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Abstract— Modern System-on-Chips (SoCs) are vulnerable 

due to micro architectural weakness in Register Transfer Level 

(RTL) implementation, having significant security risk to the 

sensitive design asset. Various techniques like Formal-based 

verification, Fuzzing and Information Flow Tracking have been 

proposed to accomplish the hardware security verification. 

Unfortunately, these techniques are not yet sufficiently 

developed to address the full range of potential weaknesses 

present in digital SoC designs. In this paper, we propose a novel 

and scalable hardware security verification methodology that 

formalize the security requirements, create use case scenarios 

and a comprehensive set of meaningful tests using the portable 

test and stimulus standard (PSS). The result shows that our 

proposed methodology could detect hardware weakness of the 

SoC design and incorporates stimuli coverage closure for 

quantitative assessment of test intent. 

Keywords— Hardware Security Verification, Portable Test 

and Stimulus Standard, OpenTitan, Common Weakness 

Enumeration 

I. INTRODUCTION 

Nowadays SoC designs have become more complex due to their 
heterogeneous architecture that includes microprocessors, embedded 
software, on-chip memory hierarchies, hardware accelerators, I/O, 
and security controllers. Trustworthiness and hardware security are 
being very important of the modern SoCs that are designed for 
security-critical application, automotive, mobile, and service robots. 
Hardware vulnerabilities and weaknesses of the design can be 
exploited by attackers, e.g. stealing or manipulation of cryptographic 
key by observing control and status registers. This can result into 
harsh consequences such as damaging system’s behavior completely 
and endanger human lives. Therefore, it is very crucial to verify the 
security-critical functionality of the hardware design and to detect 
weaknesses and security vulnerability. At present, various methods 
for functional verification are being used to tackle security concerns 
in the design involving manual review of design, formal verification, 
simulation, and emulation. Model checking uses a mathematical 
model of a design under verification and explores all possible 
behaviors of the design. Recently, a comprehensive use of model 
checking based formal verification method to verify the security-
critical features of a processor was presented [1]. However, code 
reviews and formal verification methods involve significant manual 
effort and scalability is also challenging with increasing design size 
and complexity. Information flow of the security critical signals can 
be verified by formalizing security requirements as taint-propagation 
properties [2]. A security verification framework has been developed 
to verify security properties which are generated using an information 
flow tracking template [3], [4]. The information flow tracking 
approach is very promising to find information leakage, but it is 
overly conservative and could inaccurately report the existence of 
flow in certain cases (i.e. false positive). A security verification 
method must be efficient to find the hardware weakness and should 
be scalable to the SoC level. It is intriguing to verify the design 
against security properties like confidentiality, integrity, and 

availability. Common Weakness Enumeration (CWE) is a list of 
common hardware weakness that could have security ramification 
developed by MITRE [6]. It is very crucial to find such weaknesses 
of design at early stage during verification because hardware 
weaknesses could lead to vulnerability and cause security breach.  

 The proposed hardware security verification methodology 
outlines a strategy for establishing a comprehensive security 
verification plan and leverage Portable Test and Stimulus Standard 
(PSS) to enhance reusability and scalability. The prime purpose of 
the PSS is to define a domain-specific language (DSL) that is 
declarative in nature for specifying verification intent [7]. It enables 
engineers to create a unified representation of stimulus and test 
scenarios, usable across various integration levels and configurations. 
We have demonstrated the proposed methodology on an open source 
SoC design, where it successfully uncovered a security vulnerability. 
Furthermore, we have ensured the effectiveness of this methodology 
by detecting security flaws that were deliberately introduced in the 
design. 

II. RELATED WORK 

Security verification of the hardware design has become an 
important phase of the current SoC design due to various security 
threats and hardware attacks at different stages of the development 
cycle. A detailed analysis of hardware security properties, hardware 
security threats and countermeasures is presented in [5]. It explains 
new challenges of design verification and opportunities of integrating 
an additional dimension of security into robust hardware design and 
verification.  

Wang et al. discussed the application of the PSS to verify the 
security features of  RISC-V based SoC, the granular control of 
permissions across multiple physical memory regions provided by 
the Physical Memory Protection (PMP) unit in [8]. Their study 
demonstrates the generation of a substantial volume of tests using 
PSS model, which encompass both positive and negative security test 
scenarios. While the study provides insights into the verification of 
security features, it does not specifically address the application for 
uncovering common hardware weaknesses or vulnerabilities in micro 
architectural implementations. Hardware weaknesses could lead to 
security risk, and it is very important to identify them early during 
verification to ensure the trustworthiness of SoC designs. In our 
proposed methodology, CWEs related to confidentiality and integrity 
are systematically analyzed to derive a list of security requirements, 
and the design under test is verified against them. Moreover, the 
paper does not discuss about the specific strategies for maximizing 
coverage or handling corner cases effectively. In our work, we have 
integrated stimuli coverage closure for measurable evaluation of test 
intent that boosts effectiveness of proposed methodology.   

There has been formal verification work to verify RISC-V 
architecture [1] and OpenRISC-1200 based SoC architecture [9].  
Security analysis of the SoC using an assertion based formal 
verification method is presented in these works. Security 
requirements of the hardware design can be formalized as taint-
propagation properties prove them using formal verification tool [2], 
[14]. Security properties of SoC bus implementation have been 
derived from the bus protocol and prove them using formal 
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verification tool [13]. Nevertheless, it is challenging to scale up 
formal verification method for the complex SoC designs and 
formalized properties could not be ported or reused for other 
verification platforms. The security requirements have been 
formulated as a PSS model in our developed security verification 
methodology that can be reused across various verification platforms 
i.e., simulation, emulation, and FPGA prototyping. Moreover, a PSS 
model facilitates generation of meaningful and comprehensive tests 
for multiple test case scenarios that saves time spent for test writing.  

A design and verification framework for SoC access control 
systems based on the information flow approach was developed in 
[3], [4]. An automation framework to generate the security properties 
based on information flow tracking approach has been presented in 
[12]. A security verification tool has generated a security model using 
a security property template based on the information flow tracking 
approach. The security model was integrated with a testbench for the 
simulation and to prepare a report for property pass/fail. Researchers 
have also referred to CWEs to find potential weakness in the design 
during creating security properties. In this method, a coverage model 
cannot be formulated for either functional coverage or code coverage. 
We have included stimuli coverage closure for quantitative 
assessment of test intents in our proposed security verification 
approach. 

III. METHODOLOGY 

A. Overview of Methodology 

The traditional verification process for digital designs starts with 
developing a verification plan (vPlan) derived from the specifications 
and hardware requirements, encompassing all verification items 
essential for the verification. As depicted in Fig. 1, a security 
verification plan is additionally incorporated in the verification plan 
as the starting point for security verification. It entails outlining the 
security requirements and a security coverage plan to monitor the 
verification progress on the simulation platform. Once the security 
vPlan is well-defined, the generation of a PSS model starts that 
captures security requirements in the declarative domain-specific 
language. The PSS model encapsulates an abstract behavior of 
verification test intent of the design, relying on the requirements and 
target implementation for test realization. It also includes checkers 
and monitors that are essential for the test validation. The PSS model 
incorporates coverage definition, a feature that allows for the tracking 
of engaged stimuli and test scenario space coverage. This feature is a 
key in pre-analyzing the coverage of generated tests before executing 
them on verification platforms like simulation. It ensures the time-
efficiency and gives confidence that the tests can address intended 
behaviors of the design under verification. In parallel of the RTL 
(Register Transfer Level) design implementation by the design team 
and ensuring the readiness of testbench environment, the generation 
of tests from the PSS model can commence, aimed at the target 
platform (simulation or emulation). When the tests are passed 
successfully, a coverage report is produced on the simulation 
platform. If the coverage objectives are met, the process advances to 
the hardware implementation phase, signifying the completion of the 
security verification process. On the other hand, if a test fails, the 
design requires alterations to rectify the security flaws or weaknesses. 
After these modifications, the generated test is run again to confirm 
that there are no security bugs, or any micro-architectural weaknesses 
present in the RTL implementation of digital design.  

B. Security Verification Plan 

The first and crucial step of the proposed methodology is to 
establish a robust and comprehensive security verification plan as 
shown in Fig. 1 and it is depicted in detail in Fig. 2. The security 
verification plan encompasses the meticulous formulation of security 
requirements, a scalable verification process to check them during the 
design development process, and a security coverage plan for 
monitoring the verification progress to ensure security signoff before 
tape-out. Fig. 2 illustrates a comprehensive flow to achieve the 
security requirements. It is explained in detail how we can derive a 

list of security requirements and the process of reasoning about these 

requirements in following text. 

Design Asset Identification: A design asset can be defined as a 
resource with a security critical value that is worth protecting from 
an adversary. An asset may manifest as registers, modules, or ports 
within a design IP. For an instance, on-device key (Secret/Private 
key(s) of an encryption algorithm) or protected data (Sensitive user 
data, meter reading), Device configuration (Service/Resource access 
configuration) etc. 

The choice of security assets varies design by design and for the 
different abstraction layers. Mainly, the declaration of security assets 
is heavily dependent on the security policies that will be defined at 
different levels of integration for different components in SoC. 

Threat Model: The next step is to develop the threat model. It is 
crucial to articulate the relevant security concerns related to every 
security asset defined at the first step. Hardware threats are vast and 
must be assessed based on the asset and usage of the hardware under 
design. The threat model is composed of a set of realistic assumptions 
and definitions of what an adversary can and cannot do in the system. 
Threat model can be classified and established based on the following 
categories: 

• Confidentiality violation: The flow of assets to an untrusted IP 
or observable points is considered as a confidentiality violation. 
Security assets associated with the cryptographic primitives can be 
retrieved indirectly by monitoring the responses of the components 
under scrutiny to a series of actions. This indicates that there is no 
need for direct access to retrieve these security assets. The existence 
of an insecure form of data or control flow causes confidentiality 
violations.  

• Integrity violation: Illegal modification or corruption of an asset 
is regarded as an integrity violation. Unauthorized interaction 
between trusted and untrusted IPs, illegal accesses to protected 
memory addresses, protected states of a controller module, and out 
of bound memory access fall under this threat model. 

• Denial of Service (DOS)/Availability violation: Service or 
connectivity disruption of the modules embedded in a SoC or in IP 
can be categorized as a denial of service (DoS) threat. Numeric 
exceptions (e.g., divide by zero) and deadlocks can make a resource 
unavailable for a particular time and are examples of DoS threats. 
Moreover, DoS attacks can introduce timing (latency) overhead for 
recovery which can be utilized for leaking information or violating 

access controls. 

Potential Weaknesses Identification: After having identified 
assets and established a threat model, the subsequent step involves 
finding the points of weaknesses and vulnerabilities through which 
an attacker might gain access to the asset for an exploitation. At this 
stage, vulnerabilities may arise due to inadequate design practices, as 
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Fig. 1. Overview of Methodology 

 
Fig. 2. Security Verification Plan 



traditional design objectives often overlook security constraints and 
issues in micro-architecture implementation. Identifying these 
weaknesses is often challenging and time-consuming since it requires 
understanding the design’s specification, the design’s 
implementation, an understanding of the nuances in the correlation 
between these two aspects, and which parts of the design are most 
relevant to the threat model. To increase the chance of identifying 
security critical weaknesses, the MITRE CWE database [6] serves as 
a valuable resource. Once potential weaknesses related to the threat 
model are identified, it is essential to map them to CWE numbers to 
prepare security coverage. It is not always possible to incorporate the 
identified assets and threat models with CWE as there may be some 
weaknesses that are not yet listed in the database. However, 
identifying and stating potential weaknesses is still important to 
develop the security requirements. 

Define security requirements and coverage plan: The last and 
significant step of the process is to define security requirements for 
the identified weaknesses in plain text. Once a mechanism is 
identified as a potential weakness, a security requirement can be 
expressed to address the weakness in the design. A coverage plan also 
needs to be defined for monitoring the stimulus that is going to cover 
by the test, as well as mechanism for assessing the extent to which 
the security requirements have been fulfilled. 

IV. METHODOLOGY APPLICATION 

The proposed methodology is applied on a commercial-grade 
System-on-Chip (SoC), an open-source Root of Trust (RoT) [10] 
design to demonstrate the real-world applicability and effectiveness. 
The implementation steps include formulating a security verification 
plan, creating a PSS model based on security requirements, and 
demonstrating the effectiveness of tests in the presence of 
intentionally inserted bugs in the design. 

A. Design under verification  

The design selected for implementing the proposed methodology 
is an Advanced Encryption Standard (AES) IP from Google’s 
OpenTitan Root of Trust SoC. This SoC is utilized for Universal 
Second Factor (U2F) security key authentication and Trusted 
Platform Module (TPM) functionality, where the management of 
sensitive data is a primary aspect. It relies on security IPs such as 
AES and Keccak Message Authentication Code (KMAC). Among 
these security IPs, AES stands out due to its complex design and size, 
making it a suitable candidate for the application of the methodology. 
The AES IP functions as a peripheral on the chip interconnect bus, 
overseeing OpenTitan’s symmetric encryption and decryption 
operations. It serves as a cryptographic accelerator, responding to 
requests from the processor to encrypt or decrypt 16-byte blocks of 
data. The AES unit supports AES-128/192/256 in ECB, CBC, CFB, 
OFB, and CTR modes through a single shared data path, allowing 
either encryption or decryption, but not both simultaneously [15].  

The UVM was employed to create a testbench for the selected 
design.   The RTL and testbench code are accessible in the OpenTitan 
Git repository [11]. To effectively apply this methodology, it was 
necessary to make fine-tuned adjustments to the open-source code.  

B. Security Verification Plan 

The first step in the proposed methodology is to develop a 
comprehensive security vPlan. The establishment of a security vPlan 
is a manual process, and it should be formulated by following the 
steps outlined in the Section III. Without a proper layout of these 
steps, this security verification plan may become skewed towards a 
functional verification plan.  

The initial step in the process entails a thorough examination of 
the design specification, coupled with a prior understanding of the 
CWE database. This analysis is fundamental to grasp the potential 
vulnerabilities within the design’s scope. After an in-depth analysis 
of the design specification for the OpenTitan AES IP, we identified 
five crucial assets within the design that need to be protected from 
the potential adversaries. Once these assets are defined, we then 
assume a threat model based on the attack surface. This could result 

in multiple threats being associated with a single asset. To ensure 
these assets have been thoroughly tested for specific weaknesses and 
are free from vulnerabilities, they are subsequently mapped to the 
CWEs. Therefore, the title for each weakness is maintained similar 
to those in the CWEs database for consistency and ease of 
understanding. After analyzing the considered assets and threat 
models, we have outlined ten security requirements. These 
requirements are focused on protecting confidentiality, integrity, 
availability, and preventing access control breaches of the crucial 
assets. Our security vPlan is depicted in Table I. It contains the 
identified assets, related threats and weaknesses, as well as the 
derived security requirement (SR) in plain language and the coverage 
plan.   

C. PSS model 

A PSS model of the intended test of the design under verification 
is prepared based on the security requirements listed in Table I. 
Atomic actions are modeled to represent a set of behavior where the 
constraining of stimuli is defined. Furthermore, coverage groups are 
devised to track and cover the target stimuli and actions. All actions 
are encapsulated within a component, which is part of a package. PSS 
model interacts with foreign languages typically HVL (SV or e) for 
simulation or C for embedded or emulation to initiate the behaviors 
that leaf-level actions represent in a test scenario. The PSS abstract 
model is expanded to define the intended implementation, where 
executable sections are used to call external target functions, and  

TABLE I.   SECURITY VERIFICATION PLAN 

# Attribute Definition 

 Asset Control register “CTRL SHADOWED”. 

 Threat_1 Integrity violation, accessing the reserved bits 
could potentially compromise the state of the 
hardware. 

1 Weakness CWE-1209: Failure to disable reserved bits 
 S_Requirement The reserved bits inside the “CTRL 

SHADOWED” should be nonwritable. 
 Coverage plan Cover both write and read operations of 

“CTRL SHADOWED”. 

 Threat_2 Confidentiality violation, disclosure of 
configuration data. 

2 Weakness CWE-200: Exposure of sensitive information 
to an unauthorized Actor. 

 S_Requirement Control register should “CTRL 
SHADOWED” remain unobservable. 

 Coverage plan Cover all valid settings of “CTRL 
SHADOWED” register. 

 Asset Key registers “KEY SHARE0 and KEY 
SHARE1”. 

 Threat_1 Confidentiality and access control violation, 
software has the capability to read out key 
information. 

3 Weakness CWE-1262: Improper access control for 
register interface. 

 S_Requirement The key register should remain unreadable. 
 Coverage plan Cover write to all 16 key registers and also 

cover read actions for reading from all these 
registers. 

 Threat_2 Confidentiality violation, disclosure of key. 
4 Weakness CWE-200: Exposure of sensitive information 

to an unauthorized actor. 
 S_Requirement key register should remain unobservable. 
 Coverage plan Cover write to all key register and actions. 

 Asset Data registers “DATA IN”. 
 Threat_1 Confidentiality and access control violation, 

Software has the capability to read out data 
information. 

5 Weakness CWE-1262: Improper access control for 
register interface. 

 S_Requirement The data register should remain unreadable. 
 Coverage plan Cover write to 4 data registers and cover read 

actions for reading from all these registers. 

 Threat_2 Confidentiality violation, disclosure of data. 
6 Weakness CWE-200: Exposure of sensitive information 

to an unauthorized actor. 
 S_Requirement Data register should remain unobservable. 
 Coverage plan Cover data write and observe action. 



 Asset Lock bit for auxiliary control register “CTRL 
AUX REGWEN”. 

 Threat Integrity violation, write access to Auxiliary 
Control Register “CTRL AUX 
SHADOWED”. 

7 Weakness CWE-1233: Improper prevention of lock bit 
modification. 

 S_Requirement Control auxiliary register CTRL AUX 
SHADOW should not be modifiable after 
lock bit is enable. 

 Coverage plan Cover write to CTRL AUX SHADOW and 
CTRL AUX REGWEN action. 

 Asset Cipher core. 
 Threat_1 Confidentiality violation, disclosure either a 

key, data, or both 
8 Weakness CWE-203: Observable discrepancy. 
 S_Requirement Intermediate result should not flow to output 

before round count value is complete. 
 Coverage plan Cover operation mode and key length with 

compound action. 

 Threat_2 Confidentiality violation, disclosure of key 
length through timing side channel. 

9 Weakness CWE-1254: Incorrect Comparison Logic 
Granularity. 

 S_Requirement Time difference during a cipher operation 
involving different key lengths should not be 
observable. 

 Coverage plan Cover three key (128,192,256) length action. 

 Threat_3 Integrity and availability violation, 
Disturbances or manipulation of control flow. 

10 Weakness CWE 1245: Improper FSM in hardware 
logic. 

 S_Requirement FSM States, Mux selection should not be able 
to enter undefined states. 

 Coverage plan Cover 26 target signal in three different FSM 
from cipher core. 

 

checkers are set up to compare expected outcome with actual values. 
The next step involves creating test scenarios based on the security 
requirements utilizing the implemented atomic actions as building 
blocks. As shown in Fig. 5, a snippet of a solved test scenario and 
coverage data have been extracted from the EDA tools Perspec 
System Verifier, Incisive Metrics Center (IMC) used for compiling 
PSS model, and for coverage collection. In the following listing, we 
use the Security Requirement SR2 from our security vPlan (see Table 
I) to exhibit the implementation of workflow using PSS. 

In Listing 1, a brief code snippet is provided that defines a 
package named “aes_test_pkg” (at line 1). This package is designed 
to encapsulate all the behaviors related to the AES IP that the test 
intends to cover. This package includes the component “aes_c” that 
specifies hardware IP AES (at line 6) and a struct “aes_seq_item_s” 
(at line 5) is defined to group all global stimuli within the package. 
These stimuli are transmitted to the target platform as part of a 
specific test.  

Listing 2 includes a code snippet of all atomic actions required to 
create a test scenario for the security requirement SR2, all of which 

are grouped within “aes_c” (at line 1). Actions are unit behavior and 
defines system´s function and include the data object, resources and 
data attribute required for execution. For an example, action 
“aes_read_status_reg” (line 16) specifies a function of design to 
reading register value, Furthermore, a state data flow object  
“ctrl_shadow_state” (line 3) is defined to store updated values for 
later checks. This object is instantiated as output and as input, this 
ensures a smooth flow of data between actions. Abstract action 
“aes_base_a” (at line 9) serves as base actions for other actions and 
can only be inherited, it cannot be instantiated directly. Its primary 
purpose is to provide a foundation for other actions to build upon. An 
action “aes_write_ctrl_shadow_reg” (at line 19) is defined to write to 
the control register of the AES module. The actions may incorporate 
constraints to generate tests for specific behaviors of the DUV. 

To execute all these actions, a binding is made with UVM 
testbench components, and necessary adjustments are made, such as 
establishing API and appropriate hooks to run the PSS test on the 
existing UVM testbench. In addition, an explicit cover group is 
defined in PSS to monitor the generated stimuli, and an inline cover 
group is established to track which actions and scenarios were 
exercised during the test generation. 
 

Listing 3 contains a code snippet illustrating test scenario and its 
inline scenario covergroup, aimed at generating tests for SR2. A 
compound action “ctrl_shadow_reg_observability_sr” (at line 3) is 
defined to encapsulate the test scenario. Series of actions crafted to 
execute in one after one manner (at line 5), starting with “aes_init_a” 

//aes_base.pss 
1 package aes_test_pkg { 
2 enum aes_op_e {AES_ENC = 2'b01, AES_DEC = 2'b10}; 
3 enum aes_mode_e {AES_ECB = 6'b00_0001, 

AES_CBC = 6'b00_0010, 
          AES_CFB = 6'b00_0100, 

AES_OFB = 6'b00_1000, 
AES_CTR = 6'b01_0000, 
AES_NONE = 6'b10_0000}; 

............. 
4 enum op_e {AUTOMATIC = 1'b0, MANUAL = 1'b1}; 
5 struct aes_seq_item_s { 
  rand string name ; 
  rand bit dut_init; 
  //Control Shadow register 
  rand aes_op_e aes_op ; 
  rand aes_mode_e aes_mode; 
  rand op_e op; 
  .............. 
 }  

6 Component aes_c { 
   ............. 
 }//aes_c 
}//aes_test_pkg          

         

Listing. 1. Test package definition  

 
Fig. 5. Implementation workflow with PSS model 



to initialize AES, arrange the clock and reset, and confirm that the 
AES is in idle mode followed by read and write operation of status 
and control register for the configuration. Finally, “observe_ctrl_ 
shadow_ reg” action is performed to confirm that the values in the 
output register do not correlate with the configured values in the 
control shadow register. 

Following the successful compilation of the PSS model and the 
resolution of the specified PSS test scenarios for ten requirements, 
the tool generated tests tailored to the desired stimuli. These tests

 

were executed in simulation environment with the help of a 
developed bash script that is meant to automate the process of 
running the test by invoking simulator and extracting the result from 
generated logfile after test completion. 

V. RESULT 

The implementation of the developed methodology on 
OpenTitan AES was marked as successful. A total of 287 tests were 
generated from the PSS model to verify ten security requirements. 
Out of these, 281 tests cleared successfully while six tests failed. The 
failure of these tests indicated that there is a weakness related to SR9 
in the design. It was observed that the duration required to perform 
cryptographic operations varied based on the key length. The number 
of cycles required for operation are 10,12, and 14 corresponds to the 
key length of 128,192, and 256 bits, respectively. This suggests that 
the duration of the operation is influenced by the key length. Ideally, 
the operation should take the same amount of time regardless of the 
key length to ensure asset confidentiality. This unmasked RTL 
implementation of the AES IP is not an optimal choice for 
applications with high-security demands, as its weakness could be 
exploited to deduce the length of the AES key. Table II provides a 
summary of the test outcomes.  

To validate the efficiency of autogenerated tests from the PSS 
model, deliberate security weaknesses were inserted into the RTL 
implementation of OpenTitan AES design. This intentional RTL 
alteration was aimed at implementing three specific weaknesses tied 
to SR2, SR6 and SR8. The tests successfully detected the 
intentionally inserted bugs and flagged errors. A brief description and 
simulation result are presented below for SR8 that shows the tests 
were able to detect the intentionally implemented security weakness 
in RTL implementation. 

The scenario “intermediate_result_sr” was resolved for the ECB 
mode of AES operation, as this mode is considered the least secure 
compared to other modes. The action was constrained to generate 
tests for both encryption and decryption in ECB mode using three 
distinct key lengths: 128, 192, and 256 bits, resulting in a total of six 
tests. Fig. 6 shows a snapshot of the waveform observed during 
simulation, demonstrating that when the encryption operation is 
active, the ‘crypt_busy’ signal is high, and the ‘data_out_we’ signal 
remains low until the cipher text is prepared, the ‘data_out’ signal 
transitions to high, and data is transferred to the output register. The 
test is aimed to determine whether any intermediate values appear in 
the output register. Since no intermediate values were observed in the 
output register, the tests were deemed successful. Fig. 7 shows the 
waveform outcomes following the introduction of RTL 
implementational weakness into the design. The tests available on 
GitHub for OpenTitan AES functional verification were not able to 
identify this specific introduced weakness in the design, therefore, 
goes undetected as all tests are successfully passed. The generated 
test for SR8 (from Table 1) detected the weakness in the design and 
terminated the test as the checker in PSS flagged fatal. The tests for 
functional verification passed because the modification maintains the 
functionality of the design, it introduces a flaw that allows a leakage 
of intermediate results. However, the final output remains consistent. 

TABLE II RESULT SUMMARY OF SECURITY REQUIREMENTS 

# PSS Test Scenario Generated 

Test 

Test 

Status 

1 ctrl_shadow_reg_reserve_access_sr 108 Passed 

2 ctrl_shadow_reg_observability_sr 108 Passed 

3 key_reg_read_access_sr 10 Passed 

4 key_reg_read_observability_sr 10 Passed 

5 data_in_reg_read_access_sr 10 Passed 

6 data_in_reg_observability_sr 10 Passed 

7 ctrl_aux_regwen_protection_sr 4 Passed 

8 intermediate_result_sr 6 Passed 

9 timing_sca_sr 6 Failed 

10 aes_cipher_core_fi_sr 15 Passed 

//aes_base.pss 
1 component aes_c { 

   2 //Declare state to store data 
   3  state ctrl_shadow_state { 

     4    rand bit [32] updated_ctrl_shadow_reg;} 
5    pool ctrl_shadow_state ctrl_shadow_state_pool; 

   6    bind ctrl_shadow_state_pool *; 
…       .......... 
   9  abstract action aes_base_a { 
   10   rand aes_seq_item_s seq_item; 

11   bool wait_for_completion = true;} 
 

    12 //To initialize DUV 
    13  action aes_init_a : aes_base_a { 

     14   constraint seq_c {seq_item.name == 
"aes_init_vseq"; seq_item.dut_init == 1;}} 

 
15 //To read status register 

    16  action aes_read_status_reg : aes_base_a { 
     17   constraint seq_c {seq_item.name == 

"aes_read_status_reg";       
seq_item.dut_init == 0;}} 

 
   18 //To write control shadow register of aes 
   19  action aes_write_ctrl_shadow_reg : aes_base_a { 

     20   output ctrl_shadow_state ctrl_shadow_state_out; 
     21   constraint seq_c { 

            seq_item.name == "aes_write_ctrl_shadow_reg"; 
             seq_item.dut_init == 0; }} 
 

22 //To monitor any potential leakage of 
ctrl_shadow_reg   

   23  action observe_ctrl_shadow_reg : aes_base_a { 
     24   input ctrl_shadow_state ctrl_shadow_state_in; 
     25   constraint seq_c {seq_item.name == 

"observe_ctrl_shadow_reg"; 
       seq_item.dut_init == 0;} } 
 
}//aes_c 
 

Listing 2. Top component with atomic actions 

  //aes_scenarios.pss 
1 extend component pss_top { 
2   import aes_test_pkg::*; 
3   action ctrl_shadow_reg_observabiltiy_sr { 
4     activity { 
5       sequence { 
           a0: do aes_c::aes_init_a; 
           a1: do aes_c::aes_read_status_reg; 
           a2: do aes_c::aes_write_ctrl_shadow_reg; 
           a3: do aes_c::observe_ctrl_shadow_reg;           
        };};};}; 
 
 //aes_scenario_coverage.pss 
6 extend component pss_top { 
7   extend action ctrl_shadow_reg_obserabiltiy_sr {  
        //scenario coverage 
        covergroup { 
            bit in [1] observed: coverpoint 1; 
        }cov_ctrl_shadow_reg_obserabiltiy_sr  
         }; 
   }; 
 
Listing 3. Compound action with inline coverage 



  

Formulating security requirements in PSS offers several benefits. 
Firstly, it allows for the establishment of scenarios that might be 
challenging to reach with other methodologies. Moreover, PSS 
facilitates automated test generation, capable of producing a 
comprehensive set of tests depending on the coverage objectives. 
Another significant advantage is the reusability of the model. New 
security requirement formulations can be derived on top of the 
previously established model, enhancing its adaptability and 
efficiency. Lastly, this methodology exhibits scalability, by enabling 
the use of developed model for IP (such as AES ) in sub-System (AES 
with DMA and a processor) and System level, which is particularly 
advantageous at the System-on-a-chip (SoC) level, making it a robust 
and versatile approach for assorted security verification tasks. 

VI. SUMMARY 

An effective security verification methodology is developed to 

identify and address security weaknesses and expose vulnerabilities 

in the digital design. The methodology outlines a strategy for 

creating a comprehensive security verification and coverage plan. 

To bridge the gap between different verification platforms and 

enable the reuse of test cases across various design verification 

stages of the SoC development cycle, the Portable Test and Stimulus 

Standard (PSS) is employed to formulate the security requirements 

as an abstract model. An abstract modelling of security requirements 

in PSS simplifies the process of creating and visualizing tests, bridge 

the communication gap between the verification engineers at 

different verification platforms by offering a common language 

through actions and security scenario diagrams. The proposed 

methodology is particularly well-suited for complex System-on-

Chip (SoC) designs that are intended to execute security-critical 

applications. This is because of the capability of PSS to capture 

internal behaviors, resources, and their usage, so it can automate 

hard-to-achieve security-related scenarios and generate the 

significantly higher number of machine-produced variations. 

The findings showed the potential vulnerabilities arising from 

security weaknesses in digital design and underscore the importance 

of robust security verification methodology for ensuring system 

security and trustworthiness. Simulation results are showcased to 

illustrate how a security breach can occur, even when functionality 

appears to be correct. 
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Fig. 6.  SR8 simulation waveform 

              
   Fig. 7. SR8 simulation waveform after RTL weakness insertion 
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