 Confidentiality and access control violation,

Software has the capability to read out data
information.

5 Weakness CWE-1262: Improper access control for
register interface.

 S_Requirement The data register should remain unreadable.
 Coverage plan Cover write to 4 data registers and cover read

actions for reading from all these registers.

 Threat_2 Confidentiality violation, disclosure of data.
6 Weakness CWE-200: Exposure of sensitive information

to an unauthorized actor.
 S_Requirement Data register should remain unobservable.
 Coverage plan Cover data write and observe action.

 Asset Lock bit for auxiliary control register “CTRL
AUX REGWEN”.

 Threat Integrity violation, write access to Auxiliary
Control Register “CTRL AUX
SHADOWED”.

7 Weakness CWE-1233: Improper prevention of lock bit
modification.

 S_Requirement Control auxiliary register CTRL AUX
SHADOW should not be modifiable after
lock bit is enable.

 Coverage plan Cover write to CTRL AUX SHADOW and
CTRL AUX REGWEN action.

 Asset Cipher core.
 Threat_1 Confidentiality violation, disclosure either a

key, data, or both
8 Weakness CWE-203: Observable discrepancy.
 S_Requirement Intermediate result should not flow to output

before round count value is complete.
 Coverage plan Cover operation mode and key length with

compound action.

 Threat_2 Confidentiality violation, disclosure of key
length through timing side channel.

9 Weakness CWE-1254: Incorrect Comparison Logic
Granularity.

 S_Requirement Time difference during a cipher operation
involving different key lengths should not be
observable.

 Coverage plan Cover three key (128,192,256) length action.

 Threat_3 Integrity and availability violation,
Disturbances or manipulation of control flow.

10 Weakness CWE 1245: Improper FSM in hardware
logic.

 S_Requirement FSM States, Mux selection should not be able
to enter undefined states.

 Coverage plan Cover 26 target signal in three different FSM
from cipher core.

checkers are set up to compare expected outcome with actual values.
The next step involves creating test scenarios based on the security
requirements utilizing the implemented atomic actions as building
blocks. As shown in Fig. 5, a snippet of a solved test scenario and
coverage data have been extracted from the EDA tools Perspec
System Verifier, Incisive Metrics Center (IMC) used for compiling
PSS model, and for coverage collection. In the following listing, we
use the Security Requirement SR2 from our security vPlan (see Table
I) to exhibit the implementation of workflow using PSS.

In Listing 1, a brief code snippet is provided that defines a
package named “aes_test_pkg” (at line 1). This package is designed
to encapsulate all the behaviors related to the AES IP that the test
intends to cover. This package includes the component “aes_c” that
specifies hardware IP AES (at line 6) and a struct “aes_seq_item_s”
(at line 5) is defined to group all global stimuli within the package.
These stimuli are transmitted to the target platform as part of a
specific test.

Listing 2 includes a code snippet of all atomic actions required to
create a test scenario for the security requirement SR2, all of which

are grouped within “aes_c” (at line 1). Actions are unit behavior and
defines system´s function and include the data object, resources and
data attribute required for execution. For an example, action
“aes_read_status_reg” (line 16) specifies a function of design to
reading register value, Furthermore, a state data flow object
“ctrl_shadow_state” (line 3) is defined to store updated values for
later checks. This object is instantiated as output and as input, this
ensures a smooth flow of data between actions. Abstract action
“aes_base_a” (at line 9) serves as base actions for other actions and
can only be inherited, it cannot be instantiated directly. Its primary
purpose is to provide a foundation for other actions to build upon. An
action “aes_write_ctrl_shadow_reg” (at line 19) is defined to write to
the control register of the AES module. The actions may incorporate
constraints to generate tests for specific behaviors of the DUV.

To execute all these actions, a binding is made with UVM
testbench components, and necessary adjustments are made, such as
establishing API and appropriate hooks to run the PSS test on the
existing UVM testbench. In addition, an explicit cover group is
defined in PSS to monitor the generated stimuli, and an inline cover
group is established to track which actions and scenarios were
exercised during the test generation.

Listing 3 contains a code snippet illustrating test scenario and its
inline scenario covergroup, aimed at generating tests for SR2. A
compound action “ctrl_shadow_reg_observability_sr” (at line 3) is
defined to encapsulate the test scenario. Series of actions crafted to
execute in one after one manner (at line 5), starting with “aes_init_a”

//aes_base.pss
1 package aes_test_pkg {
2 enum aes_op_e {AES_ENC = 2'b01, AES_DEC = 2'b10};
3 enum aes_mode_e {AES_ECB = 6'b00_0001,

AES_CBC = 6'b00_0010,
 AES_CFB = 6'b00_0100,

AES_OFB = 6'b00_1000,
AES_CTR = 6'b01_0000,
AES_NONE = 6'b10_0000};

.............
4 enum op_e {AUTOMATIC = 1'b0, MANUAL = 1'b1};
5 struct aes_seq_item_s {
 rand string name ;
 rand bit dut_init;
 //Control Shadow register
 rand aes_op_e aes_op ;
 rand aes_mode_e aes_mode;
 rand op_e op;

 }

6 Component aes_c {

 }//aes_c
}//aes_test_pkg

Listing. 1. Test package definition

Fig. 5. Implementation workflow with PSS model

to initialize AES, arrange the clock and reset, and confirm that the
AES is in idle mode followed by read and write operation of status
and control register for the configuration. Finally, “observe_ctrl_
shadow_ reg” action is performed to confirm that the values in the
output register do not correlate with the configured values in the
control shadow register.

Following the successful compilation of the PSS model and the
resolution of the specified PSS test scenarios for ten requirements,
the tool generated tests tailored to the desired stimuli. These tests

were executed in simulation environment with the help of a
developed bash script that is meant to automate the process of
running the test by invoking simulator and extracting the result from
generated logfile after test completion.

V. RESULT

The implementation of the developed methodology on
OpenTitan AES was marked as successful. A total of 287 tests were
generated from the PSS model to verify ten security requirements.
Out of these, 281 tests cleared successfully while six tests failed. The
failure of these tests indicated that there is a weakness related to SR9
in the design. It was observed that the duration required to perform
cryptographic operations varied based on the key length. The number
of cycles required for operation are 10,12, and 14 corresponds to the
key length of 128,192, and 256 bits, respectively. This suggests that
the duration of the operation is influenced by the key length. Ideally,
the operation should take the same amount of time regardless of the
key length to ensure asset confidentiality. This unmasked RTL
implementation of the AES IP is not an optimal choice for
applications with high-security demands, as its weakness could be
exploited to deduce the length of the AES key. Table II provides a
summary of the test outcomes.

To validate the efficiency of autogenerated tests from the PSS
model, deliberate security weaknesses were inserted into the RTL
implementation of OpenTitan AES design. This intentional RTL
alteration was aimed at implementing three specific weaknesses tied
to SR2, SR6 and SR8. The tests successfully detected the
intentionally inserted bugs and flagged errors. A brief description and
simulation result are presented below for SR8 that shows the tests
were able to detect the intentionally implemented security weakness
in RTL implementation.

The scenario “intermediate_result_sr” was resolved for the ECB
mode of AES operation, as this mode is considered the least secure
compared to other modes. The action was constrained to generate
tests for both encryption and decryption in ECB mode using three
distinct key lengths: 128, 192, and 256 bits, resulting in a total of six
tests. Fig. 6 shows a snapshot of the waveform observed during
simulation, demonstrating that when the encryption operation is
active, the ‘crypt_busy’ signal is high, and the ‘data_out_we’ signal
remains low until the cipher text is prepared, the ‘data_out’ signal
transitions to high, and data is transferred to the output register. The
test is aimed to determine whether any intermediate values appear in
the output register. Since no intermediate values were observed in the
output register, the tests were deemed successful. Fig. 7 shows the
waveform outcomes following the introduction of RTL
implementational weakness into the design. The tests available on
GitHub for OpenTitan AES functional verification were not able to
identify this specific introduced weakness in the design, therefore,
goes undetected as all tests are successfully passed. The generated
test for SR8 (from Table 1) detected the weakness in the design and
terminated the test as the checker in PSS flagged fatal. The tests for
functional verification passed because the modification maintains the
functionality of the design, it introduces a flaw that allows a leakage
of intermediate results. However, the final output remains consistent.

TABLE II RESULT SUMMARY OF SECURITY REQUIREMENTS

PSS Test Scenario Generated

Test

Test

Status

1 ctrl_shadow_reg_reserve_access_sr 108 Passed

2 ctrl_shadow_reg_observability_sr 108 Passed

3 key_reg_read_access_sr 10 Passed

4 key_reg_read_observability_sr 10 Passed

5 data_in_reg_read_access_sr 10 Passed

6 data_in_reg_observability_sr 10 Passed

7 ctrl_aux_regwen_protection_sr 4 Passed

8 intermediate_result_sr 6 Passed

9 timing_sca_sr 6 Failed

10 aes_cipher_core_fi_sr 15 Passed

//aes_base.pss
1 component aes_c {

 2 //Declare state to store data
 3 state ctrl_shadow_state {

 4 rand bit [32] updated_ctrl_shadow_reg;}
5 pool ctrl_shadow_state ctrl_shadow_state_pool;

 6 bind ctrl_shadow_state_pool *;
…
 9 abstract action aes_base_a {
 10 rand aes_seq_item_s seq_item;

11 bool wait_for_completion = true;}

 12 //To initialize DUV
 13 action aes_init_a : aes_base_a {

 14 constraint seq_c {seq_item.name ==
"aes_init_vseq"; seq_item.dut_init == 1;}}

15 //To read status register

 16 action aes_read_status_reg : aes_base_a {
 17 constraint seq_c {seq_item.name ==

"aes_read_status_reg";
seq_item.dut_init == 0;}}

 18 //To write control shadow register of aes
 19 action aes_write_ctrl_shadow_reg : aes_base_a {

 20 output ctrl_shadow_state ctrl_shadow_state_out;
 21 constraint seq_c {

 seq_item.name == "aes_write_ctrl_shadow_reg";
 seq_item.dut_init == 0; }}

22 //To monitor any potential leakage of
ctrl_shadow_reg

 23 action observe_ctrl_shadow_reg : aes_base_a {
 24 input ctrl_shadow_state ctrl_shadow_state_in;
 25 constraint seq_c {seq_item.name ==

"observe_ctrl_shadow_reg";
 seq_item.dut_init == 0;} }

}//aes_c

Listing 2. Top component with atomic actions

 //aes_scenarios.pss
1 extend component pss_top {
2 import aes_test_pkg::*;
3 action ctrl_shadow_reg_observabiltiy_sr {
4 activity {
5 sequence {
 a0: do aes_c::aes_init_a;
 a1: do aes_c::aes_read_status_reg;
 a2: do aes_c::aes_write_ctrl_shadow_reg;
 a3: do aes_c::observe_ctrl_shadow_reg;
 };};};};

 //aes_scenario_coverage.pss
6 extend component pss_top {
7 extend action ctrl_shadow_reg_obserabiltiy_sr {
 //scenario coverage
 covergroup {
 bit in [1] observed: coverpoint 1;
 }cov_ctrl_shadow_reg_obserabiltiy_sr
 };
 };

Listing 3. Compound action with inline coverage

Formulating security requirements in PSS offers several benefits.
Firstly, it allows for the establishment of scenarios that might be
challenging to reach with other methodologies. Moreover, PSS
facilitates automated test generation, capable of producing a
comprehensive set of tests depending on the coverage objectives.
Another significant advantage is the reusability of the model. New
security requirement formulations can be derived on top of the
previously established model, enhancing its adaptability and
efficiency. Lastly, this methodology exhibits scalability, by enabling
the use of developed model for IP (such as AES) in sub-System (AES
with DMA and a processor) and System level, which is particularly
advantageous at the System-on-a-chip (SoC) level, making it a robust
and versatile approach for assorted security verification tasks.

VI. SUMMARY

An effective security verification methodology is developed to

identify and address security weaknesses and expose vulnerabilities

in the digital design. The methodology outlines a strategy for

creating a comprehensive security verification and coverage plan.

To bridge the gap between different verification platforms and

enable the reuse of test cases across various design verification

stages of the SoC development cycle, the Portable Test and Stimulus

Standard (PSS) is employed to formulate the security requirements

as an abstract model. An abstract modelling of security requirements

in PSS simplifies the process of creating and visualizing tests, bridge

the communication gap between the verification engineers at

different verification platforms by offering a common language

through actions and security scenario diagrams. The proposed

methodology is particularly well-suited for complex System-on-

Chip (SoC) designs that are intended to execute security-critical

applications. This is because of the capability of PSS to capture

internal behaviors, resources, and their usage, so it can automate

hard-to-achieve security-related scenarios and generate the

significantly higher number of machine-produced variations.

The findings showed the potential vulnerabilities arising from

security weaknesses in digital design and underscore the importance

of robust security verification methodology for ensuring system

security and trustworthiness. Simulation results are showcased to

illustrate how a security breach can occur, even when functionality

appears to be correct.

REFERENCES

[1] C. S. Chuah, C. Appold, and T. Leinmueller, “Formal
Verification of Security Properties on RISC-V Processors,” in
Proceedings of the 21st ACM-IEEE International Conference
on Formal Methods and Models for System Design, Hamburg
Germany: ACM, Sep. 2023, pp. 159–168.

[2] P. Subramanyan and D. Arora, “Formal verification of taint-
propagation security properties in a commercial SoC design,”
in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, Dresden, Germany: IEEE
Conference Publications, 2014, pp. 1–2.

[3] F. Restuccia, A. Meza, and R. Kastner, “AKER: A Design and
Verification Framework for Safe and Secure SoC Access
Control.” arXiv, Jun. 24, 2021. Accessed: Apr. 10, 2024.
[Online]. Available: http://arxiv.org/abs/2106.13263

[4] C. Deutschbein, A. Meza, F. Restuccia, R. Kastner, and C.
Sturton, “Isadora: automated information-flow property
generation for hardware security verification,” J. Cryptogr.
Eng., vol. 13, no. 4, pp. 391–407, Nov. 2023.

[5] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and
H. Li, “An Overview of Hardware Security and Trust: Threats,
Countermeasures, and Design Tools,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 40, no. 6, pp. 1010–1038,
Jun. 2021.

[6] Common Weakness Enumeration. [Online]. Available:
https://cwe.mitre.org/data/definitions/1194.html

[7] Portable Test and Stimulus Standard Version 2.1. Accellera
Systems Initiative. Accessed: Jan. 26, 2024. [Online].
Available:
https://accellera.org/images/downloads/standards/pss/Portable
_Test_Stimulus_Standard_v2.1.pdf

[8] J. Wang et al., “RISC-V Security Verification using
Perspec/Portable Stimulus,” in proceeding of Design amd.
Verification Conference and Exhibition (DVCon) Europe
2024.

[9] P. Bhamidipati, S. M. Achyutha, and R. Vemuri, “Security
Analysis of a System-on-Chip Using Assertion-Based
Verification,” in 2021 IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS), Lansing, MI, USA: IEEE,
Aug. 2021, pp. 826–831.

[10] OpenTitan for silicon root of trust (RoT) chips. [Online].
Available: https://opentitan.org/

[11] OpenTitan git repository. [Online]. Available:
https://github.com/lowRISC/opentitan

[12] C. Deutschbein, A. Meza, F. Restuccia, M. Gregoire, R. Kastner and
C. Sturton, "Toward Hardware Security Property Generation at Scale,"
in IEEE Security & Privacy, vol. 20, no. 3, pp. 43-51, May-June 2022.

[13] J. He, X. Guo, T. Meade, D. Raj, Z. Yiqiang and J. Yier, “ SoC
interconnection protection through formal verification,” in Integration,
the VLSI journal, vol. 64, pp. 143-151, January 2019.

[14] A. Ardeshiricham, W. Hu, J. Marxen and R. Kastner, "Register transfer
level information flow tracking for provably secure hardware
design," Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 1691-
1696.

[15] Morris Dworkin. 2016. Recommendation for block cipher mode of
operation. NIST Special Publication 800 (2016),38G.

Fig. 6. SR8 simulation waveform

 Fig. 7. SR8 simulation waveform after RTL weakness insertion

http://arxiv.org/abs/2106.13263
https://cwe.mitre.org/data/definitions/1194.html
https://accellera.org/images/downloads/standards/pss/Portable_Test_Stimulus_Standard_v2.1.pdf
https://accellera.org/images/downloads/standards/pss/Portable_Test_Stimulus_Standard_v2.1.pdf
https://opentitan.org/
https://github.com/lowRISC/opentitan

