
OpenCar: A SysML v2 Modeling Framework
for Early Analysis of BoardNet Architectures

Sebastian Post, Johannes Koch, Aida Bevrnja, Christoph Grimm
University of Kaiserslautern-Landau, Chair of Cyber-Physical Systems

sebastian.post@rptu.de | johannes.koch@rptu.de | a.bevrnja@edu.rptu.de | cgrimm@rptu.de

Abstract—The paper describes a modeling framework for au-
tomotive boardnet architectures: OpenCar. The modeling frame-
work is based on the SysML v2 modeling language. By using a
tool for constraint propagation, we enable the early estimation
of key performances including latencies, throughput limitations,
length, cost, and weight of the cable tree. The library in particular
also provides means for safety and reliability analysis in line with
ISO26262.

Index Terms—Automotive boardnet, architecture, SysML v2

I. INTRODUCTION

Today’s vehicles have an increasing amount of software
and AI capabilities for multimedia functions and autonomous
driving. In particular autonomous driving needs data from
sensors located at various points in the vehicle and multiple
computing units (CU) that can be located throughout the entire
vehicle. These sensors and CUs communicate via the boardnet.

In the past, there was a 1:1 mapping between the functions
and CUs within the vehicle. By grouping similar features from
a specific domain to a controller, e.g. for the power train,
radar domain, etc. one gets a domain architecture. However,
the increasing complexity of domain architectures leads to the
increased length, cost, and weight of the boardnet wires: the
cable tree can be as long as 5 km and weigh up to 80 kg, which
makes it one of the heaviest components in a vehicle[1].

To address this problem, different functions, i.e., radar,
and ultrasonic in the same topological zone of the car use
a common CU in the zone (i.e., front zone). Such zonal
architectures potentially permit to reduce the cable length,
weight, and cost. However, this requires optimization:

• Functional safety must be analyzed carefully because the
CU and the used components must satisfy the strongest
requirements of the functions using it — in the worst
case, a CU hence would require Automotive Safety
Integrity Level D (ASIL D) [2] safety.

• The development process changes. In simple 1:1 and
domain architectures, a supplier was responsible for func-
tions and the related CU. The mix of allocated functions
in zonal or central architectures requires different collab-
oration between suppliers and OEMs considering func-
tional safety and budgeting of data rates and latencies.

On the other hand, looking at the boardnet in an early stage
allows optimizations that often lead to hybrid architectures.
Such optimizations include:

This work was funded by the German BMBF within the projects GENIAL!
under ref. no. 16ES0873 and KI4BoardNet under ref. no. 16ME0782.

• Taking advantage of redundant components (e.g., sensors)
throughout the vehicle might reduce some components’
ASIL level according to ISO 26262 [3].

• Sensor data fusion can in addition increase accuracy.
• Different architectures of the boardnet like rings, star

networks, etc. might provide redundancy.

Fig. 1. Zonal Vehicle Architecture with Feature Mapping.

During the vehicle development, the OEM defines the fea-
tures and manages the overall boardnet development. Suppliers
suggest how to implement these features using hardware and
software. To connect both processes, early and quick analysis
of safety, latencies, weight, building spaces, power, heating,
and costs as early as possible is needed Currently, this is often
done using simple Excel sheets.

We introduce the OpenCar modeling framework that builds
on top of the SysMD Notebook [4], [5]. The modeling
framework OpenCar supports the model-based, collaborative
optimization of boardnet architecture/topology and feature
mapping at the early stages of the development of a board-
net architecture and topology by providing early and simple
estimations of

• cable mass and cost,
• latencies and data rates along specified paths,
• safety and reliability analysis.

The novelty of the modeling framework is that it entirely
builds on top of SysMLv2; hence, calculations and methods
are independent from the underlying algorithms in the tool
SysMD Notebook (constraint propagation). This makes the
overall framework scalable and adaptive to more complex use
cases. The reason is that often-needed extensions or adaptions
can be handled at the level of models and do not require
changing some algorithms for analysis inside a specific tool.

Furthermore, SysMLv2 models might be (re-)used within
further development processes.

II. STATE OF THE ART AND RELATED WORK

Multiple attempts are made to model collaboration along
the value chain. These efforts can be categorized into three
main research areas. The first area focuses on enhancing
collaboration within the value chain. The second area involves
specific efforts to achieve this through standardization or
tool interoperability. The third area involves analyzing and/or
optimizing existing boardnet architectures.

The analysis of cooperation within the value chain is also
considered by certain authors, e.g.,[6], [7], [8]. This cooper-
ation is strongly requested by Soltani et al. They emphasize
that such a strategy is currently missing and that such coop-
eration would be beneficial for the whole value chain. But
this cooperation is a challenging scenario [9]: “The need for
establishing short feedback cycles [..]: While developing new
functionality, basic software, and hardware, one should plan
on how to receive feedback, which data to collect, and how to
use it in the development.”

Some tools are also available targeting cooperation in the
value chain. An example of such a tool is AutoSAR [8] which
connects the OEM to the suppliers using this software. This
has the advantage that requirements can be exchanged more
easily. The definition of the .kbl file format [10] (currently .vec
[7] is developed, which adds some features) allows a seamless
exchange between OEM and suppliers, but these formats focus
only on the physical description of the cable tree and not on the
analysis of requirements. SysML v2 [11], [12] could be used to
analyze the whole system because it has a standardized REST-
API, which makes it easy to use by different stakeholders and
improves collaboration in the value chain. However, to our
knowledge, there are no tools and approaches in combination
with SysML v2.

Many approaches show how to model safety and security
aspects using a modeling language. Martin et al. [13] have
developed a model-based systems engineering (MBSE) ap-
proach to model safety and security patterns using SysML
v1. AltaRica [14] or PREEvision [15] are also used in some
approaches to model safety and security. They all conclude that
modeling safety and security aspects in a modeling language
could improve the accuracy and efficiency of safety analysis in
the automotive industry. Another framework focusing on prop-
erties such as weight latency and costs is described by Zheng
et al. [16]. AADL is used for modeling the architecture, and
the latencies are optimized for the task allocation. However,
those approaches focus only on safety and security aspects
but do not look at the whole vehicle to combine this analysis
with other aspects like latency or weight analysis. This has the
consequence that variants, uncertain values, and open design
decisions can not be considered.

In [4] and [5] we have described an approach using SysML
v2 for evaluating different architectures using the modeling
language SysML v2 textual. We have created a tool called
SysMD, which has a Jupyter Notebook[17] like GUI. This has

the advantage of easy documentation of models and can be un-
derstood easier than models in graphical notation by beginners.
The tool also supports bidirectional constraint propagation, so
constraints are propagated throughout the model.

This work extends CoDesign with an OpenCar framework
to model collaboration in the value chain. Furthermore, we
show some applications of the framework.

III. OPEN CAR MODELING FRAMEWORK OVERVIEW

The OpenCar modeling framework is based on the Auto-
motive Architecture Framework (AAF) introduced by Broy et
al. [18]. In natural language, the main relationships (italic)
between elements (bold) are as follows: The modeling pro-
cess starts with requirements, which describe the specific
conditions the system must satisfy. These requirements are
satisfied by features and functions which are implemented by
elements. elements are

• Software that is executed by a CU or ECU, or
• Sensors that have the function to sense quantities, or
• Actuators that have the function to perform actions, or
• Cables that connect components
We use SysML v2 artifacts to model the above elements

and relationships. Part definitions define a class, e.g., a class
‘Car’. Part (usages) create instances of a class, e.g. ‘myCar’
of the class ‘Car’. SysML v2 furthermore provides constructs
for the definition and usage of constraints, requirements, and
allocations. Note that each of the above definitions also in-
cludes attributes and constraints that are inherited to instances
and then allow the user the analysis of concrete use cases
with concrete values as described in Sec. IV. Furthermore, we
define calculations in Sec. IV that can be used in this context.

Fig. 2 shows an example: the part type Ethernet is defined
with the attributes dataRate which has a concrete value, and
length where the value is constrained to a range. A part
myCable is instantiated, which inherits from the definition
Ethernet and redefines the attribute length with a concrete
value.

part def Ethernet{
attribute dataRate: Rate [MHz]=10.0 [MHz];
attribute length: Length(0..100) [m].

}
part myCable :Ethernet{

attribute length: Length [m] = 15.0 [m].
}

Fig. 2. SysML v2 textual example for the definition of types.

Allocations introduce a 1:1 relationship between features.
The follow the same scheme of definition and usage as parts,
constraints, and requirements. Allocation definitions describe
constraints on the related element’s type; usages relate to two
concrete features.

Allocations can be understood as an allocation table, which
can be seen in Table I. The corresponding SysML v2 code is
shown in Fig. 3. The allocation definition, in the beginning,
defines the relation executedBy, which connects a part of type
Software with a part of type ECU. Then, the allocation is used
with the concrete example of the table with the allocation a1.

TABLE I
EXAMPLE OF AN ALLOCATION TABLE

Software ECU
SpeedMeasureSW ZonalFrontECU

AbsSoftware CentralECU

allocation def ExecutedBy {
end part software: Software;
end part computeUnit: ECU;

}
allocation a1 : ExecutedBy

allocate SpeeadMeasureSW to ZonalFrontECU;

Fig. 3. SysML v2 textual example for the allocation of Table I

Fig. 4 gives an overview of the architecture of definitions
provided by the OpenCar modeling framework. To support
the specification, the framework provides requirements- and
constraints definitions, which are shown on the left side of
this figure. Features and functions in the logical architecture
are part definitions in line with ISO26262. The allocation
definition satisfiedBy connects the defined requirements to
defined features. The allocation getDataFrom introduces the
data flow in Logical architecture.

For modeling the view technical architecture, OpenCar
defines the allocation implementedBy to software and/or hard-
ware components. Hardware components are further classified
into compute Units (CU), Sensor, Actuator, or Network (e.g.
Wire) parts. The allocation executed by describes the mapping
of Software a compute unit (CU).

The view topology describes the concrete locations of com-
ponents in a vehicle. To define the topology, OpenCar provides
definitions of locations in a 3-dimensional coordinate system
and defines building spaces. The allocation locatedIn, relates
hardware elements with a corresponding building space. These
locations permit estimating environmental loads, e.g., for de-
riving mission profiles.

Fig. 4. OpenCar framework: Classes and allocation definitions

Furthermore, all parts of the technical architecture have a
location field, where the location is stored. This location is
undefined in the definition.

Instances of the parts typed by the definitions ECU, Sensor,
Actor get a location in a 3D coordinate system (see Fig.
5) and building space. A building space divides the vehicle
into different areas, which are connected, for example, the
engine compartment or the trunk. Cables can be defined as
an association from part to part with an instance of the cable.

This wire can add a simple latency model depending on MAC
protocols.

Fig. 5. Coordinate System of the car

IV. OPENCAR ANALYSIS DETAILS

We have implemented a SysML v2 model for early analysis
before a concrete model is available. This model consists of
the following packages:

• topology: Defines location in a 3D coordinate system and
the connection between the two locations

• installationSpaces: divides the vehicle into subspaces
with environmental loads

• sensors: defines available sensors and their attributes
• controllers: a generic processor model is defined for the

delay estimation of controllers
• features: defines features that can be mapped to con-

trollers
• network: a generic connection model is defined, which

uses PHY and MAC layer protocols for the estimation of
latency and throughput and defines concrete wires

• safety: models reliability and ASIL level estimation meth-
ods including ASIL decomposition

We will describe some parts of the model in the following
sections

A. Analysis of cable tree

As we described in [4], a method for analyzing the cable tree
has been developed, including the length, weight, and costs of
the cable tree. We have transformed this approach, written in
the SysMD language into the common standard SysML v2.
The model is also included in our OpenCar model.

Fig. 6. Zonal architecture of the car model

We have created two basic vehicle architectures, the zonal
(see Fig. 6) and the domain-centralized architecture (see Fig.

Fig. 7. Domain-centralized architecture of the car model

7). The zonal architecture consists of a central controller and
two zonal controllers, in the front and the back of the car. The
domain architecture consists of a central gateway connecting
the three domain controllers.

// A location in the boardnet coordinate system
class Location {

attribute position: Length(-1.5..6,-1.5..1.5,-0.5..4.0)[m];
attribute plugCosts: Currency(1..2) [e];

}

// Connection from Location to Location (incl. PHY, MAC);
part def Connection {

attribute factor: Quantity(1..2) = 1.4;
attribute wireLength: Length(0..1000) [m] =

cityBlockDistance(Start::position,End::position)*factor;
attribute latency: Quantity(0..1000000) [µs] =

(kind::dataPerFrame+kind::overheadPerFrame)/kind::dataRate;
feature Start: Location;
feature End: Location;
part kind: openCar::network::Wire;

}

Fig. 8. SysML v2 model of Location and Connection with estimations.

For the analysis of this model, we have modeled the
different Sensors and Wires inside our OpenCar model. The
Sensors have a Location stored as 3D coordinates and the
Wires are stored as a Connection between a Sensor and a CU
(see Fig. 8). Each Wire has a defined data rate, cost per meter,
specific weight, data size per frame, and overhead per frame.
One wire to the midrange radar is modeled as optional. Such
variants are necessary because different countries have varying
regulations for vehicles compared to others. We have used the
city block distance [19] as an approximation of the wire length
because wires typically do not follow a direct path between
components.

Fixed values for the positions of all components were
applied to obtain the calculation results. These values are
exemplary and have no real values. The results of these
calculations are shown in Table II. It can be seen, that the
cable length and mass for the domain architecture are much
higher compared to the zonal architecture. The effect of using
ranges for the length in the domain architecture and the variant
in the zonal architecture are also visible in the results.

B. Latency Analysis

The analysis of the latency is another aspect, which can
be treated by our model. The latency is defined along a given
path, for example, sensor - cable - ECU - cable - actuator. The
latency of a cable is estimated by the MAC layer protocol with
the following formula:

TABLE II
ZONAL VERSUS DOMAIN-CENTRALIZED ARCHITECTURE.

Domain Architecture Zonal Architecture
Cable tree length 41.58 .. 45.63 m 35.14 m
Cable tree mass 0.628 .. 0.848 kg 0.526 .. 0.695 kg

Total cost 50.82 .. 55.84 C 52.19 C

latency =
dataPerFrame+ overheadPerFrame

dataRate
(1)

Fig. 9. Latency along a given path

All these values are already stored in the sensor file of our
OpenCar model. The latency of the ECU can be calculated
using a load model with the allocated features and the number
of instructions per schedule. The performance of the processor
should also be considered with the instructions per cycle and
the clock frequency. The average and worst case must be
considered. The latency of the sensor is estimated by the time
to create a packet. To calculate the whole latency, all these
values must be summed up at a given path. An example can
be seen in Fig. 9.

C. Safety Analysis

In safety considerations, there are three main points we
want to address: reliability metrics, ASIL calculation, and
ASIL decomposition concerning reliability metrics. Regarding
the reliability metrics, it is important to address them within
the context of ISO26262, focusing on both standard and
non-standard indicators, and systematically outlining them in
our own SysMD language. The main metrics mentioned in
ISO26262-5 [20] and ISO26262-9 [21] are single-point fault
metric (SPFM), latent fault metric (LFM), as well as residual
fault metric (RFM) and multiple-point fault metric (MPFM),
but to ensure comprehensive coverage, additional essential
reliability indicators are considered and calculated, such as
diagnostic coverage (DC), residual fault probability (RFP) and
safe fault fraction (SFF).

ISO26262 differentiates among various types of failure
rates, namely failure rates of single-point faults, multiple-point
faults, residual faults, as well as safe faults. Assuming all of
them are constant, adding them up yields a total failure rate,
used throughout the metrics’ calculation.

λtotal = λSPF + λRF + λMPF + λS (2)

Safe Fault Fraction (SFF), a metric mentioned in ISO26262-
5, is the proportion of faults that are either detected or do not
lead to the violation of the safety goal, hence ensuring that the
system can manage faults safely, which is of high importance
for higher ASILs [20]. The implementation of the metric may
be seen in Fig. 10.

SFF = (
λsafe + λdetected

λtotal
) (3)

calc def SFFCalc {
in attribute lambdaS: Real;
in attribute lambdaDet: Real;
in attribute lambdaTot: Real;
return SFF: Real [%] =

((lambdaS*lambdaDet)/lambdaTot);
}

Fig. 10. Calculating Safe Fault Fraction using SysML v2

Non-ISO-related metrics, such as availability, reliability, and
probability of failure, indirectly impact ASIL by influencing
the system’s behavior during failures, thus contributing to the
overall safety, hence are also calculated within the safety anal-
ysis. Namely, reliability itself is the probability that a system or
a component performs its required function(s) without failure
over a specific period of time [22], hence it is calculated and
implemented using an exponential function.

R(t) = e−λt (4)

calc def ReliabilityCalc {
in attribute lambda: Real;
in attribute time: Real;
return R: Real = exp(-lambda*time);

}

Fig. 11. Calculating Reliability using SysML v2

Another important aspect of safety analysis is the ASIL
level analysis, which uses three metrics to classify the risk
of a system in levels from ASIL A (lowest risk) to ASIL D
(highest risk) or quality management (QM). The metrics used
for the classification are severity from SO (no injuries) to S3
(fatal injuries), exposure from E0 (very unlikely) to E4 (highly
possible), and controllability from C0 (easy to control) to C3
(hard to control or uncontrollable). Fig. 12 shows how to use
the metrics to get the ASIL level of a system.

OpenCar implements the ASIL calculation in SysML v2
which can be seen in Fig. 13. Integers represent the different
metrics and ASIL levels. The implementation is based on
Schacht’s [2] usage of integers for the ASIL levels. This allows
us to use e.g. integer ranges and in particular limits the use
of discrete enumerations that put load on the (slower) discrete
solver part that handles enumerations.

As reliability metrics play a pivotal role in determining
ASIL levels, they are to be integrated with ASIL levels, by
specifying how different metrics impact ASIL. A compre-
hensive review of target values for different metrics across
different ASILs can be seen in Table III. As shown, each

Fig. 12. Table of ASIL levels [2]

calc def calcASIL{
in attribute severity : Integer(0..3);
in attribute exposure : Integer(0..4);
in attribute controllability: Integer(0..3);
attribute sum: Integer = severity + exposure

+ controllability;
//special case for CO and SO
attribute sumAdapted : Integer = if severity == 0

or controllability == 0 ? 0 else sum;
//0->QM, 1->ASIL A .. 4->ASIL D
return result: Integer = max(sum-6,0);

}

Fig. 13. Calculate ASIL level using SysML v2

metric has a specific target value for ASIL A, B, C, and D,
hence serving as a crucial reference point for understanding
and defining how the metrics relate to ASIL levels, and
properly calculate the required ASIL.

TABLE III
METRIC TARGETS FOR DIFFERENT ASILS [20], [21]

Metric ASIL A ASIL B ASIL C ASIL D
SPFM Not specified ≥ 90% ≥ 97% ≥ 99%
LFM Not specified ≥ 60% ≥ 80% ≥ 90%
DC ≥ 60% ≥ 90% ≥ 99% ≥ 99.9%
SFF ≥ 60% ≥ 90% ≥ 99% ≥ 99%

Availability ≥ 99% ≥ 99.9% ≥ 99.99% ≥ 99.999%

Integrating ASIL decomposition involves breaking down the
overall safety goal into smaller, more manageable safety sub-
goals, as shown in Fig. 14, allowing for a more targeted,
efficient, and easier approach to achieve safety objectives, e.g.
a ASIL D system may be decomposed into two redundant
ASIL B systems, contributing to the total safety and reliability
of the system as per ISO26262 standard. Only a small part
for the selection of the correct value of redundant subsystems
needs to stay at the high ASIL level (level D in the example
above).

The implementation of the ASIL decomposition is shown
in Fig. 15. The function uses the ASIL level of two parts
and a boolean if they are redundant as inputs. For the not
redundant case, the overall ASIL level cannot be higher than
the minimum ASIL level of the components. Otherwise, the
ASIL levels can be summed up, but the highest ASIL level D
(represented as 4) must be considered.

Fig. 14. ASIL Decomposition [23]

calc def calculateASILDecomposition{
in attribute part1: Integer(0..4);
in attribute part2: Integer(0..4);
in attribute isRedundant: Boolean;
attribute redundantLevel: Integer

= min(part1+part2, 4);
attribute notredundantLevel: Integer

= min(part1, part2);

return result: Integer(0..4) = if isRedundant ?
redundantLevel else notredundantLevel.

}

Fig. 15. Calculation of ASIL decomposition using SysML v2.

V. CONCLUSION AND OUTLOOK

OpenCar is a SysML v2 modeling framework for auto-
motive applications. It supports collaboration along the value
chain by offering tools for modeling, analyzing, and optimiz-
ing vehicle boardnet architectures. Critical metrics such as
cable mass, cost, and latencies are essential for vehicle ar-
chitecture optimization. The additional features for safety and
reliability analyses in line with ISO26262 ensure compliance
with today’s automotive safety standards. We in particular
expect that collaborations between OEMs and the suppliers
along the value chain can be enhanced by the modeling
framework: SysMLv2 models and a comprehensive modeling
framework simply can be more accurate and more meaningful
compared with Excel sheets. Furthermore, the calculations as
defined can easily be re-used and adapted.

The SysML v2 modeling framework with OpenCar as of
now provides many calculation functions that as of now are
often done using tools like Excel. As of now, the defined
calculations and constraints are handled by a constraint propa-
gation solver. While the models themselves mostly follow the
SysML standard, the (range-and set-based) semantics of the
calculations and the constraint solving in the tool are not yet
standardized. However, shortly (Autumn 2024) the submission
of an RFC to the OMG is expected.

REFERENCES

[1] J. Klaus-Wagenbrenner, “Zonal EE Architecture: Towards
a Fully Automotive Ethernet–Based Vehicle Infrastructure.”
https://standards.ieee.org/wp-content/uploads/import/documents/other/
eipatd-presentations/2019/D1-04 KLAUS-Zonal EE Architecture.pdf.
[Online; visited 11-July-2023].

[2] J. Schacht, “Funktionale Sicherheit (FuSi) – die ASIL-Klassifikation.”
https://www.i-q.de/iso-26262/fusi-asil-klassifikationen, 4 2016. [Online;
visited 28-June-2024].

[3] M. Berk, O. Schubert, H.-M. Kroll, B. Buschardt, and D. Straub,
“Exploiting redundancy for reliability analysis of sensor perception in
automated driving vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 21, no. 12, pp. 5073–5085, 2020.

[4] S. Post and C. Grimm, “Co-design of automotive boardnet topology
and architecture,” in DVCon Europe 2023, pp. 42–49, 2023. https://
ieeexplore.ieee.org/document/10461369.

[5] A. Ratzke, S. Post, J. Koch, and C. Grimm, “Constructive model analysis
of SysMLv2 models by constraint propagation,” in System of Systems
Engineering Conference 2024, IEEE, Jun 2024.

[6] H. G. C. Góngora, T. Gaudré, and S. Tucci-Piergiovanni, “Towards an
architectural design framework for automotive systems development,”
in Complex Systems Design & Management (M. Aiguier, Y. Caseau,
D. Krob, and A. Rauzy, eds.), (Berlin, Heidelberg), pp. 241–258,
Springer Berlin Heidelberg, 2013.

[7] R. Blank, “Boardnetzprozess 4.0: Zeit für einen Paradigmen-
wechsel.” https://www.elektroniknet.de/automotive/software-tools/
zeit-fuer-einen-paradigmenwechsel.126606.html, 2016.

[8] M. Soltani and E. Knauss, “Challenges of requirements engineering in
AUTOSAR ecosystems,” in 2015 IEEE 23rd International Requirements
Engineering Conference (RE), pp. 294–295, 2015.

[9] P. Pelliccione, E. Knauss, R. Heldal, S. Magnus Ågren, P. Mallozzi,
A. Alminger, and D. Borgentun, “Automotive architecture framework:
The experience of Volvo Cars,” Journal of Systems Architecture, vol. 77,
pp. 83–100, 2017.

[10] G. Richardson, J. Shultz, P. Stevens, and J. Wilson, “Development
of an electrical data exchange interface based on step ap212,” SAE
Transactions, vol. 114, pp. 572–582, 2005.

[11] OMG, “Systems Modeling Language (SysML v2), Release 05/2022.”
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/
doc/2-OMG Systems Modeling Language.pdf.

[12] OMG, “Kernel Modeling Language (KerML), Release 05/2022.”
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/
doc/1-Kernel Modeling Language.pdf.

[13] H. Martin, Z. Ma, C. Schmittner, B. Winkler, M. Krammer, D. Schneider,
T. Amorim, G. Macher, and C. Kreiner, “Combined automotive safety
and security pattern engineering approach,” Reliability Engineering &
System Safety, vol. 198, p. 106773, 2020.

[14] S. Yandika, C. Baron, C. Bonnard, L. Pahun, L. Grenier, and P. Esteban,
“Investigating the use of a model-based approach to assess automotive
embedded software safety,” in 13th International Conference on Mod-
eling, Optimization and Simulation (MOSIM20), 09 2020.

[15] Y. Zhen-Hua, M. Ling-Xu, and H. Jun-Nan, “Application of preevision
software to realize vehicle functional safety development,” in 2021
5th International Conference on Vision, Image and Signal Processing
(ICVISP), pp. 55–60, 2021.

[16] B. Zheng, H. Liang, Q. Zhu, H. Yu, and C.-W. Lin, “Next generation au-
tomotive architecture modeling and exploration for autonomous driving,”
in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 53–58, 2016.

[17] B. M. Randles, I. V. Pasquetto, M. S. Golshan, and C. L. Borgman,
“Using the jupyter notebook as a tool for open science: An empirical
study,” in 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pp. 1–2, 2017.

[18] M. Broy, M. Gleirscher, S. Merenda, D. Wild, P. Kluge, and W. Krenzer,
“Toward a holistic and standardized automotive architecture description,”
Computer, vol. 42, no. 12, pp. 98–101, 2009.

[19] R. A. Melter, “Some characterizations of city block distance,” Pattern
Recognition Letters, vol. 6, no. 4, pp. 235–240, 1987.

[20] International Organization for Standardization, “ISO 26262-5:2018:
Road vehicles - functional safety; part 5: Product development at the
hardware level,” 2018. Accessed: 2024-06-28.

[21] International Organization for Standardization, “ISO 26262-9:2018:
Road vehicles - functional safety; part 9: Automotive safety integrity
level (ASIL)-oriented and safety-oriented analyses,” 2018. Accessed:
2024-06-28.

[22] A. Bruton, J. H. Conway, and S. T. Holgate, “Reliability: What is it, and
how is it measured?,” Physiotherapy, vol. 86, no. 2, pp. 94–99, 2000.

[23] G. Xie, Y. Chen, Y. Liu, R. Li, and K. Li, “Minimizing development
cost with reliability goal for automotive functional safety during design
phase,” IEEE Transactions on Reliability, vol. 67, pp. 196–211, 2018.

