
Virtual Prototyping Framework for Pixel Detector
Electronics in High Energy Physics

1st Francesco E. Brambilla
EP-ESE-ME

CERN - KU Leuven
Geneva, Switzerland

francesco.enrico.brambilla@cern.ch

2nd Davide Ceresa
EP-ESE-ME

CERN
Geneva, Switzerland

3rd Jashandeep Dhaliwal
EP-ESE-ME

CERN
Geneva, Switzerland

4th Stefano Esposito
EP-ESE-ME

CERN
Geneva, Switzerland

5th Kostas Kloukinas
EP-ESE-ME

CERN
Geneva, Switzerland

6th Jeffrey Prinzie
ESAT

KU Leuven
Leuven, Belgium

Abstract—This contribution outlines the development of Pix-
ESL, a virtual prototyping framework for pixel detectors based
on C++/SystemC. It offers a platform for describing detector
ASICs designed for High Energy Physics experiments at a
high level of abstraction, with the capability to simulate the
entire process from particle interaction in the sensor to the
readout of a digital data packet to the experiment back-end. The
framework supports modelling analog/digital front-end, readout
networks, data processing and formatting. This paper details the
implementation of the PixESL framework and its use in a pixel
detector being developed for the LHCb experiment at CERN. The
framework serves as an effective and rapid prototyping method,
as well as a reference model for verification.

Index Terms—Virtual Prototyping, SystemC, Pixel Detectors,
Verification Reference Model, ASIC Modelling

I. INTRODUCTION

Particle detectors for High Energy Physics (HEP) exper-
iments exploit large and complex electronic systems to read
out high-resolution pixelated detectors, composed of more than
50k pixels. As highlighted in [1], the next generation of hybrid
pixel detector ASICs will face challenges in terms of power
consumption and bandwidth due to the high-rate environment
(up to 3–4 GHz cm−2) and measurement resolution, especially
for applications with fast timing resolution below 50 ps.

Considering the typical power budget of a few W cm−2, an
early optimization of the chip and system architecture is of
utmost importance to fit the specifications of the experiment.
This work proposes a novel approach in the High Energy
Physics field, a high-level simulation platform to study the
entire electronics system chain at an early stage of develop-
ment.

The main components currently modelled in the PixESL
framework are:

• Pixel Analog Front-End (AFE): serves as the interface
between the detector sensor and the digital processing
system. It amplifies, shapes, and digitizes the analog
signals generated by particle interactions with the sensor.

• Pixel Digital front-end: provides Time-to-Digital Con-
verter (TDC) functionalities, converting analog signals
from the AFE into digital packets.

• Data Readout Networks: handles the transfer of digital
data from the pixel, through the pixel array to the chip’s
periphery and off-chip.

• Data processors and formatter: models digital logic
blocks performing operations like hits clustering, time-
walk correction, event sorting, and output frame format-
ting.

The proposed simulation platform enables comprehensive
analysis and optimization of each of these components and
their interactions within the overall electronics system. By
simulating the entire chain early in the project life-cycle,
designers can identify potential bottlenecks, evaluate design
trade-offs, and refine specifications to meet the experiment’s
requirements within the given power budget and resource con-
straints. Compared to a project-dedicated virtual prototype, the
PixESL framework proposes a standardized approach based
on:

• SystemC-based model for behavioural description and fast
simulation.

• Python-based analysis tool to extract relevant metrics
from the models and evaluate performance.

• Inputs from physics supporting the injection of stimuli
in the Analog Front-End from physical simulation of the
particle interaction in the sensors.

• Integration in the verification environment through a ver-
ification IP to reuse the virtual prototype as the reference
model.

• Architecture configurability through external files for
faster design iteration and easier user access.

• Open-source languages and code for maximum redistri-
bution.

The paper is organized as follows:
• Section II places the framework in the detector design



flow and lists its features.
• Section III describes the modelling approach used for

the digital and Analog and Mixed-Signals (AMS) circuits
usually found in pixel detectors.

• Section IV focuses on the model’s use during the early
stage of development for design space exploration.

• Section V shows the integration of a reference model
within a Universal Verification Methodology (UVM) ver-
ification environment.

II. FRAMEWORK MOTIVATION AND OBJECTIVES

Pixel ReadOut Chips (ROC) are mixed-signal ASIC designs
featuring high-performance analog front-ends, continuous and
low-latency data readout, on-chip data processing, and high-
speed output links. These heterogeneous functionalities exploit
different design methodologies and tools, complicating the
design process and requiring several iterations to validate
specifications.

To facilitate the development process, the PixESL frame-
work proposes adding an Electronic System-Level (ESL) de-
sign phase with a holistic system view through a higher level
of abstraction. This phase is located between the specification
draft and hardware design, as shown in Fig. 1, providing a C++
virtual prototype. This prototype helps the design team better
match the system architecture to the physics experiment goals
and understand critical issues in the ROC early in the design
phase, such as required output bandwidth or possible data loss
sources. Later in the development, the high-level model can
be used as a guide for hardware design to obtain the required
level of performance and act as a reference model during the
design verification phase.

An additional goal of this work is to develop a common
system design approach for the HEP community, building
the framework on a hierarchical, configurable, and reusable
structure based on open-source languages. For this reason, the
PixESL framework features:

• Components library: A SystemC components library con-
taining Front-End, readout, and data processing block
models.

• Network generation: Network description is defined in
human-readable configuration files instructing the gener-
ation of a network using components from library.

• Data logging and metrics extraction: integrated logging
and analysis allow fast architecture evaluation through a
Python tool-set.

Fig. 1. Schematic view of the design flow with PixESL.

Readout
Node

Readout
Node

Readout
Node

Readout
Node

Pixel Pixel

Pixel Pixel

Pixel

Pixel

Pixel

Pixel

Pixel Pixel Pixel Pixel

Pixel Pixel Pixel Pixel

Periphery
 node

Periphery
 node

Data aggregator 

Event processing

Montecarlo Physics simulations

Fig. 2. Schematic view of the data-flow in a ROC model.

• UVM integration: the framework is shipped with an add-
on to instantiate PixESL components in a SystemVerilog-
UVM simulation.

The framework’s objective is to provide a C++ virtual
prototype for design space exploration and a reference model
for verification as detailed respectively in Section IV and V.

III. MODELLING METHODOLOGY

The ESL design approach prescribes a higher level of
abstraction in the system description, enabling prototyping
from a system-level perspective and facilitating faster design
and simulation speed. SystemC was chosen as the modelling
language because it provides a simulation kernel for concurrent
processes and specialized classes to represent hardware blocks
and communication protocols.

This approach guarantees a much higher simulation speed
than RTL descriptions when the correct modelling methodol-
ogy is applied, reducing the simulation runtime by around 50
times. However, due to its abstraction from the actual design’s
implementation and technology, this methodology provides
only the number of transactions and nodes in the system,
enabling architecture-level comparisons. Technological infor-
mation is required to link these figures to actual power and
area cost estimation.

This section highlights the different modelling techniques
employed to represent various functions and modules in a
ROC. As shown in Fig. 2, the ROC model is hierarchically
structured, starting from the pixels, where sensor hits from
physics simulation are injected into and digital packets are
generated, to the readout network and periphery, which move



these packets towards the system’s output channels, aggregat-
ing and possibly processing them as they move through the
data path. Analog, mixed-signal, and digital design encom-
pass different design methodologies and tools, each reflected
through distinct modelling approaches. These circuits and
their modelling techniques are described in the following
paragraphs:

A. Analog pixel front-end

The Analog Front-End (AFE) is a full-custom design con-
verting the discharge signal from the pixel’s sensor into a
digital pulse, with a duration proportional to the input charge.
These input charges, along with their position on the detector
and timestamp, are extracted from physical simulation of the
sensor, obtained with tools such as Allpix Squared [4], which
couple the SystemC detector model with the High-Energy
Physics simulation.

The AFE input corresponds to a bump pad connected to
the sensor where the particle interaction discharge signal is
injected. This signal is amplified by a charge-sensitive pream-
plifier and filtered through a band-pass filter. Then, a threshold
discriminator detects the sensor hit and shapes the digital
pulse, whose rise time corresponds to the sensor hit Time-
of-Arrival (ToA) and the pulse length (Time-over-Threshold,
ToT) is proportional to the sensor charge and particle energy
[6]. This threshold is set as low as possible to maximize the
detection efficiency while limiting the electronic noise.

The transfer function of the analog front-end, from the
input charge to the output digital pulse, is extracted from
analog simulation and modelled in a pure C++ class with point
interpolation and linear fitting. Since the characteristics of the
AFE are defined by the analog implementation and their study
is out of the scope of this work, the transfer function model is
a simpler and faster alternative to a SystemC AMS description
of the individual AFE blocks.

Fig. 3 shows a plot from the C++ model of the threshold
discriminator’s pulse rise time (Tr) and fall time (Tf ) as a
function of the threshold, obtained in the model by injecting
a fixed charge (Qin = 5ke−) at time zero. The transition
between point interpolation and linear fit modeling causes
the discontinuity observable around 7000 ps. This curve also
corresponds to the shape of the filtered signal fed to the
discriminator. The pulse duration can be obtained as the time
difference between Tf and Tr for a fixed threshold value. The
Analog FE C++ class analytically computes and returns the
rise and fall time of the discriminator output based on the
input charge and its ToA.

As shown in the schematic view in Fig. 4, the Analog FE
C++ class is wrapped in a generic sc_module derived class.
The AFE wrapper’s task is to enable the analytic AFE model to
run inside the event-based simulation. During simulation time,
it injects sensor hits in the analytical C++ model and sets an
sc_signal corresponding to the pulse using the values for
Tr and Tf returned from the AFE.

By integrating this model in the system-level simulation and
running it with real physics data, designers can evaluate the

Fig. 3. Threshold scan of the Analog Front-End.

Pixel

Analog FE wrapper

Analog FE

ToA/ToT
counter

Threshold Discriminator

SENSOR

AFE Packet
Address (x,y)

BX_ID

Time-of-Arrival

Time-over-Threshold

handle_discr()

Pixel Packet
Address (x,y)

BX_ID

Time-of-Arrival

Time-over-Threshold

Hitmap

handle_neigh_sigs()

discr_in_port[N_NEIGHBOURS]discr_out_port

Fig. 4. Pixel and Analog Front-End schematic view as modeled.

impact of the analog front-end characteristics, such as peaking
time and return-to-zero slope, on system efficiency.

B. Digital pixel front-end

The primary function of the pixel front-end digital part is to
process the AFE discriminator output, generating a data packet
that contains useful information such as location, timing, and
energy. It employs a Time-to-Digital Converter (TDC) to
measure the pulse rise time (ToA) and duration (ToT), which
are proportional to the particle’s interaction time and energy.

Additionally, neighboring pixels can be interconnected at
the level of the digital pixel front-end, forming a local network.
This network enables local data processing that can be per-
formed before or after the TDC stage, such as the computation
of a local hitmap representing the status of the nearby pixels.
Once the conversion and the data processing are finished, the
pixel injects this packet into the readout data path, adding the
pixel location.

From a modeling perspective, the digital pixel front-end
model includes the AFE wrapper models as shown in Fig.
4. Two sc_method processes, triggered by the discriminator
outputs of the internal AFE and the local pixel network, model
the design functionality behaviorally. The internal discrimina-
tor triggers the handle_discr() process to detect incom-
ing particles, emulating the TDC by measuring ToA and ToT



Fig. 5. Schematic view of communication between base nodes.

and formatting a pixel packet. Similarly, the discriminators in
the local pixel network can trigger the data processing methods
connected to the pixel via sc_port elements.

The primary goal of modelling these digital circuits is
to understand the impact of the Time-to-Digital conversion
performance (conversion delay, resolution, temporal pile-up)
on the entire system and to assist designers in developing local
data processing solutions.

C. Readout network

The goal of the readout network is to route the digital
packets containing pixels’ hit data from each pixel to the
chip’s output channels as efficiently and quickly as possible.
This is typically achieved using a hierarchy of readout nodes
connected in a network, which aggregates packets in the chip
periphery where off-chip high-speed links are located.

A generic readout node receives, buffers, and transmits
data packets to and from multiple other nodes. Different
types of nodes are characterised by their position in the
hierarchy, bandwidth, and arbitration or routing algorithms. In
the PixESL framework, the model for the base readout node
implements data transfer methods and memories for packet
buffering, as seen in Fig. 5.

Communication is achieved with initiator and target sub-
modules in each node that send and receive packets to and
from other nodes. These sub-modules implement a packet
transfer protocol using classes from the SystemC TLM 2.0
library, enabling multiple connections to and from each node.
Both endpoints can be configured in terms of timing and band-
width through runtime settings. Moreover, the base classes can
be expanded to use different routing algorithms (for initiators)
and arbitration strategies (for targets) or to include custom
logic. The base node class implementation contains a member
initiator and target, along with a base interface memory class
to model the data buffer. This buffer allows data packets to be
read and written by the TLM initiator and target, respectively.

Fig. 6 presents a readout architecture example featuring
3 types of nodes: SuperPixel (SP), Region, and End-of-

Fig. 6. Readout architecture example.

Column (EoC). These nodes are organized in various layouts
based on their hierarchical role. SPs aggregate data from four
underlying Pixels and transfer it downward through double
columns toward the Region’s buffer. Regions are placed in tall
columns to vertically relay packets towards End-of-Column
nodes located at the chip’s periphery, concentrating data into
the final output channels.

The main challenge in the architectural design of the readout
is effectively managing tens of thousands of input channels
and pixels and concentrating their packets into a small num-
ber of output channels. A high-level model of the readout
data path enables designers to carefully size bandwidth and
buffers at each stage of the readout and establish optimal
node connections to prevent congestion. An undersized and
poorly optimized readout data path results in data losses and
significant packet latency, requiring costly and complex back-
end solutions to handle the data stream. Congestion within the
network leads to storage overflow in nodes, causing data losses
as new packets cannot be processed from pixels. Additionally,
network congestion prevents packets from reaching the off-
chip links, increasing latency. To aid designers in network op-
timization, configuration files allow users to swiftly customize
the architecture by specifying the number and attributes of
the nodes, and to generate node networks arranged in square
grids.

IV. DESIGN SPACE EXPLORATION

In the design space exploration for pixel detectors, the chip’s
architecture is tailored to the application’s requirements and
optimized to match physical constraints such as power and
area. The use of a comprehensive high-level model, from front-
end to high-speed links, allows the designers to study the chip
from a system-level view, evaluating how changes to any sub-
module affect the whole device.

Thanks to the higher level of abstraction and fast simula-
tion speed, the SystemC model can be used to simulate an
architecture, evaluate its performance, and iterate on the ROC
structure and the layout of pixels and readout nodes to reach a



TABLE I
PARAMETER SPACE OF VELOPIX UPGRADE

Parameter Name Node Group Baseline Proposal

Array size
[columns x rows]

Pixels 256x256 256x256
SuperPixels 128x128 128x128

Regions 64x16 128x8
End-of-Columns 64 128

Output ch. 8 16

Buffer depth
[word]

Pixels None None
SuperPixels 2 6

Regions 2 6
End-of-Columns 1 2

Clock
[MHz]

SuperPixels 40 40
Regions 40 40

End-of-Columns 40 320

Max packet
throughput

[packet/cycle]

Pixels 1 1
SuperPixels 1 1

Regions 1 2
End-of-Columns 1 2

Arbitration Packet priority Round-robin Back-pressure

Key metrics results
Readout eff. 86% 99.98%
Avg. latency 95 cy. 32 cy.
Max. latency 1500 cy. 500 cy.

satisfactory level of performance. Compared to a system-level
study carried out in SystemVerilog [3], this approach allows
for simpler behavioural descriptions of the modules and faster
simulation time, thus quicker design iteration to match the
specification. For example, a simulation of the complete ROC
system for a simulation time of 50 µs, from analog front-end
to periphery, has a runtime less than 90 seconds, whereas an
RTL model with a comparable simulation length would take
around 2 hours.

In Table I, the parameter space for the Velopix upgrade
ROC is detailed for each group of nodes, together with the key
metrics of the baseline and upgrade proposal architectures.

A. Readout network optimization

PixESL provides the base classes to draw a rough architec-
ture from front-end to readout, which can be customized to
a specific system’s functionality. During design space explo-
ration, the layout and parameters of the chosen architecture
can be parsed from external files. The architecture is parsed
from file and it defines the virtual prototype’s properties
and structure, such as the number of rows and columns of
each node group, the size of the packet buffers, or the data
transmission parallelization and the clock speeds.

The virtual prototype is generated as a collection of groups
of nodes, each characterized by its parameters and connection
scheme, such as the network in Fig. 6.

During the design space exploration phase, PixESL’s Sys-
temC model generates detailed logs on the status of the nodes
and their data buffers, and tracks the packets to extract relevant
metrics about the device under test (see the results in Table
I). The most relevant metrics to evaluate performance are
the readout efficiency, which shows the percentage of packets
exiting the model out of all of valid ones injected in the readout
data path, and the average packet latency, which measures

the average time spent by a packet in the systems from its
generation to the output channels. These metrics and other
plots (see Fig. 7 and 8) can be automatically extracted with
set of Python scripts, shipped with PixESL to quickly evaluate
and optimize the system architecture.

This modelling approach and integrated performance extrac-
tion tools were employed to study the readout architecture of
an upcoming chip, Picopix, which targets the upgrade of the
Velopix chip [2] with the latest requirements from the physics
experiment. The study goal was to show that the upgraded
front-end and readout system could sustain the data rates
forecasted by simulations of the experiment’s environment.
Due the higher luminosity and smaller pixel pitch size (50 µm),
the pixel hit rate would increase to 3.5 GHz cm−2, and together
with the added timing information with 25 ps resolution, this
would bring the pixels’ raw data throughput above 250 Gbit s−1

without any on-chip processing and data reduction, compared
to 16 Gbit s−1 in Velopix [5].

The baseline Velopix architecture [5] was simulated with
the latest stimuli and its key metrics are reported in Table I,
and the analysis results from Fig. 7 show that the buffers in
the central columns are often completely full (yellow color).
This is due to the spatial hit distribution that peaks toward the
top-center of the array and generates congestion in that area,
which increases the latency for those packets and causes data
loss in those columns.

The main result of this study proposes an output bandwidth
increase to 100 Gbit s−1 to match the higher pixel hit rate,
and an optimized arbitration algorithm with back-pressure to
significantly reduce the packet congestion, thus minimizing
latency and data losses. Thanks to pixel-level clustering and
filtering, and data reduction in the periphery, the chip’s band-
width is halved compared to the raw pixel output.

Table I compares the baseline and proposed architectures
showing the improvements in the key metrics thanks to a more
robust readout data path: doubling the Region columns from
64 to 128 and the subsequent data path nodes removes the
congestion in Fig. 7, thus improving the readout efficiency
well above the 95 % specification and reducing the average
latency. The shape of the latency distribution changes as well:
the tail of the Poisson curve and the maximum latency are
significantly shortened, thus allowing for faster and simpler
data aggregation in the back-ends, as shown in the next
subsection. Similar studies were carried out to optimize the
memory buffer sizes in the nodes, maintaining a high readout
efficiency and low latency.

B. Data processing virtual prototyping

Together with network studies, a high-level system model
allows the design and integration of new modules and func-
tionalities with the virtual prototype to evaluate their potential
impact on the whole device. Thanks to the high-level descrip-
tion, the prototype’s functionality development is simpler and
faster than using an HDL. As an example, the design of an
event sorter module is reported.



Fig. 7. FIFO buffer occupancy and congestion in baseline architecture. Fig. 8. Output packet latency, baseline and proposal architectures comparison.

Fig. 9. Parametric sweep on the amount of containers in the event sorter.

The event sorter is a data processing module capable of
gathering all the digital packets from the same event, grouping
them in a single event data frame, which is then sent off-chip.
In a data-driven architecture like Picopix, it reduces bandwidth
by providing a timestamp tag per event frame instead of per
digital packet, almost fixed latency instead of variable latency,
and on-chip event reconstruction, offloading the back-end from
this task.

This module stores pixel hits from the same physics event
by collecting packets with the same event ID in an associative
container implemented with one or more SRAM banks. After
the event in the container has reached a certain latency, the
container is timed out, and the packets inside are ready to be
read out.

Thanks to the event sorter model in SystemC, the contain-
ers’ amount, size, and packet throughput can be minimized
to reduce the area and power costs while ensuring that target
performance is met. In the specific Picopix case, the packet
sorter was sized so that the maximum event latency, defined

by the number of containers, would assure that less than 1 %
of the packets were lost due to excessive latency and could not
be stored in time in the corresponding container. A parametric
sweep on the number of containers in the event sorter and its
effect on the fraction of lost packets and overall packet latency
after accumulation can be found in Fig. 9.

It also allows the event sorter to be co-optimized with the
readout network. In fact, a limited bandwidth on the event
sorter input can cause traffic congestion in the whole readout
network, inducing packet loss and additional latency, which
in turn also worsen the event sorter performance. In order to
properly size the event sorter, this effect has to be taken into
account, thus requiring a system level study including both
readout network and sorter.

The full-chain simulation of the Picopix virtual prototype,
including a model of the event sorter, demonstrated that, with
the proposed architecture from Table I, an event sorter with a
throughput of two packets per event per cycle does not create
any measurable congestion. These results, together with the
sizing of the depth (128 packets per event frame) and amount
of containers (128), enabled the start of the hardware design.

V. INTEGRATION IN UVM-BASED VERIFICATION
ENVIRONMENT

One of the main advantages of the proposed approach is
the reusability of the C++-based virtual prototype during the
design verification phase. The virtual prototype can be adapted
to act as a stimuli driver for the RTL simulation, and as a
reference for the SystemVerilog implementation. The reuse of
the same model in the design space exploration phase to match
specifications, and to verify the design guarantees continuity
between the design phases, as shown in Fig. 1.

The different models described in Sec. III provide some
advantages also for the verification task. The Analog pixel
front-end (III-A) avoids costly analog/mixed-signal simula-
tions to drive the RTL simulation, and distinguishes between
inefficiencies caused by front-end performance or design bugs



to be fixed. Likewise, the Digital pixel front-end (III-B) allows
the identification of data losses by design or bugs in the
early stage of the processing and readout chain, simplifying
the debug process. The SystemC Pixel reference models the
correct functionality of the local pixel network and its effect on
the packet predictions. The Readout network (III-C) provides
cycle-accurate traffic information that allows to distinguish
between congestion-related problems and design bugs.

Following the use described in Section IV, PixESL was also
employed during the design verification phase in the Picopix
project. Only the Analog and Digital pixel front-end models
were integrated in the first implementation of the verification
environment, whereas the readout network will be included
once the hardware design and verification environment reach
a more mature development stage.

In this project, the verification environment exploits a UVM-
based design, and the PixESL integration proposed in this
section aims to be easily adaptable to any environment of
this kind. The pixel matrix is a SystemC module that contains
Analog and Digital pixel front-end models and exposes several
ports and methods to interface with SystemVerilog. Its size can
be set at compile time and specific pixel functionalities can
be configured with DPI calls through the UVM Verification
Component (UVC) to provide reference in different operating
modes.

The SystemC module is instantiated in the SystemVerilog
testbench through a shell module that contains port definitions
matching the sc_port found in the SystemC matrix. The
simulator recognizes this shell as a SystemC module whose
functionalities are defined by C++ code, and it is co-simulated
with the SystemVerilog RTL design sources. Two communi-
cation mechanisms are employed to control and extract data
from the matrix: ports and SystemVerilog DPI functions.

Ports allow seamless communication between an sc_port
defined in SystemC and the corresponding port in the Sys-
temVerilog shell. In the SystemC pixel matrix, they are used
to align the timing between the UVM testbench and reference
model through a clock port and transmit status and control
signals between the reference model and the testbench, such
as signals to report the end of the simulation or reset the
reference.

SystemVerilog DPI functions are used for communication
to and from the pixels and return the reference’s predictions.
DPI calls achieve the two main goals of the PixESL co-
simulation: modelling the AFE to drive the RTL simulation,
and predicting the output packets of the digital pixels. DPI
functions are used to configure the pixels from the testbench,
calling a SystemC function in the SystemVerilog simulation
to pass a pixel address and its configuration. Similarly, the
get_predictions(...) function allows the testbench
to retrieve the packets predicted by the reference model.
Conversely, SystemVerilog functions can also be called within
the SystemC code: each pixel’s AFE model drives the cor-
responding threshold discriminator signal in the testbench,
by setting its value with function calls from SystemC to
SystemVerilog.

In summary, the PixESL framework ships with a PixESL-
UVC add-on that includes the shell, interface, and UVM agent
to instantiate and run the pixel matrix within the Picopix
verification environment.

VI. CONCLUSION

The PixESL framework is a SystemC-based modelling tool
for prototyping pixel detector chips. It enables early architec-
tural studies and design space exploration at the system level.

It features a components library of front-end and readout
block models integrated into an environment to generate and
simulate virtual prototypes and extract performance metrics.
Thanks to the versatility of SystemC, it can accurately model
analog, mixed-signal and digital circuits, while retaining the
simulation speed and behavioural description of a high-level
system model.

PixESL is currently employed in the upgrade of a HEP pixel
detector, both as a virtual prototype for architectural studies
and design space exploration, and as a reference model for
functional verification.

ACKNOWLEDGEMENTS

This project is funded by CERN Experimental Physics
department as part of EP-R&D Programme on Technologies
for Future Experiments, under the Work Package 5 on IC
Technologies.

REFERENCES

[1] M. Garcia-Sciveres, “Hybrid pixel readout integrated circuits”, in Nu-
clear Instruments and Methods in Physics Research, 2023, [Online]
Available: https://doi.org/10.1016/j.nima.2023.168725

[2] E. L. Gkougkousis, “An LHCb Vertex Locator (VELO) for
2030s”, in Proceedings of the 31st International Workshop
on Vertex Detectors (VERTEX2022), 2023, [Online] Available:
https://journals.jps.jp/doi/ref/10.7566/JPSCP.42.011028

[3] T. Poikela, “Design and Verification of Digital Architecture of 65K Pixel
Readout Chip for High-Energy Physics”, chap. 3-5, CERN-THESIS-
2010-123.

[4] S. Spannagel et al., “Allpix2: A modular simulation
framework for silicon detectors”, in Nuclear Instruments
and Methods in Physics Research, 2018, [Online] Available:
https://doi.org/10.1016/j.nima.2018.06.020

[5] T. Poikela et al., “VeloPix: the pixel ASIC for the LHCb up-
grade”, in Journal of Instrumentation, 2015, [Online] Available:
https://doi.org/10.1088/1748-0221/10/01/C01057

[6] L. Rossi, P. Fischer, T. Rohe, N. Wermes, “Pixel detectors: from
fundamentals to applications”, chap. 3, in “Particle acceleration and
detection” series, Berlin, Springer, 2006


