
A Roundtrip: From System Requirements
to Circuit Variations and Back

Sören Kwasigroch, Nicolas Theobald, Johannes Koch, Christoph Grimm
Chair for Cyber-Physical Systems

University of Kaiserslautern-Landau
Kaiserslautern, Germany

{soeren.kwasigroch|ntheobal|johannes.koch|cgrimm}@rptu.de

Abstract—This paper presents an approach to the hierarchical
verification of analog/mixed-signal (AMS) systems. The approach
provides means for monitoring constraints and how they are
satisfied across the whole development process, from left (re-
quirements, constraints) to right (system integration). A novelty is
that we propagate constraints continuously downwards towards
implementation, and characterization results upwards back into
constraint models. This has the advantage that inconsistencies
and over-specification can be recognized earlier, which permits
a more suitable resource partitioning. The approach is demon-
strated by a multi-stage operational amplifier and a tire pressure
monitoring system.

Index Terms—Analog Mixed-Signal Systems, Process variation,
Affine Arithmetic (AA), SystemC-AMS, SysMLv2

I. INTRODUCTION

In particular for AMS systems with many uncertainties due
to process, voltage, and temperature variations and significant
non-ideal behavior of circuits a comprehensive verification
planning is needed. Chen et al. give a detailed overview of
verification challenges that include the verification time/effort
and the test bench generation with suitable coverage in [1],
[2]. Barnasconi et al. [3] further highlight the need for faster
system verification that, in particular, could be achieved using
models at a higher level of abstraction.

This work aims to improve communication throughout the
AMS system development process and across levels of abstrac-
tion. This includes the generation of verification infrastructures
to increase verification coverage and accuracy of behavioral
models, as well human aspects like the documentation of test
benches. A particular target is to reduce over-specification,
which means unnecessary strict constraints by showing where
constraints are over-satisfied.

To explain the approach, we use the V-model. The V-
model structures the development horizontally into levels of
abstraction and vertically into top-down specification activities
on the left side and bottom-up integration activities on the
right side. For AMS systems, we consider the abstraction
levels (1) system level at which requirements and application
needs are described, (2) block level at which blocks interact
via directed signal flow, and (3) circuit level. On the system-
and block-Level, we use SystemC AMS [4] models due to our

This work was partially funded by the BMBF project KI4BoardNet No.
16ME0782.

familiarity with the language framework and its infrastructure.
Furthermore, Barnasconi [3] concluded that the simulation
speed of it is competitive to other system and block-level
simulation tools, e.g., System Verilog. For the results on circuit
level SPICE based tools have been used.
Verification activities in the V-model check performance char-
acterization results after integration (right) against specified
constraints (left).

Fig. 1. V-model with continuous verification across abstraction levels.

We extend the verification process within the V-model [5] as
shown in Fig. 1 by linking the documentation, requirements,
and specified constraints (left) with the integrated models
and characterization results (right). We do this by generating
SystemC test bench templates that include infrastructures that
automatically feedback verification and characterization results
into the system- and block-level specifications. Here, we
check them against the specified constraints. To automate the
methodology, we implemented a SysMLv2 based tool, called
SysMD notebook [6], that includes techniques for constraint
propagation and that interfaces with SystemC AMS [3] via the
exchange of constraints and characterization results.

II. STATE OF THE ART

The verification of AMS systems is mostly based on mod-
eling and simulation. Approaches to support verification can
be structured into

1) Modeling and generation of verification infrastructures,
2) Means to support system-level modeling/simulation, par-

ticularly communication of verification and characteri-
zation results.

A. Modeling and generation of verification infrastructures

The generation of verification test cases and related in-
frastructures aims at supporting stakeholders at the system-
level with application background; often they are not SystemC
experts. In consequence, input languages are natural languages
that are processed using natural language processing methods
(NLP) [7], [8] or systems modeling languages like UML [9],
[10] or SysML [11]–[14].

The NLP approaches specifically target the generation of
assertions or verification test cases in languages like Sys-
temC. The UML/SysML approaches more generally translate
diagrams modeling structure or behavior into its equivalents
in SystemC, often with support for round-trip (translation
of SystemC back to UML/SysML). VeriSC [15] is more
specifically related to verification; it generates a verification
infrastructure that comprises a driver, a monitor and a checker
module.

Compared with the above-mentioned approaches, we use
SysMLv2 requirements and documentation as input and gen-
erate SystemC(-AMS) skeletons. We do not consider behavior
and detailed generation. The reason is that SystemC experts
might use their own verification packages and approaches,
including but not limited to UVM(-AMS) [16]. However, the
skeletons are intended to increase spec-coverage and to collect
results of system verification and characterization back to the
system specification model.

It is important to note that as of now we only deal
with performance verification. For industrial applications, one
must also consider the verification of connectivity (e.g., using
SysML and generating IP-XACT [17]) and functional verifi-
cation.

B. System-level modeling transport of characterization results

Means to support system-level modeling include method-
ologies for automated generation of behavioral models,
e.g., [18], [19], or simulator coupling for cross-level sim-
ulation, e.g., [20]. Related to this work are, in particular,
techniques for characterization. Such methods can be used
to determine a block’s performance through multi-run simula-
tions at the circuit level and use these performances as parame-
ters for block-and system-level models. Many characterization
approaches, e.g. [21], [22], determine values or numerical
probabilistic properties for system-level behavioral models. As
dependencies are not modeled, any further propagation leads
to over-approximations.

Approaches to include dependencies are described in [5],
[23]–[26]. [26] uses a response surface modeling approach
to model aging effects. [23], [25] use an affine kernel to
model linear dependencies of performance properties from
parameters similar to our approach. We use this approach
towards a more comprehensive analysis that closes the gap
to specified constraints. Compared with existing approaches
for characterizing models, we link this information with the
constraint propagation mechanism of a SysMLv2 based sys-
tems modeling tool and its constraint propagation mechanism.

C. Contribution

We show how to link simulation-based verification in Sys-
temC and SPICE with a system specification in SysMLv2 in
an overall verification approach:

1) We model structure, requirements, and constraints in
SysMLv2 textual and use a constraint propagation mech-
anism that might reduce over-specification (Sec. III,
Sec. V).

2) We bring characterization results across different levels
of abstraction back into the above requirements model
(Sec. IV)

We analyze the approach in two case studies: a multi-stage
amplifier and a tire-pressure monitoring system in Sec. V.

III. TOP-DOWN: REQUIREMENTS AND TESTS

We document and model requirements and constraints in
SysMLv2 textual. As a tool, we use a Jupyter notebook-like
tool, called SysMD notebook [6]. It allows system and appli-
cation experts to document tests using Markdown, including
figures and equations in LaTeX, and to link this documentation
with SysMLv2 textual models.

A. Modeling structure, requirements, constraints in SysMLv2

In SysMLv2 textual, we model intended architectures by
block diagrams. In block diagrams, we connect parts via ports
and interfaces. Note that in SysMLv2, textual interfaces (and
subclasses thereof) connect elements like Signals in Systems.
An example is given by Fig. 2.

package ams {
import ScalarValues::*;
import SI::*;
import Signals::*;

// Library elements
part def Amplifier :> Base::Anything {

port inp;
port outp;
attribute gain: Real [dB];
// (...)

}
}
// The system and block diagram level model
part multiStageAmplifier {

port input;
interface s1: Signal from input to lna.inp;
part lna: AmsLib::Amplifier;
interface s2: Signal from lna.outp to stage2.inp;
part stage2: AmsLib::Amplifier;
interface s3: Signal from lna.outp to driver.inp;
part driver: AmsLib::Amplifier;
interface s4: Signal from driver.outp to output;
port output;
attribute gain: Real[db]=lna.gain*stage2.gain*driver.gain;

}

Fig. 2. SysMLv2 textual representation of a three-stage amplifier.

Requirements refer to a specific element (a part, a port, an
interface) that is called the subject. Requirements can have
a documentation and also constraints that shall be satisfied
but are not necessarily satisfied, e.g. design artifacts. Also,
requirements can have assumed requirements that must always
be satisfied, e.g., related natural laws. An example is given by
Fig. 3.

requirement gains {
subject amp references multiStageAmplifier;

//Requirements for the multiStageAmplifier
require minGain { amp::gain >= 10.0 [dB] }
require maxGain { amp::gain <= 20.0 [dB] }

}

Fig. 3. Requirement in SysMLv2 textual for the three-stage amplifier

B. Generation of SystemC verification infrastructures

The generated SystemC templates comprise source and
header files for every SysMLv2 part, a main.cpp and a
Makefile, as well as a CMakeLists.txt to enable compilation
of the project. The templates inherit the structure and data
of the original model, featuring the declaration of variables
and constants with their respective values, the declaration of
ports, including the correct wiring to their channels, and the
instances of sub-modules. As only structural information is
applied to the templates, actual behavior has to be added by
the engineer.

To support the continuous verification approach, the gen-
eration process includes setting up a respective verification
infrastructure. Test benches are generated for every SysMLv2
requirement in a separate folder. As depicted in Fig. 4, a test
bench starts with comments that provide information about the
requirements and constraints that shall be applied by block
and circuit designers to cover the test scenario. Subsequently,
the device under test (DUT) is instantiated and embraced
by two placeholders that indicate the implementation of a
driver (stimuli) which provides the input signal, a monitor,
and the post-processing of the gathered simulation data, which
prepares the simulation results for propagation to the SysMLv2
model. Therefore the SystemC designer using this template
need to replace ’PASTE RESULT HERE’ with a function call
or variable that returns the simulated minGain and maxGain.

A particular aspect of the test bench is its capability to
feed results back into the SysMLv2 model. This is enabled
via the ResultWriter class, which generates a JSON file
that can be imported by the SysMD Notebook. At the end
of the test bench, the necessary addResult() method calls
are provided, to which the variables containing the results
must be passed. These function calls also contain additional
information that enables proper checking of the constraints and
correct backpropagation of the result to the respective element
of the SysMLv2 model.

C. Getting “Bottom Up” feedback; agile resource partitioning

After characterization, as described in the following section,
a generated JSON file (see Fig. 5) contains the simulation
results that can be propagated back into the SysMLv2 model.
To ensure correct propagation, every entry features the full
qualified name of the attribute. In our notebook, the values
of SysMLv2 attributes can be either explicitly specified or
calculated by functions (min(), sin(), ..). To use available
results, an attribute’s value must be specified via the charac-
terizedResult() function, which searches for a matching entry
in a given result file. To ensure that the constraint-net also

int sc_main(int argc, char* argv[]){
// --- REQUIREMENTS ---
//DUT: multiStageAmplifier_CLASS
//Requirement minGain requires that
// multiStageAmplifier::gain >= 20.0 [dB]
//Requirement maxGain requires that
// multiStageAmplifier::gain <= 30.0 [dB]

// --- STIMULI ---

// --- DUT ---
//This is the device that is under test
multiStageAmplifier_CLASS dut("dut");

// --- MONITORING ---
sc_start(1,SC_SEC);

// --- RESULT WRITING and POST-PROCESSING ---
ResultWriter rw;

rw.addResult("minGain", PASTE_RESULT_HERE, "dB",
Operator::GE, 20.000000000000025, "dB",
"multiStageAmplifier::gain");

rw.addResult("maxGain", PASTE_RESULT_HERE, "dB",
Operator::LE, 30.000000000000032, "dB",
"multiStageAmplifier::gain");

rw.writeResultFile();

return 0;
}

Fig. 4. Generated test bench for the gain requirements.

works if no results are available, the function can additionally
be supplied with an auxiliary function executed otherwise.

Fig. 5. JSON file with characterization results for the “maxGain” requirement.

IV. BOTTOM-UP: CHARACTERIZATION OF
PERFORMANCES

In particular, AMS systems are often specified by their
function and (performance) parameters at the left side of the
V-model. In this section, we focus on the right side of the V-
model. Here, the parameters of an implementation resp. model
thereof are determined by characterization. Characterization
results are propagated from the circuit-level models to system-
level models, and as well back into the SysMLv2 model and
its constraint propagation. For accuracy, it is of paramount
importance to capture and maintain all correlations. The reason
is that the variations are usually of significant size in AMS
circuits. However, error cancellation techniques like differen-
tial designs or correlation techniques are used at all levels of
abstraction to compensate for these variations.

A. Characterization of parameters

The underlying theory described in Zivkovic et al. [24]
suggests characterizing the performances of circuits as linear

functions depending on voltage, temperature, and process
parameters. These functions should be saved in Affine Forms
[27], which will be introduced later in this section, for the
insurance of save inclusion of each possible value of these
performances.
In this paper, we focus on its integration into a design flow. We
use worst case and sensitivity analysis (concretely: MunEDA’s
tool WiCkeD [28]) at the circuit level for relevant parameters
with variations, e.g., voltage range, temperature range, and a
selected number of process parameters. For these parameters,
we determine:

• Worst case performances, e.g. slew rate, offset error for
the chosen parameters with variations.

• Sensitivities of the performances to the chosen parame-
ters.

The results are then represented as an Affine Form [27]. Affine
forms are a mathematical approach to represent and compute
uncertain values x that are chosen from an interval in a non-
deterministic way. An (unknown) value x subject to n sources
of variability is represented by an Affine Form x̃:

x ∈ x̃ ::= x0 +

n∑
i=1

xiεi (1)

where
• x0 ∈ R is the central value; we simply use the middle of

the resulting property range.
• εi ∈ [−1, 1] are noise symbols that represent normalized

sources of uncertainty, and xi ∈ R are factors like the
uncertainty of process or voltage parameters that scale
the contribution of different sources of uncertainty to the
value of x resp. x̃. We determine these parameters by
sensitivity analysis at the central value.

We furthermore use an additional noise symbol and factor
for all other parameters, non-linearities, etc., to guarantee safe
inclusion. Note that this allows us to deal with variations that
are modeled as ranges.

It is important to understand that the indices of the noise
symbols model correlation once we use many different perfor-
mances. Then, a subtraction of two performances, e.g. for error
cancellation in a differential circuit, will subtract correlated
parameters as they share noise symbols with the same index.
We refer the reader to [27] for details on Affine Arithmetic.
To deal with probabilistic variations, we would have to use
representations as described in [25]; this is, however, not yet
implemented and is subject to future work.

B. Export of characterization results

In our example, sizing and characterization data are ex-
ported as a JSON file from MunEDA’s WiCkeD tool [28]. It
is structured in the sections Sizing, Performance and Results.
The section Sizing section lists information for each parameter
impacted by sizing in the design. The section Performance
declares the propagated performances; in its section Results,
the sensitivity from these performances to the parameters are
listed as well, with the optimized extreme values of these

performances. These are the input values to build the Affine
Forms as described above.

C. SystemC AMS models with characterization results

To integrate the circuit level characterization results into
SystemC AMS simulation at block or system level, e.g. for
Corner-Case analysis, we

• select an assignment for the circuit-level set of parame-
ters,

• generates the Affine forms to the respective sensitive
values from the characterization results,

• run the SystemC AMS simulation with different param-
eter sets, depending on the analysis.

These steps are supported by the created C++ classes
JSONImport, AF IndexStorage, Performance. Remember that
the indices of Affine Forms identify dependencies. The
AF IndexStorage therefore identifies globally (even across
modules) shared indices and hence dependencies resp. cor-
relations.

V. USE CASES: MULTI-STAGE AMPLIFIER AND TPMS

In this section, we describe two use cases: a multi-stage
amplifier and a tire pressure monitoring system (TPMS) [29].

A. Multi-stage amplifier: agile ressource partitioning

Throughout Sec.III and IV, we have already given some
details of the multi-stage amplifier example. In the following,
we show how constraints can be refined in an agile way. For
this purpose, we permit uncertain constraints at the block level
that, however, must satisfy the overall system specification:
The initial specifications of the example are lna: [4.6, 12.0]
[dB], s2: [14, 16.8] [dB], and driver: [0, 0.8] [dB]. So, the tool
calculates the amplification from each stage and the total am-
plification as Fig. 6 shows. However, the SystemC simulation
concluded an actual lower bound of the amplification of s2
of 15.8 [dB]. Therefore, the SysMD tool correctly shows us a
violation of total gain [10, 20] [dB] in Fig. 7.

Fig. 6. The individual values of the stages and the final gain after propagation
with initial specifications.

Fig. 7. Propagation after updated value of stage 2.

B. Tire pressure monitoring system (TPMS)

By the example of a TPMS system, we analyze the ability
to avoid over-approximation due to the wrapping effect [27].
A TPMS monitors the tire for pressure losses. For analysis, we
use a circuit-level model of operational amplifiers(OpAmps)
for the analog pre-processing. The bottom-up characterization
was applied on an OpAmp [30][p.12ff.]. As a simulation
target, the reaction time to these pressure losses will be written
out to a log file from the simulation.

1) Requirements model: The specification of the structure
of these models is done in SysMLv2. The expected compo-
nents and the attribute range are specified in this file (compare
with Fig.8).

Fig. 8. TPMS System level model (excerpt).

The constraint net, evaluating the specification of SysMLv2
[6], can compute the upper and lower bound of dependent
attributes between the components with this information.

2) SystemC AMS model at block level: The structure is
partitioned as seen in the Fig. 8. All models are created using
the Timed Data Flow model of computation using SystemC
AMS. There are four models simulating hardware in this
TPMS: the pressure sensor, two OpAmps, amplifying the
sample in the right range, and an ADC. After that, a software
detection block decides if a pressure loss occurs. Only the
OpAmp model is written as a block-level electric model. The
remaining blocks model simple ideal behavior.

In this system, the pressure sensor outputs a positive or
negative mirrored measurement value from 0 to 0.1 mV,
respectively, -0.1 to 0 mV, with a sample rate of 1000 Hz.
In this model, both output ports of the scenario module are
connected to two identical OpAmps. Therefore, the offset will
be derived from the same value. The offset error will cancel
itself by summing up the OpAmp output with different signs.
For the analog to digital conversion, a 10-bit ideal model maps
analog values from 0 to 1 mV to a range from 0 to 1023.
Therefore, the requirement for the OpAmp model must have at

least an amplification V = 10. The detection module computes
the summed-up differences of the ADC output values over the
simulation time and determines if a pressure loss occurs.

3) Circuit characterization for behavioral model: The
OpAmp behavioral model at block- and system-level is mod-
eled in SystemC AMS as a simple transfer function:

A(s) =
Uout(s)

U+
in(s)− U−

in(s)
=

Uout(s)

Udiff (s)

=
AO

s ∗ (1 +AO ∗Ag)
.

(2)

Here, Uin is the input voltage with a plus and minus sign,
Uout the output voltage, A the total amplification, AO the
open loop gain, and the wired gain. This transfunction is
implemented with the sca tdf::sca ltf nd class, which takes
the transfer function in the nominator-denominator form. It
considers the four performance properties: the open loop
gain AO[dB], the maximum output voltage Uout,max[V], the
minimum output voltage Uout,min[V] and the offset Uos[V].
The feedback network transfer function Ag is derived by the
classical negating OpAmp setup. The time behavior, denoted
with small letters, will then be refined as follows:

uout(t) = max{uout,min,min{udiff (t)∗A, uout,max}}+uos.
(3)

Values of the performance lie within the following ranges:
• AO =[-208.19, 390.19] [dB]
• uout,max =[-9.57,10.62] [V]
• uout,min =[-0.86,1.84] [V]
• uos =[-6.03,5.99] [V]

This is obtained by summing up the maximal and minimal
range over all 69 used parameters: x0 +

∑69
i=1 |xi|.

4) Input: The input was chosen to be a 2200 s simulation
time scenario for demonstration purposes, which is not very
realistic for a car tire. It contained a 2000-second (33 min
20s) long and 100-second fast airdrop. In Fig. 9, the trace of
this pressure sensor’s positive and negative-signed samples are
depicted for both scenarios in the first row.

5) Results: For the depicted simulation run in Fig. 9
the performances have the following configuration : A0 =
2.19e+6, uout,min = 0.99, uout,max = 8.72 and uos = −2.92.
The first row shows the inputs of the scenario module. Below
are the outputs of the operational amplifier and the corrected
sample. In particular, the offset error of the circuits is partially
canceled in the overall behavioral model – this is as expected
as the affine forms that parameterize it include the correlation
information. The third row shows the digital value of the
ADC module outputs. Furthermore, the status of the detection
software is plotted. It starts with 8 for no pressure loss
and changes to 12 for a pressure loss after 168s. After the
tire is filled up, the status returns to status 8; however, it
returns a pressure loss after 8s. The TPMS was simulated for
seven runs with a total simulated time of 2200s. The wall
clock time with an interfacing module JSONImport needed an
average of 81.264s. The wall clock time for simulation without

Fig. 9. Trace-file of an arbitrary parameter configuration

interfacing and hard-coded performances averaged 81.313s.
This indicates that the overhead created by the interfacing
module, which involves reading the properties in JSON and
determining the values based on a configuration, is marginal.

VI. CONCLUSION

We have described a verification approach that links the
requirements on the left side of the V-model with the char-
acterization results from model-based verification on the right
side of the V-model. We have shown how to use SysMLv2
textual in this context to model requirements and constraints
and how to generate SystemC templates. An advantage of the
approach is that characterization results are propagated back
into the requirements model in SysMLv2. In the requirements
model, a constraint propagation mechanism then checks the
overall consistency and allows a re-partitioning of resources.
This can help avoid over-specification.

The methodology is supported by a tool called SysMD
Notebook that we demonstrated in two examples. The tool
supports a subset of SysMLv2 textual: KerML and SysMLv2
with limited support for behavioral modeling. This subset is
sufficient for the given use case, modeling structure, require-
ments, and constraints. Current work increases the supported
subset of SysMLv2. The tool is being published as open
source, and its integration of constraint propagation is being
submitted as an RFC to the OMG standardization body.

The usefulness of the approach also depends on the avail-
ability of libraries. Future work deals with two modeling
libraries: one for modeling the in-vehicle networks as de-
scribed in [6]. The other library targets the specification and
verification of AMS systems.

REFERENCES

[1] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and Trends in Modern SoC Design Verification,” IEEE Design
& Test, vol. 34, no. 5, pp. 7–22, 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/8000621/

[2] A. Fürtig, G. Gläser, C. Grimm, L. Hedrich, S. Heinen, H.-S. L. Lee,
G. Nitsche, M. Olbrich, C. Radojicic, and F. Speicher, “Novel metrics
for Analog Mixed-Signal coverage,” in 2017 IEEE 20th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2017, pp. 97–102.

[3] M. Barnasconi, “SystemC AMS extensions: Solving the need for speed,”
DAC Knowledge center, vol. 6, 2010.

[4] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, “An introduc-
tion to modeling embedded analog/mixed-signal systems using systemc
ams extensions,” in DAC2008 International Conference, vol. 23, 2008.

[5] B. Prautsch, H. Dornelas, R. Wittmann, F. Henkel, F. Schenkel,
J. Koelsch, C. Grimm, and G. Strube, “AnastASICA – towards
structured and automated analog/mixed-signal IC design for automotive
electronics,” in ANALOG 2020; 17th ITG/GMM-Symposium, 2020, pp.
1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9257337

[6] Constructive Model Analysis of SysMLv2 models by Constraint Propa-
gation. IEEE, 2024.

[7] C. M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, and M. Pistauer,
“Specification-based verification of embedded systems by automated test
case generation,” in Distributed Embedded Systems: Design, Middleware
and Resources, B. Kleinjohann, W. Wolf, and L. Kleinjohann, Eds.
Boston, MA: Springer US, 2008, pp. 35–44.

[8] C. B. Harris and I. G. Harris, “Glast: Learning formal grammars to
translate natural language specifications into hardware assertions,” in
2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016, pp. 966–971.

[9] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. De-
haene, and Y. Vanderperren, “Uml for esl design - basic principles, tools,
and applications,” in Proceedings of the 2006 IEEE/ACM International
Conference on Computer-Aided Design, 11 2006, pp. 73–80.

[10] C. Xi, L. JianHua, Z. ZuCheng, and S. YaoHui, “Modeling systemc
design in uml and automatic code generation,” in Proceedings of
the 2005 Asia and South Pacific Design Automation Conference, ser.
ASP-DAC ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 932–935. [Online]. Available: https://doi.org/10.
1145/1120725.1120760

[11] K. Nguyen, Z. Sun, P. Thiagarajan, and W.-F. Wong, “Model-driven
soc design via executable uml to systemc,” in 25th IEEE International
Real-Time Systems Symposium, 2004, pp. 459–468.

[12] W. Raslan and A. Sameh, “System-Level Modeling and Design using
SysML and SystemC,” in 2007 International Symposium on Integrated
Circuits, 2007, pp. 504–507.

[13] A. Abdulhameed, A. Hammad, H. Mountassir, and B. Tatibouet, “An
approach based on SysML and SystemC to simulate complex systems,”
in Proceedings of the 2nd International Conference on Model-Driven
Engineering and Software Development - Volume 1: MODELSWARD,,
INSTICC. SciTePress, 2014, pp. 555–560.

[14] D. Genius and L. Apvrille, “A Tool for Investigating Cyber-Physical
Systems via SystemC AMS Virtual Prototypes Derived from SysML
Models,” in DVCon Europe 2023; Design and Verification Conference
and Exhibition Europe, 2023, pp. 27–33.

[15] K. R. G. da Silva, E. U. K. Melcher, G. Araujo, and V. A. Pimenta,
“An automatic testbench generation tool for a SystemC functional
verification methodology,” in Proceedings of the 17th Symposium on
Integrated Circuits and System Design, ser. SBCCI ’04. New York,
NY, USA: Association for Computing Machinery, 2004, p. 66–70.
[Online]. Available: https://doi.org/10.1145/1016568.1016592

[16] T. Maehne, Z. Wang, B. Vernay, L. Andrade, C. Ben Aoun, J.-P. Chaput,
M.-M. Louërat, F. Pêcheux, A. Krust, G. Schröpfer, M. Barnasconi,
K. Einwich, F. Cenni, and O. Guillaume, “UVM-SystemC-AMS based
framework for the correct by construction design of mems in their real
heterogeneous application context,” in 2014 21st IEEE International
Conference on Electronics, Circuits and Systems (ICECS), 2014, pp.
862–865.

[17] A. Kirchner, J.-H. Oetjens, and O. Bringmann, “Using SysML for
Modelling and Code Generation for Smart Sensor ASICs,” in 2018
Forum on Specification & Design Languages (FDL), 2018, pp. 5–16.

[18] M. U. Farooq, L. Xia, F. A. Hussin, and A. S. Malik, “High level
fault modeling and fault propagation in analog circuits using NLARX
automated model generation technique,” in 2012 4th International
Conference on Intelligent and Advanced Systems (ICIAS2012), vol. 2,
2012, pp. 846–850.

[19] C. Sanchez-Lopez and E. Tielo-Cuautle, “Behavioral model generation
for symbolic analysis of analog integrated circuits,” in International
Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005., vol. 1,
2005, pp. 327–330 Vol. 1.

[20] Y. Zaidi, C. Grimm, and J. Haase, “Fast and unified SystemC
AMS - HDL simulation,” in 2009 Forum on Specification & Design

Languages (FDL), 2009, pp. 1–6, ISSN: 1636-9874. [Online]. Available:
https://ieeexplore.ieee.org/document/5404078

[21] D. De Jonghe and G. Gielen, “Characterization of Analog Circuits
Using Transfer Function Trajectories,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 59, no. 8, pp. 1796–1804, 2012.

[22] T. Koskinen and P. Cheung, “Hierarchical tolerance analysis using
statistical behavioral models,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 5, pp. 506–516,
1996.

[23] C. Zivkovic, C. Grimm, J. Kölsch, D. Short, M. Ferstl, D. Denger,
D. Krems, and A. Barisic, “Bringing uncertainties into system
simulation: A SystemC AMS case study,” in 2020 Forum for
Specification and Design Languages (FDL), 2020, pp. 1–6, ISSN: 1636-
9874. [Online]. Available: https://ieeexplore.ieee.org/document/9233008

[24] C. Zivkovic, C. Grimm, M. Olbrich, O. Scharf, and E. Barke, “Hier-
archical Verification of AMS Systems With Affine Arithmetic Decision
Diagrams,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 10, pp. 1785–1798, 2019.

[25] C. Zivkovic, J. Roedel, N. Chavan, F. Rethmeier, and C. Grimm,
“Variation-Aware Performance Verification of Analog Mixed-Signal
Systems,” in DVCon Europe 2023; Design and Verification Conference
and Exhibition Europe, 2023, pp. 7–13. [Online]. Available: https:
//ieeexplore.ieee.org/document/10461376

[26] N. Heidmann, N. Hellwege, M. Taddiken, D. Peters-Drolshagen,
and S. Paul, “Analog behavioral modeling for age-dependent
degradation of complex analog circuits,” in 2014 Proceedings of
the 21st International Conference Mixed Design of Integrated Circuits
and Systems (MIXDES), 2014, pp. 317–322. [Online]. Available:
https://ieeexplore.ieee.org/document/6872209

[27] J. Stolfi and L. H. de Figueiredo, “An Introduction to Affine Arithmetic,”
TEMA Trend. Mat. Apl. Comput., vol. 4, pp. 297–312, 2003. [Online].
Available: https://tema.sbmac.org.br/tema/article/view/352

[28] H. Dornelas, A. Schmidt, G. Strube, and E. Fabris, “New Technology
Migration Methodology for Analog IC Design using MunEDA tools,”
Tech. Rep, Tech. Rep., 2015.

[29] N. N. Hasan, A. Arif, M. Hassam, S. S. Ul Husnain, and U. Pervez,
“Implementation of tire Pressure Monitoring System with wireless
communication,” in 2011 International Conference on Communications,
Computing and Control Applications (CCCA), 2011, pp. 1–4.

[30] G. B. Clayton and S. Winder, Operational amplifiers. Elsevier, 2003.

