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Abstract—Testing the reliability and trustworthiness of high-
performance computing (HPC) applications has made Deep
Learning Accelerators (DLAs) verification critically important.
In this paper, we introduce a hardware verification framework
with an error injection methodology based on the Universal Ver-
ification Methodology (UVM) for DLAs that is scalable, reusable,
and efficient to test the robustness and resilience of Deep Neural
Networks (DNNs) running on various DLA designs. Furthermore,
the error injection methodology is applicable to simulation and
hardware-assisted verification (HAV) platforms for emulation and
FPGA prototyping. Our proposed error injection mechanism is
evaluated using Nvidia Deep Learning Accelerator (NVDLA), an
open-source DLA core.

Index Terms—CNN, UVM, Deep Learning Accelerators, veri-
fication, Error injection, NVDLA

I. INTRODUCTION

High-performance computing applications, including speech
recognition, computer vision, and image classification have
turned to hardware accelerators, known as Deep Learning
Accelerators, as a preferred solution because of recent deep
learning (DL) advances. Moreover, the next generation of HPC
Electronics Control Unit (ECU) designs requires adding spe-
cialized DLAs for their low power consumption and resource
efficiency. DNNs demonstrated outstanding performance in
Learning Enabled Autonomous Systems (LEAS) for essential
autonomous driving functions in these ECUs, like perception.

DLAs consist of hundreds of parallel processing engines
and can access pre-trained networks through on-chip memory
or the cloud. Because DLAs are involved in safety-critical
applications, their reliability is critical for assessment. This
is especially important with the noticeable increase in sensor
faults, adversarial attacks, and hardware functional errors oc-
curring in DLAs resulting in violations of safety and reliability
requirements. [1].

Identifying and resolving design issues in DLAs resulting
from the massive parallel multiplications and accumulation
(MAC) operations involved in each DNN layer mapped to
hardware has been the main target of any DLA verification
process. These challenges are addressed in [2] with a proposed

DLA verification methodology, using UVM concepts. A robust
self-checking verification methodology for error injection and
detection is needed to tackle these DLA design challenges.
This methodology should mimic faulty data input and func-
tional error conditions, identify errors that can be injected into
the DLA design, classify them, and validate the DLA design
response.

UVM is an industry standard that is used in the verification
of digital hardware, developed by Accellera [3]. Verifica-
tion components used by UVM are generic, object-oriented,
reusable, and scalable. UVM supports functional coverage and
constrained random stimulus generation capabilities used to
test the design under test (DUT). Furthermore, simulation
for UVM-based verification provides more capability and
modeling flexibility across different design verification stages
at the chip, subsystem, and entire system level. In addition
to that, emulation and FPGA prototyping achieve significant
performance benefits in the functional verification flow by
speeding up complex test cases to run faster and hit more
corner cases. Therefore, DLA verification requires hardware
acceleration using emulation platforms and FPGA prototyping
to improve the verification process performance.

In this paper, the work in [2] is extended with a new error
injection mechanism, which is now part of that UVM-based
DLA verification framework. The mechanism is scalable and
can be applied to each convolutional neural network (CNN)
layer in any CNN to test the resilience and ability of each layer
to mitigate the effect of an injected error and thus test the trust-
worthiness of different DLA designs. We showcase this new
feature in simulation and emulation. We used NVDLA from
Nvidia Xavier SoC [4], which is an open architecture hardware
accelerator, as an example of DLA design under verification to
prove the robustness of our proposed verification methodology
with an error injection mechanism.

The remainder of the paper is organized as follows: Section
II discusses the background. Section III specifies the proposed
methodology. Section IV illustrates the experimental results.
Finally, conclusions and future work are discussed in Section



V.

II. BACKGROUND

In this section, we briefly illustrate the concept of hardware
faults and demonstrate how fault injection can be performed
on deep neural networks.

A. Hardware faults

Hardware faults are categorized based on fault duration
into permanent and transient faults. Until corrective action is
performed, a permanent fault caused by physical defects in the
hardware remains active. A transient fault is only active for a
short time. When a transient fault happens in a system, it might
corrupt the output of an application or cause the system to
crash. Furthermore, as many DNN systems are safety-critical,
soft errors can have catastrophic consequences, and error
mitigation is necessary for such systems to achieve specific
reliability goals. Similar to self-driving vehicles, where a
minor error can result in the misclassification of an object,
leading to incorrect actions by the vehicle. For example, a
truck can be misclassified under soft error. In the case of no
errors, the coming object should be classified as a transport
truck by the DNN in the car, and the brakes should be
applied in time to avoid a collision. Nevertheless, if a soft
error occurs in the DNN, then the truck may be erroneously
classified as a bird. This is a serious concern since it leads
to violating standards like ISO 26262, which addresses the
vehicles’ functional safety [5], and ISO 21448 [6] which
outlines limitations in achieving the intended functionality of
Machine Learning components.

B. Fault Injection for Deep Neural Networks

To implement an efficient fault injection methodology, some
concerns must be taken into consideration. This is because
measuring the effect of the fault must be done differently from
measuring the typical fault injection.

Numerous fault injection frameworks have been proposed
in the literature. For example:

• In [7], for convolutional layers in systolic array RTL
DNN accelerators at channel granularity, a cross-layer
fault injection methodology is proposed by simulating
the RTL Channel Under Test (ChUT) execution. Then,
to determine the impact of the injected faults at the
application level, the DNN execution is completed using
the faulty outputs from the RTL simulation at the software
level. This framework runs faster in terms of the fault
injection time and has parallel capabilities.

• A methodology for the reliability analysis of CNNs is
presented in [8], using an error simulation engine and
validated error models taken from an extensive fault
injection approach. This framework is easy to use, con-
trollable, flexible, and fast while combining the accuracy
of architecture-level and application-level fault injection.
In terms of speed and the ability to reproduce the effects
of faults on the final CNN output, this methodology

achieved higher accuracy than the TensorFI (Software-
implemented Fault Injection tool) [9] functional error
simulator [10] and the innovative SASSIFI fault injection
environment [11] for CNNs accelerated onto GPU.

• In [1], a canonical model of the DNN accelerator hard-
ware is used to modify a DNN simulator and give a fault
injection technique for four popular neural networks for
image recognition. Furthermore, a large-scale study on
fault injection is conducted for the faults occurring in the
accelerators’ data path. Then, depending on the neural
network’s architecture, data types, layers’ positions, and
types, the error propagation behaviors are categorized.

III. PROPOSED METHODOLOGY

The proposed methodology is to implement a scalable error
injection mechanism for testing the trustworthiness of deep
learning accelerators with simulation, emulation, and FPGA
prototyping to detect errors at the early stages of the DLA
verification process. The proposed methodology applies error
injection using three mechanisms. Firstly, it applies error
injection in the DNN data path by corrupting the DNN layers;
feature map, weight, and bias for each DNN layer. Secondly,
it applies adversarial attacks on the input image to mitigate
the perturbation in input received in the physical world from
cameras and other sensors. Thirdly, it applies error injection
in the DLA hardware configurations to detect faulty hardware
configurations for a DNN that may disrupt the inference
process. The proposed error injection mechanism is scalable
and reliable. It provides large coverage, can hit corner cases,
and has complete access to the DNN data path between layers
and the DLA configurations. To the best of our knowledge,
this is the first contribution to implementing an error injection
mechanism for verifying DLA robustness using UVM. All
the related work is based on direct testing by applying error
injection for a specific DLA design without using UVM or
applying error injection for a specific DNN architecture. The
proposed error injection methodology did not add any extra
runtime or performance overhead compared to other fault
injection mechanisms. Furthermore, the proposed framework
can be portable across the various HAV platforms to accelerate
the verification process.

As mentioned in the introduction, the proposed error injec-
tion methodology is an extension to the framework for DLA
verification in [2]. This is a UVM-based testbench established
for testing CNN inference on the Deep Learning Accelerators
for simulation and emulation on HAV platforms, and now
with error injection methodology as shown in Fig. 1. In SoC
verification, hardware acceleration has become important. Em-
ulation can speed up complex test cases so they run faster and
catch corner case errors. Testbench-Xpress (TBX) technology
is used in the proposed UVM environment with error injection
to support both hardware emulation and simulation. TBX is
compliant with the Standard Co-Emulation Modeling Interface
(SCE-MI), which is a transaction-level communication channel
between the DLA DUT mapped on the hardware emulation



Fig. 1: UVM testbench architecture with the added error injection methodology.

platform and the host machine’s UVM testbench verification
environment, which is compatible with TBX [12].

Therefore, the architecture of the proposed UVM environ-
ment, which is divided into Hardware Verification Language
(HVL) Top and Hardware Description Language (HDL) Top,
is based on the dual top concept. The HVL Top is class-based,
dynamic, behavioral, and untimed. Thus, it is responsible
to execute the UVM test, which is the testbench part that
is running on the host machine. While the HDL Top has
the DUT instance and its connection to the UVM testbench
virtual interfaces, which is the hardware part that is running
on the emulator (HAV platform), the HDL Top is timed and
synthesizable [13].

A. DNN Data Path Error Injection

Error injection for the DNN data path is done in this frame-
work by extending a new sequence for error injection from the
cnn_vseq, which is a UVM virtual base sequence. This virtual
sequence’s responsibility is to run the cnn_layer_seq, which is
used for running a CNN on the DLA. cnn_layer_seq sequence
constructs the cnn_layer_seq_item transactions that include the
DLA hardware configurations, data, weight, and bias specific
for each CNN layer. Then these transactions are transmitted
using the virtual sequencer to the cnn_layer_agent’s driver, as
shown in Fig. 1. After that, the cnn_layer_agent’s driver splits
down these received transactions to a lower level of abstraction
to be transmitted to the DLA DUT in terms of registers and
memory read/write operations. Firstly, the Reg_file seq_item
transaction is used to transmit the DLA configuration through
the Reg_file Agent’s driver in the form of register read/write
operations that are sent to the DLA DUT AXI interface from
the AXIBusMaster Driver. The AXIBusMaster Driver is part
of the AXIBus Agent in the AXI environment. Secondly, the
mem_seq_item transaction is used to transmit the CNN layers’
data, weight, and bias through the mem agent in the form

of memory read/write operations that are sent to the DLA
DUT DRAM AXI interface from the AXIBusSlave Driver.
The AXIBusSlave Driver is also part of the AXIBus Agent in
the AXI environment. In addition to that, the interrupt received
from the DLA DUT is handled through the intr agent using
the intr_seq_item and then sent to the cnn_layer_seq through
the CNN layer agent’s driver.

Furthermore, the error injection for the CNN internal layers’
input data, weight, and bias is done by randomly injecting er-
rors for single and multiple values. This is done by corrupting
a single memory location in the case of a single value and
corrupting randomly chosen more than one memory location
in the case of multiple value error injection. Moreover, this
error injection mechanism is done at different positions in the
CNN (at different layers) to study the error propagation in
the CNN and the resilience of each layer. Furthermore, to
investigate the effect of the error injection in each aspect of
the DLA inference process in terms of CNN robustness and
output predictions. Table I lists the proposed data path error
injection testing scenarios that are applicable for any CNN
and scalable for single and multiple-layer convolutional neural
networks.

B. DNN Input image Error Injection

The error injection is done on the input images in the
proposed methodology by generating adversarial examples
from the original input data to test the robustness of the
CNN running on the DLA DUT. An adversarial example is a
sample of input data that has been slightly modified to make a
CNN misclassify it intentionally. CNN still fails, even if these
changes are so small that a human observer would not even
notice them. Adversarial examples cause security concerns
because they could be used to attack deep learning systems,
even if the adversary cannot access the underlying model [14].
In addition to that, the input image error injection mechanism



TABLE I: Data path error injection testing scenarios.

Testing scenarios Features to test

1. Single value feature
map error injection

Single random incorrect data value injected in a
randomly chosen single or multiple CNN layers.

2. Multiple values feature
map error injection

Multiple random incorrect data values injected in a
randomly chosen single or multiple CNN layers.

3. Single value weight er-
ror injection

Single random incorrect weight value injected in a
randomly chosen single or multiple CNN layers.

4. Multiple values weight
error injection

Multiple random incorrect weight values injected in
a randomly chosen single or multiple CNN layers.

5. Single value bias error
injection

Single random incorrect bias value injected in a
randomly chosen single or multiple CNN layers.

6. Multiple values bias er-
ror injection

Multiple random incorrect bias values injected in a
randomly chosen single or multiple CNN layers.

helps in detecting hardware faults that may happen in the DLA
system memory and affect the input data memory locations.
Which consequently negatively affects the inference process.

The fast gradient sign method (FGSM) [14] attack is used
in the proposed error injection mechanism to generate the
adversarial examples. A Python script is used to implement
this method on the input image during the data preparation
stage illustrated in [2] to generate the adversarial image to be
used during the inference process as shown in Fig. 2. The fast
gradient sign method uses the neural network’s gradients to
generate an adversarial example. The method takes an input
image and creates a new image that maximizes the loss using
the loss gradients with respect to the input image. We refer to
this newly created image as the adversarial image. The method
can be explained using the following equation [15]:

adv_img = in_img+ϵ·sign(∇in_imgJ(θ, in_img, in_lbl)),

where:
• adv_img: Adversarial image
• in_img: Original input image.
• in_lbl: Original input label.
• ϵ: A perturbation factor.
• θ : Model parameters.
• ∇in_imgJ(θ, in_img, in_lbl): The gradient of the loss

function J(θ, in_img, in_lbl) with respect to the input
in_img.

This approach is quite fast because it is simple to apply
the chain rule to calculate the required gradients and identify
how each input pixel affects the loss. Hence, the goal is
to deceive an already-trained model using these adversarial-
generated images. Therefore, the cnn_vseq base sequence is
extended to implement a new sequence to run the CNN on
the DLA using the generated adversarial images as shown in
Fig. 1.

C. DLA hardware registers Error Injection

Error injection for the DLA hardware configurations register
space is done in this framework by extending a sequence
from the cnn_vseq for DLA configurations error-injecting to

Fig. 2: Inupt data and weight pre-processing with input image error
injection.

randomly corrupt the hardware configurations of the DLA for
a specific CNN (included in the cnn_layer_seq_item), such as
changing the memory address configurations for data, weight,
and bias, changing the feature map parameters for different
CNN layers, or the weight kernels’ parameters. In addition
to that, the error detection scoreboard shown in Fig. 1 is
implemented to check and report the DLA behavior in case
of incorrect or unexpected hardware configuration during the
inference process for a CNN.

IV. EXPERIMENTAL RESULTS
A case study is done on the NVDLA, as the proposed

methodology is used to verify the NVDLA inference func-
tion and test the running CNN resilience for simulation and
emulation with different error injection testing scenarios. The
NVDLA DUT is integrated with the UVM testbench through
AXI-based interfaces, as demonstrated in [2]. Each CNN
testing scenario configures the NVDLA blocks required for
each CNN layer according to the layer’s parameters and then
sends the required input data, pre-trained weight, and bias to
the NVDLA through its DRAM interface.

The proposed error injection testing scenarios are applicable
to sophisticated custom and standard CNN architectures as per
the CNN sequence for programming the NVDLA core. As
a showcase, two error injection testing scenarios are imple-
mented for a single CNN convolution layer with inference
parameters shown in Table II and for the LeNet-5 CNN.
LeNet-5 CNN was proposed by LeCun in 1998 [16], which
was successfully applied to handwritten digit recognition.
LeNet-5 consists of the following layers: an input layer, two
convolution layers each followed by a pooling layer, two fully
connected layers, and an output layer.

TABLE II: The single CNN convolution layer parameters.

Layer Input filters No. Filter size Stride Output
Convolution 8*8*32 16 3*3*32 1 1x1x16

The architecture and the parameters used for inference are
mentioned in Table III [17]. The used dataset for testing is the
MNIST handwritten digit dataset. QuestaSim simulator tool is
used for simulation [18]. Moreover, the Veloce Strato platform
is used for emulation [19].

A. Data Path Error Injection Results
Error injection testing scenarios are implemented for run-

ning the single CNN convolution layer on the NVDLA by



TABLE III: The LeNet-5 CNN parameters.

Layer Input Filter Stride Output
Convolution 1 28*28*1 5*5*1*20 1 24*24*20
Pooling 1 24*24*20 2*2 2 12*12*20
Convolution 2 12*12*20 5*5*20*50 1 8*8*50
Pooling 2 8*8*50 2*2 2 4*4*50
Fully Connected 1 4*4*50 4*4*50*50 1 1*1*50
Fully Connected 2 1*1*50 1*1*50*10 1 1*1*10

randomly injecting errors in weight, and the layer’s input data
(feature map) during the inference process for both simula-
tion and emulation. The simulation and emulation regression
results shown in Fig. 3 indicate that the convolution layer
is more sensitive to multiple data errors than the multiple
weight errors. Moreover, single data and single weight errors
are almost masked in the convolution layer due to the presence
of the ReLU activation function.

Fig. 3: Single CNN convolution layer data path error injection testing
scenarios error rate.

Furthermore, error injection testing scenarios are imple-
mented for LeNet-5 CNN running on the NVDLA through
randomly injecting errors in the different layers’ weight, bias,
and the internal layers’ input data (feature maps between
layers) during the inference process for both simulation and
emulation. The error injection is done by inserting random and
incorrect single or multiple values of weight, bias, or internal
layers’ input data for a randomly chosen layer. Simulation
and emulation regression are run for the implemented error
injection testing scenarios over a random MINST dataset
testing samples. As demonstrated in Fig. 4, the results indicate
that in the LeNet-5 CNN, the majority of single-value input
data errors within internal layers are masked and do not impact
the output predictions of the final layer. Moreover, the LeNet-
5 CNN is sensitive to the multiple values in internal layers’
input data errors. However, some of them are masked by
the POOL layers if they were injected into the convolution
layers. Furthermore, the LeNet-5 CNN masks most of the
single-value errors in weight. However, some errors in the
second convolution layer were propagated and corrupted the
last layer output predictions. Moreover, the LeNet-5 CNN is
sensitive to multiple weight value errors, mainly if injected
in the convolution layers. For the bias, the LeNet-5 CNN
masks most of the single-value errors which reduced the CNN

error rate. However, the LeNet-5 CNN is sensitive to the
multiple-value bias errors and propagates them as they corrupt
the output predictions except for those injected in the fully
connected layers. In summary, the LeNet-5 CNN is sensitive
to the internal layers’ multiple values of input data corruption
and weight corruption more than that of the bias corruption
and less sensitive to single values corruption in data, weight,
and bias propagation between layers.

B. Input image Error Injection Results
A testing scenario is implemented for running LeNet-5 CNN

on the NVDLA using adversarial images as input images
for simulation and emulation. Fig. 5 shows that the LeNet-
5 CNN accuracy rate decreases with high values of ϵ as the
fast gradient sign method adds noise scaled by ϵ to the image.

To sum up, as shown in Fig. 4, Fig. 3, and Fig. 5,
some of the error injection testing scenarios running on the
emulator have higher error rates compared to those running
for simulation. This is because emulation tends to hit more
bugs compared to simulation as it executes the design in a
more realistic and faster environment, tests more scenarios,
and operates at a lower level of abstraction. This leads to a
higher likelihood of uncovering bugs that might not be exposed
during simulation. However, emulation is useful in detecting
more bugs, but simulation also often provides better tools for
visibility and debugging.

TABLE IV: Error injection simulation and emulation runtime.

CNN Simulation runtime Total emulation runtime
Single CNN convolution layer with
error injection

20.48 us 3.12s

LeNet-5 CNN with error injection
test case

0.144 ms 19.42s

The proposed error injection methodology is faster com-
pared to other introduced frameworks that are based on
software instruction-by-instruction execution because the pro-
posed UVM framework is a native code execution that runs
very fast on a host machine. Table IV shows the simulation and
emulation runtime for both the single CNN convolution layer
and the LeNet-5 error injection scenarios, these runtime values
are similar to those for the same testing scenarios without
the error injection mechanism mentioned in [2]. The proposed
error injection testing scenarios did not consume any extra
runtime in simulation or emulation for the applicable running
CNN on the DLA. Therefore, there is no overhead in the
runtime while running the proposed testbench with the error
injection testing scenarios. Moreover, this framework has a
larger coverage for running any CNN, hitting corner cases, and
is faster and easier to debug compared to other error injection
mechanisms. The proposed framework added more visibility
during the NVDLA testing and debugging, allowing direct and
full access to the NVDLA register space for configuration with
less runtime.

V. CONCLUSION

This work proposes our error injection methodology as
part of the UVM-based verification framework for verifying



Fig. 4: LeNet-5 CNN data path error injection testing scenarios error rate.

deep learning accelerators’ inference function using a generic
and scalable UVM environment to run CNNs with differ-
ent inference parameters in simulation and emulation. The
illustrated error injection methodology in this paper has less
simulation and emulation runtime to test the trustworthiness
of complex DLA designs in each CNN Layer mapped to
hardware, mainly in the presence of data corruption either
due to hardware faults or input perturbations. Furthermore, the
proposed methodology added more flexibility and scalability
as it introduces cross-layer error injection in the DNN. As
a future work, the proposed methodology will be applied
to analyze the resilience of more complex CNNs with and
without defense mechanisms running on the NVDLA against
faults and attacks.

Fig. 5: LeNet-5 CNN with adversarial images accuracy rate.
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