
A Novel Approach in Proving Unreachable Paths in
Hardware-dependent Software

Bryan Olmos∗†, Wolfgang Kunz †, Djones Lettnin∗
∗Infineon Technologies AG - †Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Abstract—Achieving reliable code coverage is of fundamen-
tal importance in embedded systems development, especially in
compliance with automotive standards like ISO26262. Firmware
designs, with their hardware interaction, require thorough testing
to minimize the risk of undetected bugs. Achieving 100% code
coverage is challenging. This paper adds a step in the development
process to detect unreachable paths in the initial phase of the
development process. This paper proposes a methodology using
MC/DC (Modified Condition Decision Coverage) with formal
verification to analyze code functions individually within a time-
bound. The paper presents the common bugs found in 7 firmware
designs. For example in a FW design with 16k lines of code, 51
of 613 paths were unreachable, with 25 paths being due to bugs.
Before addressing initial bugs, 1332 potential software weaknesses
were identified using formal verification, which increased to 1370
after correction. It shows the benefits of including the detection
of unreachable paths and avoiding, later corrections during
integration.

Index Terms—Formal Verification, Firmware Verification, Code
Coverage

I. INTRODUCTION

One of the main challenges in software testing for safety-
critical systems is to decide when the code has been tested
enough [1]. For this reason, safety embedded systems, such
as road vehicles, are required to comply with the safety
standard ISO 26262-6 to ensure safety, quality, reduction of
liability risks and enhancement of the customer confidence
about software requirements [2]. This standard requires that
the code and its test cases are analyzed concerning metrics
such as statement coverage, branch coverage and MC/DC—for
all ASIL(Automotive Safety Integrity Levels). Additionally, the
cost of repairing C code in embedded system designs increases
significantly as defects are detected later in the development
timeline [3], creating an incentive for the manufacturer to detect
bugs earlier.

Previous studies have shown how test cases can be obtained
in an automated or non-automated way [4]. Once the source
code is available, steps a), d), e), f), g), and h) of Figure 1 can be
followed for a classic approach. Unit tests are used to verify the
code, and obtain the coverage results, not reaching 100% code
coverage implies that the test cases require improvement. Using
simulation and branch coverage, for instance, would require a
thorough search for edge cases to cover specific branches [4].
However, there are situations where some branches cannot be
covered due to contradictions inside the design or in the case
of firmware, events related to hardware [5]. Furthermore, in
the case of using bounded model checkers, the reached states
are limited to the loop-bound for verification —loop-bound
means the number of times a loop in software is unwinded

Verify
Code

C code

100% Coverage

Coverage
Results

Done

Detection of
Unreachable

Paths

exception?

Im
pr

ov
e

Te
st

 C
as

esC
he

ck
 C

od
e

Y

Classic Approach
Proposed Approach

N

a)

b)

d)

f)

g)

h)

c)
Test

Cases
e)

Fig. 1. Tool chain for code coverage

before its analysis. Thus, the design could be overconstrained
making the results not sound —an unsound model appears
correct according to formal verification but fails to represent
the behaviour of a system leading to potential failures [6]. In
all these situations, coverage will not change with any approach.
For this reason, an initial analysis of unreachable paths is
necessary prior to the verification process. It will save time not
only in obtaining code coverage but also avoid re-running the
verification flow in case bugs and software weaknesses reside
in these unreachable paths.

For this reason, this paper proposes to begin with the
sequence a), b), c) of Figure 1 and will focus on block
b) which is the detection of unreachable paths in firmware
designs. In case the unreachable path is intended (See Subection
IV-5), this is considered an exception and the code does not
need to be corrected, as shown in the step c). This detection
can be done by individual functions using the tool CBMC
[5]. Nevertheless, a functional analysis of the code coverage
becomes unfeasible when the size of the code or the loop-bound
of the verification begins to increase. This is because one of
the main challenges of model checking is the state explosion
problem [7]. To make the approach scalable for the analysis
of huge codes, a pessimistic approach is used considering the
worst-case scenario of a bounded model checker, which means,
that at some point in time, the analysis will fail due to the size
of the function under analysis. For this reason, a time-bound
t is assigned to get the unreachable paths of each function as
explained in Section III.

This approach identifies unreachable paths of firmware de-

signs based on C code. For example, analyzing a source code
during the development phase —with 16k lines of code, 51
of 613 paths were identified as unreachable in a runtime of
31 min by using the methodology described in Section III. Of
these 51 paths, 25 were due to bugs and 26 were intended.
Before correcting these initial bugs, 1332 potential software
weaknesses were detected with a runtime of 3 h and 14 min
and after correction 1370 were detected in 3 h and 24 min. The
main contributions of this paper are:

• Introducing the detection of unreachable paths in the
development process proposing a new methodology based
on formal verification of each function in the source code
and a time-bound for the analyzed functions.

• Automating the methodology and presenting the results
for branch coverage and MC/DC for 7 industrial firmware
designs.

• Categorization of the most common bugs found in 7 in-
dustrial designs and proving the methodology by detecting
software weaknesses.

This paper is organized as follows: In Section II, the main
concepts related to code coverage, CBMC and related work
are discussed. Section III introduces the methodology. The
main causes of unreachable paths are presented in IV. Section
V shows the experimental results of 7 industrial designs.
Conclusions and future work are presented in Section VI.

II. BACKGROUND

A. CBMC and MC/DC Code Coverage

CBMC is a tool for formal verification of ANSI-C programs
using BMC. It converts the code into a mathematical represen-
tation and solves it using formal methods [8] [9]. The main
advantages of using CBMC for formal verification of C code
are a) Ensuring the absence of bugs through an exhaustive
analysis of the code; b) Detection of software weaknesses of the
CWE (Common Weakness Enumeration) community [10] [11].
c) Providing code coverage metrics such as branch coverage
and MC/DC. Listing 1 shows an example of the assertions used
by CBMC to get the code MC/DC coverage.

int test (int a , int b) {
// Built−in assertions CBMC for MC/DC:
assert (!(a > 0) && !(b < 0)) // MC/DC independence

condition
assert (!(a > 0) && b < 0) // MC/DC independence

condition
assert (a > 0 && !(b < 0)) // MC/DC independence

condition
assert (!(a > 0 || b < 0)) // decision is false
assert (a > 0 || b < 0) // decision is true
assert (!(a > 0)) // condition is false
assert (a > 0) // condition is true
assert (!(b < 0)) // condition is false
assert (b < 0) // condition is true

if (a > 0 || b < 0) {
return 1;

}
}

Listing 1. Example MC/DC coverage

Branch coverage states that each branch direction must be
traversed at least once, for example, the condition of an if-else
statement must be evaluated for true and false [12]. MC/DC
criterion enhances the condition/decision coverage criterion by
requiring that each basic condition be shown to independently
affect the outcome of the decision [13], where a basic con-
dition is an atomic Boolean valued expression that cannot be
broken into Boolean sub-expressions [14]. Concerning MC/DC,
CBMC adds built-in assertions to analyze the code coverage.

B. Related Work

Previous works have focused on code coverage metrics
based on test cases. Williams et al. [15] propose exhaustive
branch coverage using concolic test generation for C code,
analyzing designs up to 340 LoC and 128 branches. Gay et
al. [4] compare direct and indirect branch coverage for Java,
evaluating their effectiveness in fault detection. Ahishakiye et
al. [16] present MC/DC results using a trace-based approach.
For embedded systems, Shen et al. [17] introduce Tardis, an
OS fuzzer detecting abnormal behavior by repeatedly feeding
varied test cases. Unlike these approaches, we aim to detect
unreachable paths before running test cases. Alavizadeh et al.
[18] classify unreachable code as dead code without proposing
a specific detection method. Dong et al. [19] detect unreachable
paths in Java by partitioning programs into sequential, condi-
tional, and loop statements. Lee and Böhme [20] use statisti-
cal methods to estimate reachability probability, showing the
benefits of incorporating structural information. None of these
works consider formal methods for hardware constraints. The
concept of robust reachability is introduced by [21], focusing
on scenarios where bugs are influenced by controlled inputs.
In contrast, this paper considers all inputs as uncontrolled.
Regarding soundness, Cousot and Cousot [22] have advanced
static analysis tools through abstract interpretation, which uses
mathematical abstractions to reduce the state space explored
by model checkers. We focus on enhancing soundness in
FW designs, which have unique challenges due to established
bounds and hardware constraints.

C. Contribution

As shown in the previous studies, estimating the number of
reachable paths is a challenging task, main studies have focused
on the analysis of high-level software. However, the effect in
firmware has not been analyzed. To contribute to filling this
gap, we proposed:

• New Methodology to Detect Unreachable Paths:
– Use of MC/DC coverage and formal verification in

reachability analysis for firmware designs.
– The methodology partitions the analysis of the source

code into the analysis of its functions, enabling a more
targeted and systematic approach.

– The use of a time-bound is proposed for the verification
of each function ensuring that the analysis remains
bounded and efficient.

• Analysis of Firmware designs:
– Seven FW designs developed in C are analyzed.

function_2()

i

j

l

k

i

j

l

k

i

j

l

k

i

j

l

k

i

j

l

k

i

j

l

k

f_init()

function_1()

function_3()

function_4()

function_5()

reachable pathi

j

k first/last
line of code
intermediate
lines of code

unreachable internal path

unreachable external path

i

j

l

k

function_6()

hw
hw

hw hardware events

a3

a1

a2

actiona

hw

software
weaknesses

FW
Design

Get function
names

Ctags

CBMC scripts
generation

Run CBMC scripts
and get results

Combine and
print results

f_init()
function_1()
function_2()
function_3()

f_init_mcdc.py

f_init_division_by_0.py

f_init_integer_overflow.py

3 ...

result_f_init_mcdc.xml

time-bound

result_f_init_mcdc.xml

XML
...

l

A)

B)

b) Automated methodology

FW
Design

C)

D)

a) Firmware overview

- Total MCDC Coverage

- List of Unrechable paths

- Weaknesses Detected

resultf_init_division_by_0.xml

Fig. 2. Methodology for the detection of unreachable paths and weaknesses detection based on CBMC and Python scripts in FW designs

– The trade-off between proposed time-bound, loop-
bound and code coverage is presented.

– Identification and categorization of main bugs in FW,
offering valuable insights into the potential impact of
unreachable paths on firmware reliability.

• Automated Framework:
– The methodology is automated based on CBMC and

Python scripts.
III. METHODOLOGY

As shown in Figure 2a), FW designs usually consist of a
set of functions that interact with HW, for example, the FW is
planned to execute some action over the HW or wait for some
hardware events to continue. If these events never occur, the
FW will not be able to continue its execution, for example,
function 3() in Figure 2a) is waiting for an event and will
not reach function 6() until that event occurs. If we use static
analysis and do not consider these HW events, function 6()
will be never reached and some potential weaknesses will
not be detected, additionally, action 3 (a3) will never occur.
Furthermore, some internal paths in the functions could not
be reached due to contradictions in the design, and wrong
assumptions about the functions accessing the register values
or constant values. The main 8 causes for unreachable paths
detected during our research are described in Section IV. To
detect these unreachable paths, we propose the use of CBMC
to get MC/DC coverage of all functions without constraints
following the steps of Figure 2b).

A. Get Function Names

All functions of the C code must be analyzed in the FW
design. If only the main function is analyzed, then the tool will
not consider all code after an unreachable path. In this situation,
it is feasible to detect an initial unreachable path but the process
of running the tool and detecting each path becomes tedious and
hard to debug especially for large designs. To get the function

names, a Python script is used with the library Ctags [23]. This
library returns a list with all the function names.

B. CBMC Scripts Generation

A second Python script is used to generate other Python
scripts to run CBMC for all functions, an example of MC/DC
coverage is shown in Listing 2. Note that in line 7, a signal
alarm is set to 40, which means the proof analysis will run
out in 40 seconds; this time-bound is necessary because some
functions will contain infinite loops or get stuck in an unreach-
able path and the execution will not stop. In these cases, some
constraints are needed for the analysis. The trade-off analysis
between the time-bound and the code coverage is presented in
Section V-A. Additionally, scripts for weakness detection with
CBMC were generated. They show the analysis of the FW
designs with and without unreachable paths in Section V.

1 import subprocess
2 import signal
3 def handler function (signum, frame):
4 print (”Alarm activated ! Terminating process ... ”)
5 exit (1)
6 signal . signal (signal .SIGALRM, handler function)
7 signal .alarm(40) # time−bound
8 file = open(” results function test .xml”, ”w”)
9 subprocess . check call ([’cbmc’,

10 ’−I’ , ’ source folder ’ , # add all the folders
11 ’ file function test .c’ , # add all the C files
12 ’−−unwind’, ’20’ , # loop−bound
13 ’−−32’,
14 ’−−cover’, ’mcdc’, # coverage MC/DC
15 ’−−xml−ui’, # results format XML
16 ’−−function’ , ’ function test ’ # function name
17], stdout = file)
18 signal .alarm(0)

Listing 2. Script to get the MCDC coverage with CBMC for Listing1

C. Run CBMC and Get Results

In this step, a script calls all the previously generated scripts
and returns an XML file with the MC/DC Coverage results.
Additionally, the results were filtered to return a list with all the
possible unreachable paths per function. The runtime depends
mainly on the size of the code as shown in Section V.

D. Combine and Print Results

In this step, we combine the results of all the functions and
print the main results of the total MC/DC Coverage, the list of
unreachable paths per function, and the detected weaknesses.
These results are automatically summarized in an XLSX file.

IV. DESCRIPTION OF DETECTED UNREACHABLE PATHS

In this section, the most commonly detected unreachable
paths in 7 FW designs are analyzed.

1) Wrong FW Assumptions: Wrong assumptions in the FW
can lead to unreachable paths. Listing 3 shows the function
get factor which takes a 16-bit parameter called input value
(line 1) and returns the value called factor (line 16). A wrong
assumption here is that all if-condition statements could be true
and false for a given input value in the range of [0, 65535].
However, the else-condition in line 13 is not reachable due to
the intermediate operations (in lines 3-5) —the maximum value
that condition can be is 5715.

1 uint16 t get factor (uint16 t input value)
2 {
3 uint16 t factor = 0u;
4 uint16 t condition = input value >> 9u;
5 condition = condition * 45u;
6

7 if (condition < 256u)
8 { factor = 1u;
9 }

10 else if (condition < 6000u)
11 { factor = 2u;
12 }
13 else
14 { factor = 3u;
15 }
16 return factor ;
17 }

Listing 3. Wrong FW Assumption - factor = 3 in line 14 is not reached

2) Unnecessary Operations: Some operations which are not
reached could reduce the performance of the code.

1 uint16 t calculate operation (uint16 t a , uint16 t b)
2 {
3 uint16 t i = 0U;
4 if (a>= (b << 1U))
5 {
6 while (((a>>i) >= ((b << 1)>>i)) && (a<<1U)){
7 i = i + 1;
8 }
9 }

10 return i ;
11 }

Listing 4. If if(a >= (b << 1U)) is true, then the condition
(a >= (b << 1)) in the while loop is always true

Listing 4 shows one example, where the function calcu-
late operation returns a value i (line 10) after the calculation
of a while loop (line 6). In this case, all the lines of the code
are reachable. However, after getting the initial MC/DC code
coverage, the results show that the first condition of the while
loop (a >> i) >= ((b << 1) >> i) could never be false.
This is because if the first if-statement (line 4) holds, then the
while loop is always true, making it redundant. For this reason,
this first condition can be corrected or removed from the while
loop reducing the number of operations required to evaluate
it. This cannot be detected even using line coverage or branch
coverage and shows the necessity to have MC/DC coverage.

3) Overconstrained Design: Some paths can be unreachable
due to intrinsic technical aspects. Listing 5 shows the snippet
of a function to initialize the registers of an Electronic Control
Unit (ECU). Its main features are:

1) function init() loads the default values in the registers
by calling load and verify virgin data() (line 4) and
verifies their integrity by comparing if the expected CRC
remainder is 0x0044 (line 7). If the remainder calculated
by the HW is different it sets the register CRC ERROR to
TRUE (line 14).

2) The function get virgin registers() returns the number of
found virgin registers (line 5).

3) If there is no CRC error and all the registers are virgin
then set the register VIRGIN ERROR() to TRUE (line 12).

1 int function init (){
2 int total registers = 32;
3 int virgin registers ;
4 load and verify virgin data () ;
5 virgin registers = get virgin registers () ;
6

7 if (CRC HW DATA() != 0x0044) {
8 CRC ERROR SET(TRUE);
9 }

10 else{
11 if (virgin registers == total registers) {
12 VIRGIN ERROR SET(TRUE);
13 }
14 }
15 }

Listing 5. Function to verify integrity of data loaded into registers

In this case, the code is implemented as expected. However,
line 12 is never reached. This is because the else statement (line
10) is reached only if CRC HW DATA() == 0x0044 and line
11 requires that all the registers are virgin. Both conditions
cannot be true at the same time. It will happen only if the
default values are equal to the virgin values, which is not the
intended implementation.

4) Wrong Bit-Width Register: A function in the design can
access only a certain number of bits and this number could be
incorrectly assumed at the moment of writing the code.

5) Intended Unreachable Paths: Some paths are unreachable
due to the intrinsic design of the code, for instance, Listing 6
shows the f under test() (line 2) always returning READY (line
4). The reason could be that the logic of the function is not
defined at this stage of development or is a hard-coded value.

45

55
40 60

80

100

72,65

98,3

-20

0

20

40

60

80

100

120

0 10 20 30 40

%
 C

o
v
e

ra
g

e

Instances of Time-Bound and Loop-Bound

FW6 - 4k Lines of Code (Total Paths = 117)

Loop-Bound Time-Bound % Coverage after
correction

% Coverage before
correction

35

60
4040 60

80

95,43

77,81

95,76

91,19

89,40

90,54

-20

0

20

40

60

80

100

120

0 10 20 30 40

%
 C

o
v
e

ra
g

e

Instances of Time-Bound and Loop-Bound

FW1 - 16k Lines of Code (Total Paths = 613)

40

40

60 80

97,65

92,78

-20

0

20

40

60

80

100

120

0 10 20 30 40

%
 C

o
v
e

ra
g

e

Instances of Time-Bound and Loop-Bound

FW2 - 13k Lines of Code (Total Paths = 554)

40 60

80

97,55

95,09

-20

0

20

40

60

80

100

120

0 10 20 30 40

%
 C

o
v
e

ra
g

e

Instances of Time-Bound and Loop-Bound

FW3 - 10k Lines of Code (Total Paths = 163)

40

60 80

100

97

-20

0

20

40

60

80

100

120

0 10 20 30 40

%
 C

o
v
e

ra
g

e

Instances of Time-Bound and Loop-Bound

FW4 - 5k Lines of Code(Total Paths = 143)

40

40

60 80

100

-20

0

20

40

60

80

100

120

0 10 20 30 40
%

 C
o

v
e

ra
g

e

Instances of Time-Bound and Loop-Bound

FW5 - 7k Lines of Code (Total Paths = 145)

s s

s

s

s s

s s

s

s

s s

s

s s

s s

s

Fig. 3. % Code coverage before and after the correction of the unreachable paths

6) Missing HW Event: FW is waiting for an event or a signal
value before continuing.

7) Missing Sequence of HW Events: FW is waiting indefi-
nitely for a sequence of events during its operation [5].

1 #define READY 1 // Constant
2 int f under test () {
3 // some code
4 return READY; // Return always READY
5 }
6

7 int main() {
8 if (f under test () == READY) {
9 // some code

10 }
11 return 0;
12 }

Listing 6. The predefined return value is always READY

8) Unreachable Paths due to Loop-Bound or Infinite Loops:
This case is related to the loop-bound chosen for the formal
verification or the presence of infinite loops that also require
directives.

V. EXPERIMENTAL RESULTS

A. Time-Bound, Loop-Bound, and Code Coverage

Figure 3 shows the difference in code coverage before and
after correcting the unreachable paths in relation to the loop-
bound and time-bound. In FW1 with a loop-bound of 35 and a
time-bound of 60 s per execution of each function, the initial
code coverage is 91,19% and after addressing unreachable paths
it improves to 95,43%. However, if the loop-bound increases to
60 the initial code coverage is 89,4% and after the correction it
decreases to 77,81%. This is because of the trade-off between
the loop-bound and coverage if the loop-bound increases the
time-bound also needs to increase otherwise CBMC does not
have enough time to analyze the function. If the time-bound
increases to 80 s, then the code coverage after correction is
always higher than the initial. In FW2, code coverage after the
correction of unreachable paths is higher than the initial code
coverage for a loop-bound of 40, 60 and 80 s. In FW1, FW2
and FW3, it is not feasible to reach 100% of code coverage.

This is because some of the paths were unreachable by design
as described in Section IV-5. FW4, FW5 and FW6 were able
to reach 100%. FW7 reached 99,68% due to containing an
intended unreachable path. Table I shows the classification of
unreachable paths in the FW designs. Most unreachable paths
were detected in FW1. This is mainly because FW1 has more
lines of code than other designs, also it was analyzed in the
initial stage of the development phase. FW5 does not contain
unreachable paths, because it was analyzed on a stable FW
version. The average time to get the total code coverage for a
specific time-bound and loop-bound depends on the code size.
Thus, FW5 with 7k is analyzed in only 2,2 min; however, FW1
with almost double the lines of code takes 12x as long (26,8
min) due to the state explosion problem of model checking.

TABLE I
DETECTED UNRECHABLE PATHS IN FW DESIGNS

Unreachable Path Type FW1 FW2 FW3 FW4 FW5 FW6 FW7
Wrong FW Assumptions 0 0 0 1 0 0 0
Redundant Operations 1 0 0 0 0 0 0
Overconstrained design 5 1 2 1 0 3 0
Wrong bit width register 2 0 0 0 0 0 0
Intended Unreachable Paths 14 3 2 0 0 0 1
Missing HW Event 2 6 0 0 0 0 0
Sequence of HW Events 0 1 0 0 0 0 0
Infinite while loop 20 0 0 0 0 2 0
Total Unreachable Paths 44 11 4 2 0 5 1
Effective Lines of Code 16k 13k 10k 5k 7k 4k 9k
Average Runtime Per Instance (min) 26,8 7,2 7,4 1,0 2,2 1,4 3,9

The 3 most common causes are infinite loop, intended
unreachable paths and overconstrained design, as seen in Figure
4.

Figure 5 compares the detected weaknesses with CBMC after
and before the correction of unreachable paths. More weak-
nesses were detected in FW1, and FW2 after the correction; for
example, 38 more weaknesses were detected in FW1 and 78
more in FW2. The weaknesses detected in the other FW were
the same in both cases. This is because the unreachable paths
were not related to code that introduced more weaknesses. For
this analysis, the loop-bound was 70 because this loop-bound
covered all paths of the FW designs after including constraints
for the case of infinite loops only found in FW1 and FW6 as
shown in Table I. The average runtime for weakness detection
was almost the same for both cases in all FW designs and

depended on the size of the code. The longest runtime was
199 min for FW1 with 16k lines of code and the shortest one
was 9 min for FW5.

Fig. 4. Weaknesses Detection Classification

B. Weaknesses Detection Results

Fig. 5. Weaknesses detected before and after correction of unreachable paths

VI. CONCLUSION

Firmware designs were analyzed for up to 16k lines of code.
All of them were analyzed for weakness detection to show
the importance of including the detection of unreachable paths.
6 of the 7 designs under verification contained unreachable
paths. After their correction, 38 and 78 additional weaknesses
were detected in FW1 and FW2 in 3h and 24 min and 1h
and 5 min, respectively. This shows a necessity to include
reachability analysis even if the firmware designs are analyzed
using formal verification to ensure soundness in the results.
The proposed methodology was able to catch all unreachable
paths using formal verification to obtain the MC/DC based on
a time-bound —it was introduced in the methodology to avoid
the tool never stopping due to missing constraints or infinite
loops. Additionally, the necessity of including MC/DC to detect
problems concerning redundant operations which cannot be
detected by branch or line coverage was shown. As proposed
in the introduction, this initial code coverage provides the
maximum code coverage that we will be able to detect in
our code. It helps to avoid testing the code trying to reach
paths that cannot be detected. Finally, the reliability of the
firmware was increased due to use the of formal verification
and the detection of unreachable paths in an early stage of the
development process. Future work will include the analysis of
large firmware designs.

ACKNOWLEDGMENT

This work has been developed in the project VE-VIDES
(project label 16ME0243K) which is partly funded within
the Research Programme ICT 2020 by the German Federal
Ministry of Education and Research (BMBF).

REFERENCES

[1] C. Hobbs, “Embedded software development for safety-critical systems;
second edition,” Embedded Software.

[2] “IS026262 Road vehicles – Functional safety, Part 1: Vocabulary, Part
6: Product development at the software level.” International Organization
for Standardization (ISO), Standard, 2016.

[3] A. Shaout and D. Breton, “Validation and Verification For Embedded
System Design “An Integrated Testing Process Approach”,” International
Journal of Computer & Organization Trends, vol. 10, no. 1, Jul. 2014.

[4] G. Gay, “To call, or not to call: contrasting direct and indirect
branch coverage in test generation,” in Proceedings of the
11th International Workshop on Search-Based Software Testing.
Gothenburg Sweden: ACM, May 2018, p. 43–50. [Online]. Available:
https://dl.acm.org/doi/10.1145/3194718.3194719

[5] B. Olmos, S. Sainath, D. Lettnin, and W. Kunz, “Automating the Formal
Verification of Firmware: A Novel Foundation and Scalable Methodol-
ogy,” DVConUSA 2024.

[6] Y. A. Manerkar, “Progressive automated formal verification of memory
consistency in parallel processors, dissertation princeton university,” 2021.

[7] E. M. Clarke, Model Checking and the State Explosion Problem, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, vol. 7682, p. 1–30.

[8] “Bounded Model Checking for Software,” http://www.cprover.org/cbmc/,
accessed: 2023-07-6.

[9] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” Lecture Notes in Computer Science, vol. 2988, pp. 168–176,
01 2004.

[10] “Common Weaknesses Enumeration,” https://cwe.mitre.org/, accessed:
2023-07-6.

[11] M. Byun, Y. Lee, and J.-Y. Choi, “Analysis of software weakness detec-
tion of CBMC based on CWE,” in 2020 22nd International Conference
on Advanced Communication Technology (ICACT), 2020, pp. 171–175.

[12] G. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. Wiley,
2011.

[13] H. Kelly J., V. Dan S., C. John J., and R. Leanna K., “A practical tutorial
on modified condition/decision coverage,” Tech. Rep., 2001.

[14] M. W. Whalen, M. P. E. Heimdahl, and I. J. D. Silva, “Efficient test
coverage measurement for mc/dc,” 2013.

[15] N. Williams, “Towards exhaustive branch coverage with pathcrawler,” in
2021 IEEE/ACM International Conference on Automation of Software
Test (AST). Madrid, Spain: IEEE, May 2021, p. 117–120.

[16] F. Ahishakiye, S. Jaksic, V. Stolz, F. D. Lange, M. Schmitz, and
D. Thoma, “Non-Intrusive MC/DC Measurement Based on Traces,”
in 2019 International Symposium on Theoretical Aspects of Software
Engineering (TASE). Guilin, China: IEEE, Jul. 2019, p. 86–92.

[17] Y. Shen, Y. Xu, H. Sun, J. Liu, Z. Xu, A. Cui, H. Shi, and Y. Jiang,
“Tardis: Coverage-guided embedded operating system fuzzing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 11, p. 4563–4574, Nov. 2022.

[18] A. Alavizadeh, “Classifying dead code in software development,”
Bachelor of Science in Computer Science and University
Honors, Portland State University, Mar. 2022. [Online]. Available:
https://pdxscholar.library.pdx.edu/honorstheses/1168

[19] Y. Dong, S. Wang, L. Zhang, X. Liu, and S. Liu, “Automatic detection
of infeasible paths in large-scale program based on program summaries,”
2024. [Online]. Available: https://www.ssrn.com/abstract=4760606

[20] S. Lee and M. Böhme, “Statistical reachability analysis,” in Proceedings
of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. San
Francisco CA USA: ACM, Nov. 2023, p. 326–337. [Online]. Available:
https://dl.acm.org/doi/10.1145/3611643.3616268

[21] G. Girol, B. Farinier, and S. Bardin, Not All Bugs Are Created Equal,
But Robust Reachability Can Tell the Difference, 07 2021, pp. 669–693.

[22] P. Cousot, Abstract Interpretation: From 0, 1, To ∞. Singapore: Springer
Nature Singapore, 2023, pp. 1–18.

[23] Universal Ctags, “Universal Ctags Repository,”
https://github.com/universal-ctags/ctags, accessed: 19-06-2024.

