
Reliable and Real-Time Anomaly Detection for
Safety-Relevant Systems

1stHagen Heermann
Cyber-Physical Systems Chair

University of Kaiserslautern-Landau
Kaiserslautern, Germany

heermann@informatik.uni-kl.de

2ndJohannes Koch
Cyber-Physical Systems Chair

University of Kaiserslautern-Landau
Kaiserslautern, Germany
johannes.koch@rptu.de

3rdChristoph Grimm
Cyber-Physical Systems Chair

University of Kaiserslautern-Landau
Kaiserslautern, Germany

grimm@informatik.uni-kl.de

Abstract—Safety-relevant embedded systems, e.g. in automo-
tive applications, often require redundancy and monitors for
anomaly or error detection. This paper presents an approach
that permits to detect deviations of a deployed system from
the possible behavior of a model. In order to satisfy real-
time requirements, we use reachability analysis and represent
results by a novel data type Affine Arithmetic Cartesian Decision
Diagrams (AACDD). The benefits are demonstrated by the
analysis of the comparison with a One Class Support Vector
Machine approach on the example of a Σ−∆ modulator.

Index Terms—Hybrid Systems, Runtime Monitoring, Consis-
tency Checking, Reachability Analysis, Anomaly Detection

I. INTRODUCTION

Electronic HW/SW systems are today networked with a
digital environment and at the same time tightly interwoven
with its physical environment. Such systems are called Cyber-
Physical Systems (CPS). CPS introduce new challenges for
development, modeling, verification. Particular challenges in-
clude functional safety in distributed systems and new appli-
cations like predictive maintenance. This often requires the
monitoring of deployed systems at run-time in order to detect
abnormal behavior.

A particular challenge in this context is to classify observed
behavior into regular and abnormal ones considering the
following objectives:

• High quality of classification; one wants to find abnor-
malities with a small number of wrong classification.

• Comprehensive coverage; one wants to detect also abnor-
malities that are not foreseen by a hazard/safety analysis.

• Real-time classification; if systems have to go into a fail-
safe or fail-operational system, the classification must
satisfy hard real-time requirements.

We classify approaches to detect such deviations into model-
free and model-based ones.

As model-based approaches we consider approaches that
utilise a model of an underlying error mechanism or a
mathematical model of the system behavior. This permits to
compare observed and expected values or behavior. Then, one
decides whether the system adheres to its intended operation.
Prominent examples are based on safety analysis and include

This work was partially funded by the BMBF project KI4BoardNet No.
16ME0782

runtime verification using Linear Temporal Logic (LTL) and
similar approaches. Having a comprehensive and complete
analysis of initiating faults for complex systems is a challenge
and might result in a limited coverage of abnormalities or
errors.

Model-free approaches, on the other hand, rely solely on
observing the system without explicit information from e.g.
safety/hazard analysis. This falls under the field of anomaly
detection, where methods like stochastic approaches, distance-
based approaches, and one-class classifiers are employed.

Here, we propose a model-based approach. As illustrated
in Fig.1, the proposed approach initially employs a model of
system behavior, specifically here but not limited to a hybrid
automaton. During development, we use reachability analysis
to generate a representation of all possible transitions and,
thereby, all possible signal trajectories. For the classification
during runtime, we introduce a data structure called Affine
Arithmetic Cartesian Decision Diagrams (AACDDs), which
encode the system’s possible transitions in a compact way.
This allows us to, at runtime, determine whether observed
measurements are consistent with the reachability analysis
results or not (see Sec. III). With runtime we mean here
the execution of a physical instance of the system but not
limited to. For the deployment and the availability of the
measurements we suggest the deployment in a digital twin
connected to a with sensors prepared physical twin.

Mathematical
Model

Reachability
Analysis

Working
Region

Decision
Tree

Development Time
Decision

Tree
+

Consistency
Checking

Transition
Measurement

+
Verdict

Runtime

Fig. 1. Overview of the proposed model based anomaly detection process.

For evaluation, we (1) determine the achieved run-times to
assess the applicability in real-time systems, and (2) compare
classification results of our model-based approach with a
model-free approach (Sec. IV). We focus specifically on the
One-Class Support Vector Machine (OCSVM) as a benchmark
to compare against the model-based approach. Through this
comparison, we highlight the strengths and weaknesses of



both model-based and model-free approaches in detecting
deviations in Cyber-Physical Systems, ultimately contributing
to more robust and reliable safety mechanisms.

II. STATE OF THE ART

In recent advancements in anomaly detection and runtime
verification [1], various model-based approaches have been
explored. One common method utilises zonotopes to represent
continuous state spaces efficiently, facilitating reachability
analysis by computing the Minkowski sum [2], [3]. Althoff
et al. developed the CORA approach, leveraging zonotopes
to ensure reachset conformity, encompassing all possible state
measurements within the model’s reachable set [4]. However,
zonotopes primarily address continuous states, necessitating
additional computation for discrete state verification.

ModelPlex, an alternative runtime verification approach,
uses monitors grounded in differential dynamic logic to vali-
date safety properties of trajectories [5]. This method employs
logical formulas over real numbers, which complicates direct
comparisons with hybrid state spaces. Damm et al. proposed
the use of And-Inverter Graphs (AIGs) to describe large
discrete state spaces efficiently, simplifying hybrid state space
representation by treating linear predicates as single decision
variables [6].

In contrast, our approach diverges by employing Affine
Arithmetic Cartesian Decision Diagrams (AACDDs) to ex-
plicitly model discrete state spaces, representing the state
vector with Boolean values at the AACDD leaves. Previous re-
search has also explored Affine Arithmetic Decision Diagrams
(AADDs) and Affine Binary Decision Diagrams (BDDAA) for
formal verification in Analog Mixed Signal Systems [7], [8],
utilising these structures for hierarchical verification processes
and bounded value range verification.

While the previously presented methods and functions were
based on models, there is also the ability to utilise model-
free approaches. Model-free approaches have been extensively
explored for anomaly detection. Yehia et al. [9] demonstrated
the effectiveness of machine learning algorithms in improving
shale gas production data, showing their broader applicability
in data analysis contexts, which could be extended to decline
curve analysis. Muhr et al. [10] proposed a probabilistic
transformation of distance-based outliers, offering a novel
perspective but potentially sensitive to distance metrics. Zuo
et al. [11] introduced an entropy-based clustering algorithm
for subspace outlier detection, which effectively handles high-
dimensional data but may struggle with scalability. Schölkopf
et al. [12] developed new support vector algorithms, includ-
ing one-class SVMs, which are robust but computationally
intensive. Rashid et al. [13] focused on high-dimensional data
using nu-support vector regression, highlighting its effective-
ness but complexity. Ding et al. presented extreme learning
regression for nu regularization, providing fast learning but
potentially less accurate with complex anomalies [14]. Model-
free approaches are flexible and adaptable to various types of
data without needing a predefined model structure, making
them useful for discovering hidden patterns and anomalies.

However, they often require large amounts of data and can
be computationally intensive, leading to increased processing
times and resource requirements. Additionally, model-free
methods may need extensive hyperparameter tuning and can
struggle with interpretability, making them challenging to
implement effectively without significant expertise.

III. CONSISTENCY CHECKING

In this section, we explain our approach to model-based
detection. For this purpose, we evaluate the consistency be-
tween the reachability of transitions in both the discrete and
the continuous domain of a hybrid (mixed discrete/continuous)
system. Consistency, in this context, means that a transition is
considered consistent if it falls within the over-approximated
set of possible transitions. To determine this, we divide the
consistency term into three parts: continuous consistency,
discrete consistency, and an algorithm that checks the overall
consistency.

A. Continuous Consistency

We represent continuous state variables by affine forms.
Affine arithmetic allows us to represent and maintain linear
dependencies in a symbolic way. They are defined as x̃ =
c +

∑
aiϵi [15], where the ϵi ∈ [−1, 1] are the so-called

noise symbols that are shared allowing for the correlation.
The central value c ∈ R and ai ∈ R in combination with
the noise symbols define then the range of values for x.
Specifically, continuous values at a given time t are modeled
as uncorrelated affine forms. The parameters of the system
are also modeled as uncorrelated affine forms, maintaining
the independence of each parameter. We do this to model all
possible values that xt can have within certain bounds and then
determine from these possible values the consecutive values
for t+1 as we see later.

When considering the system at time t+ 1, the continuous
values are represented as correlated affine forms. This cor-
relation captures the dependencies introduced by the linear
continuous dynamics, adhering to the fundamental invariant of
affine arithmetic [15]. These correlated affine forms of time
t + 1 are generated through evaluating the linear dynamics
with affine arithmetic’s. The goal is to check the consistency
of these affine forms with the actual measurements.

To evaluate consistency, we constrain the affine forms to
the specific measured values within a given uncertainty range,
±∆, accounting for measurement noise and other uncertain-
ties. This process transforms the problem into solving a linear
inequality system.

If this inequality system has a solution, it indicates that there
exist parameters within the allowed range such that the affine
forms representing the continuous variables’ value ranges
evaluate to the measured values. In such cases, we accept the
measurements as consistent with the continuous dynamics and
classify them as inliers. Conversely, if no solution exists, the
measurement sequence is deemed inconsistent and is classified
as an outlier.



An example inequality system is shown in Eq. 1, where x̃t

and x̃t+1 are the affine forms representing the value ranges of a
continuous variable, and mt and mt+1 are the corresponding
measurements. This example illustrates how the consistency
check is formalized and applied within the context of affine
arithmetic. Essentially, we’re defining a time-bound flow pipe
that encompasses all potential values within specific limits.
We then evaluate whether measured values fall within this
pipe while considering continuous dynamics.

mt −∆ ≤ x̃t ≤ mt +∆,

mt+1 −∆ ≤ x̃t+1 ≤ mt+1 +∆
(1)

B. Discrete Consistency

We have established how to evaluate the continuous consis-
tency of given measurement tuples. However, since we are
dealing with hybrid systems, it is also necessary to assess
whether the measurements adhere to the discrete dynamics. In
a hybrid system, the discrete state influences the continuous
dynamics and, conversely, the continuous state can prompt
changes in the discrete state. Let us denote the discrete state
as dt. The evolution of the continuous state xt depends on the
value of dt, and the transition of dt is governed by the state
of xt.

For simplicity, we assume that the transition of dt is deter-
mined by linear predicates over xt (e.g., xt ≥ 0). In previous
work on pure symbolic simulation [7], the state xt+1 has
been modeled using an Affine Arithmetic Decision Diagram
(AADD) and dt+1 using an Affine Binary Decision Diagram
(BDDA). AADDs can model the value range of a continuous
variable based on Boolean variables and linear predicates,
whereas BDDAs can represent the value of a Boolean variable
based on Boolean variables and linear predicates.

Both AADDs and BDDAs are types of decision trees
with internal nodes consisting of linear predicates or Boolean
variables. The difference lies in their leaf nodes: AADDs have
affine forms, while BDDAs have Boolean values. In this paper,
we introduce a new type of diagram, the Affine Arithmetic
Cartesian Decision Diagram (AACDD). AACDDs share the
same internal structure but have leaf nodes containing tuples
of affine forms and Boolean values. This structure enables us
to define the complete state space at time t+1, incorporating
all affine forms and discrete values, along with the linear
constraints required to reach that state.

We can check the discrete consistency of a leaf of an
AACDD by evaluating whether the set of linear inequalities
from the root to the leaf, denoted as χ, has a solution for
the given measurements mt and mt+1. This method ensures
that both the continuous and discrete dynamics are accurately
represented and verified.

C. Consistency Checking Algorithm

As we have now a method that checks for continuous
consistency and discrete consistency, we can define our overall
consistency checking algorithm as follows. For every leaf l
in the AACDD, that defines the reachable state of a hybrid

Time t:

Time t+1:

Fig. 2. Example of the structured used to determine the inequality systems
to be checked. The model for time step t+1 introduces the variations, the
different inequality systems.

system from a given set of initial states, set up the following
inequality system with given measurements mt and mt+1.

χ,

mt −∆ ≤ x̃t ≤ mt +∆,

mt+1 −∆ ≤ x̃t+1 ≤ mt+1 +∆

(2)

If any of the inequality systems has a solution then accept the
measurements as consistent with the model and classify it as
an inlier. If no inequality system has a solution, then reject the
measurements as inconsistent and as an outlier. We can see a
small rudimentary example system in Fig. 2. Here we only
have a single continuous variable x and two potential discrete
states d = True and d = False. Thus we have two potential
follow up state spaces and two inequality systems to check.
As depicted at the bottom of the figure the linear inequality
systems are then dependent on the leaf tuples and the internal
constraint χ is added either negated or not.

We recap as follows. The suggested approach begins with
the development of a Hybrid-Automaton Model of the system,
which is then transformed through symbolic simulation, fol-
lowing a methodology similar to that described in [7]. In the
symbolic simulation results, each state variable is represented
by either its own AADD or BDDA. We leverage the AACDD
to identify which leaves correspond to each other based on
the system’s discrete dynamics. To generate the AACDD, we
first create tuples by combining leaves from the AADDs with
corresponding leaves from the BDDAs. For each tuple, the
paths of the contained leaves are joined. If this combined path
is consistent, the tuple becomes a leaf of the AACDD, and
the path to this leaf in the AACDD is the joined path. Using
the resulting AACDD, we can determine specific systems of
inequalities. Since these inequality systems always pertain to
measurement values, it is essential to maintain the AACDD
during runtime to consistently generate these inequality sys-
tems as needed.



Fig. 3. The hybrid automaton model of the Σ − ∆ modulator utilised as
reference for the model-based approach as well as for the generation of the
data sets.

IV. EVALUATION

A. Detection Results

The system under consideration is a Σ − ∆ modulator,
a analogue to digital converter circuit. This specific Σ − ∆
converter is of order three, which correlates to the continuous
state variables of the system. The hybrid automaton, the
reference model, can be seen in Fig. 3.

In this section we want to compare the presented approach
that is fundamentally model-based with one that is model-free.
For the comparison of the two different methodologies, model-
based as proposed in this paper and model-free, four data
sets were created. We will elaborate how they were created
as follows.

1) C (Correct): This data set was generated by a numerical
simulation as a ”perfect world” that strictly adheres to
our model. All the parameters were drawn from the
set that we initially defined as correct. The parameter
ranges defined as correct can be seen in Tab. II. As seen
in Fig. 3, these parameters define the actual dynamics
of the model. Additionally, the continuous states were
initially in the range [−0.1, 0.1]. As an input a constant
input from the range [−0.5, 0.5] was used. The simula-
tion took 100 time steps and 1000 of these simulation
runs. These then were transformed into transition tuples
(xt, xt+1). This process can be seen exemplary in Fig. 4.

2) SPE (Small Parametric Error): The small parametric
error data set was created in the same fashion as the data
set C. The difference is in the parametric range that was
used. These ranges can be seen in Tab. III.

3) LPE (Large Parametric Error): The large parametric
error data set was created similar to SPE and C but with
the larger parametric errors relative to C and SPE. The
parameter ranges used can be seen in Tab. IV.

4) N (Noise): The final data set takes the data set C and
adds to every data value some uniformly drawn noise.

Given these four datasets, the different approaches were
applied to determine if a given transition belongs to the model
(an inlier) or not (an outlier). Before discussing the results, it is
important to examine the datasets in more detail. In Table I,
the Hausdorff distance between dataset C and the others is
displayed. The Hausdorff distance is a metric used to measure

1
2
3
4

1 2 3 4

1
2
3
4

1 2 3 4 5 t

Trajectory Representation Transition Representation

Fig. 4. As depicted the model-based algorithm takes as an input a tuple
(xt, xt+1). In this figure we see a depiction how the trajectories that are
generated by e.g. numerical simulation or by actual measured trajectories
into a data vector representation. This is a representation of the information
that the model-based algorithm takes to define an outlier or an inlier and the
same information passed to the model-free approaches.

TABLE I
IN THIS TABLE THE HAUSDORFF DISTANCE DISTANCE BETWEEN THE

DIFFERENT DATA SETS IN RELATION TO THE DATA SET C IS GIVEN. FROM
THE VALUES WE CAN SEE THAT THE DATA SETS EXCEPT FOR LPE ARE

EXTREMELY SIMILAR BETWEEN EACH OTHER.

Data Set Hausdorff distance
SPE 0.354
LPE 15133.139

N 0.122

how far apart two sets of points are. In this case, we see that
the datasets are extremely close to each other, with the LPE
dataset being an exception. This is also visually represented in
Fig. 5 for the close datasets and in Fig. 6 for the LPE dataset.

These metrics suggest a significant overlap between the tran-
sitions that make up the trajectories of these different systems.
Therefore, it is generally difficult to determine from a single
transition whether the observed system is behaving correctly.
Such a determination can only be made when an actual outlier
is detected, making it challenging to identify small parametric
errors. With this context, we can now examine the actual
results of the two approaches.

The results of the approaches are presented in Table V. First,
we examine the results of the model-based approach proposed
in this paper. As expected, all transitions from dataset C, which
represent the trajectories of the system with correct parameters,
are predicted to be inliers. This is significant as it confirms that
the proposed approach is an over-approximation of the correct
model.

For the SPE dataset, only a small number of transitions are
detected as outliers. This is due to the fact that most transitions
are either equivalent to or very close to those in dataset C,
as previously discussed and visualized. Consequently, only
transitions that do not fit the correct dataset are identified as
outliers.

For the LPE dataset, many transitions are detected as
outliers, as expected from the Hausdorff distance values.
However, the visualization shows that some transitions are still



100 50 0 50 100

100

50

0

50

100

Fig. 5. t-SNE (t-distributed Stochastic Neighbor Embedding) [16], a dimen-
sionality reduction algorithm, plot showing the dimensionality reduction from
6 to 2 for the C dataset (blue) and the SPE dataset (orange). The original 6
dimensions were from the stacked continuous transitions of time t and t+1. A
significant overlap between these datasets is evident, likely due to the shared
trajectories in the transitions of C. To simplify the visualization, only 20,000
samples from each dataset are shown.

100 50 0 50 100

100

50

0

50

100

Fig. 6. In this t-SNE plot the blue points represent the correctly estimated
Σ − ∆ values, while the orange points correspond to the data with large
parameter errors.

close enough to the correct possible transitions and are thus
evaluated as inliers.

For the dataset N with added measurement noise, the issue
arises that this noise needs to be accounted for and incor-
porated into the ∆ term to avoid unnecessary and incorrect
classifications of outliers due to noise. However, increasing
the ∆ term reduces the likelihood of detecting transitions from
trajectories with small errors, presenting a trade-off between
noise tolerance and detection sensitivity.

From the results of the OCSV (One-Class Support Vector
Machine), the model-free approach, we can observe that the
results are very close to those of the model-based approach.

TABLE II
PARAMETER RANGE OF THE SIGMA DELTA NUMERICAL SIMULATIONS.
EVERY EVEN RUN WAS STARTED WITH INITIAL DISCRETE STATE FALSE.

ALL OTHER TRUE. DRAWN FROM UNIFORM DISTRIBUTION

Property Min-Value Center Max-Value ∆

a1 0.0344 0.0444 0.0544 ±− 0.01
a2 0.1881 0.2881 0.3881 ±0.1
a3 0.6997 0.7997 0.8997 ±0.1
b1 0.0344 0.0444 0.0544 ±− 0.01
b2 0.1881 0.2881 0.3881 ±0.1
b3 0.6997 0.7997 0.8997 ±0.1

TABLE III
PARAMETER RANGES FROM WHERE THE PROPERTIES FOR THE ERROR SET

ARE DRAWN FROM. THIS IS FOR THE SMALL PARAMETER ERROR DATA
SET

Property L-Min-Value L-Max-Value U-Min-Value U-Max-Value
a1 0.02 0.0343 0.0545 0.06
a2 0.1 0.188 0.3882 0.4
a3 0.6 0.6997 0.8997 0.9
b1 0.02 0.0343 0.0545 0.06
b2 0.1 0.188 0.3882 0.4
b3 0.6 0.6997 0.8997 0.9

However, they exhibit some key issues inherent to model-
free approaches. The most significant issue is evident in
the results from dataset C. Not all correct transitions are
classified as inliers. While adjusting specific parameters during
the training process of the OCSV can reduce this issue, it
cannot be entirely eliminated. Therefore, these approaches
fundamentally lack the formal correctness of encompassing all
possible correct transitions. Generally, the accuracy of model-
free approaches improves with the size of the known correct
dataset.

Another major difference between the approaches, which
cannot be directly deduced from the results, is the dependency
of model-free approaches on accurately determining certain
parameters. In contrast, the model-based approach presented
here can derive all necessary parameters from system specifi-
cations and by determining specific upper and lower bounds
on expected noise.

B. Runtime Results

The simplex solver utilised to demonstrate feasibility has
a potential exponential worst-case behavior. Generally, it op-
erates in polynomial time relative to the input size of the
inequality system [17]. In our worst-case scenario, we must

TABLE IV
PARAMETER RANGES FROM WHERE THE PROPERTIES FOR THE ERROR SET

ARE DRAWN FROM. THIS IS FOR THE LARGE PARAMETER ERROR DATA
SET

Property L-Min-Value L-Max-Value U-Min-Value U-Max-Value
a1 0.001 0.0343 0.0545 0.5
a2 0.01 0.188 0.3882 0.7
a3 0.01 0.6997 0.8997 1.6
b1 0.001 0.0343 0.0545 0.5
b2 0.01 0.188 0.3882 0.7
b3 0.01 0.6997 0.8997 1.6



TABLE V
INLIER/OUTLIER PREDICTION RESULTS FOR THE DIFFERENT DATA SETS.

THE ∆ USED FOR THE MODEL-BASED RESULTS WAS 0.001.

Method Data Set Number Data Vectors Inliers Outliers
model-based C 100000 100000 0
model-based SPE 100000 98552 1448
model-based LPE 100000 25431 74569
model-based N 100000 97615 2385
model-free C 100000 90000 10000
model-free SPE 100000 84831 15169
model-free LPE 100000 38738 61262
model-free N 100000 86867 13133

TABLE VI
RUDIMENTARY TIMING RESULTS FOR THE DIFFERENT DATA SETS.

Method Data Set Num. Data Vectors Overall Per
model-based C 100000 5.561s 55.61µs
model-based SPE 100000 5.607s 56.07µs
model-based LPE 100000 9.375s 93.75µs
model-based N 100000 5.76s 57.6µs
model-free C 100000 25.578s 256.0µs
model-free SPE 100000 25.589s 259.0µs
model-free LPE 100000 25.353s 254.0µs
model-free N 100000 25.574s 256.0µs

check one inequality system for each leaf. Consequently, the
potential upper worst-case for the algorithm is exponential in
the number of continuous variables and discrete states of the
system being considered. However, as previously mentioned,
this is not typically the case on average. Moreover, since the
inequality systems are independent, we can parallelize the
process to determine the results. For this specific application,
the results are promising, as shown in Table VI. The observed
increase in runtime for the LPE dataset can be attributed to the
detection of numerous outliers. When an outlier is detected,
every inequality system must be checked for a solution, while
for inliers, the algorithm can terminate early.

V. CONCLUSION

This paper introduced a novel model-based approach for
anomaly detection, utilising decision trees to represent possible
transitions within a system. Our approach was evaluated
against a one-class SVM on various datasets. Key findings
demonstrated that the model-based approach can establish
a core set of accepted transitions, providing a clear and
interpretable framework that the one-class SVM lacks. This
method also proved to be reliable and real-time capable, with
an upper limit on the time required to determine results,
ensuring consistent performance. Timing experiments further
underscored the efficiency of the model-based approach, show-
ing promising results in comparison to the model-free one-
class SVM. These advantages highlight the potential of our
method for applications requiring both accuracy and real-
time processing capabilities. Future research should focus on
extending the approach to check longer trajectories instead
of just individual transitions. Additionally, a broader set of
datasets and models should be explored to validate the general-
izability of our findings. Examining different types of failures

and conducting an in-depth analysis of the explainability
of detected errors will further enhance the robustness and
applicability of our model-based approach. This work lays
the foundation for more reliable and interpretable anomaly
detection techniques, capable of delivering real-time insights
across various domains.

REFERENCES

[1] O. Maler, “Some thoughts on runtime verification,” in Runtime Ver-
ification: 16th International Conference, RV 2016, Madrid, Spain,
September 23–30, 2016, Proceedings 7, pp. 3–14, Springer, 2016. doi:
10.1007/978-3-319-46982-9 1.

[2] P. McMullen, “On zonotopes,” Transactions of the American Math-
ematical Society, vol. 159, pp. 91–109, 1971. doi: 10.1090/
S0002-9947-1971-0279689-2.

[3] A. Girard and C. Le Guernic, “Zonotope/hyperplane intersection for
hybrid systems reachability analysis,” in International Workshop on
Hybrid Systems: Computation and Control, pp. 215–228, Springer, 2008.
doi:10.1007/978-3-540-78929-1 16.

[4] M. Althoff, “Checking and establishing reachset conformance in cora
2023,” in Proc. of 10th International Workshop on Applied Verification
of Continuous and Hybrid Systems, 2023. doi: 10.29007/5v1g.

[5] S. Mitsch and A. Platzer, “Modelplex: Verified runtime validation of
verified cyber-physical system models,” Formal Methods in System
Design, vol. 49, pp. 33–74, 2016. doi: 10.1007/s10703-016-0241-z.

[6] W. Damm, S. Disch, H. Hungar, J. Pang, F. Pigorsch, C. Scholl, U. Wald-
mann, and B. Wirtz, “Automatic verification of hybrid systems with
large discrete state space,” in International Symposium on Automated
Technology for Verification and Analysis, pp. 276–291, Springer, 2006.
doi: 10.1007/11901914 22.

[7] C. Zivkovic, C. Grimm, M. Olbrich, O. Scharf, and E. Barke, “Hi-
erarchical verification of ams systems with affine arithmetic decision
diagrams,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 10, pp. 1785–1798, 2018. doi:
10.1109/TCAD.2018.2864238.

[8] H. Heermann and C. Grimm, “Runtime verification of hybrid systems
with affine arithmetic decision diagrams,” in Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen, ITG-Fb. 309: MBMV 2023, 2023. isbn: 978-3-8007-6065-7.

[9] T. Yehia, A. Wahba, S. Mostafa, and O. Mahmoud, “Suitability of
different machine learning outlier detection algorithms to improve shale
gas production data for effective decline curve analysis,” Energies,
vol. 15, no. 23, 2022.

[10] D. Muhr, M. Affenzeller, and J. Küng, “A probabilistic transformation of
distance-based outliers,” Machine Learning and Knowledge Extraction,
vol. 5, no. 3, pp. 782–802, 2023.

[11] Z. Zuo, Z. Li, P. Cheng, and J. Zhao, “A novel subspace outlier detec-
tion method by entropy-based clustering algorithm,” Scientific Reports,
vol. 13, p. 15331, Sept. 2023.

[12] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New
Support Vector Algorithms,” Neural Computation, vol. 12, pp. 1207–
1245, 05 2000.

[13] W. D. Abdullah Mohammed Rashid, Habshah Midi and J. Arasan,
“Detection of outliers in high-dimensional data using nu-support vector
regression,” Journal of Applied Statistics, vol. 49, no. 10, pp. 2550–2569,
2022. PMID: 35757042.

[14] J. L. Xiao-Jian Ding, Fan Yang and J. Cao, “Extreme learning regression
for nu regularization,” Applied Artificial Intelligence, vol. 34, no. 5,
pp. 378–395, 2020.

[15] J. Stolfi and L. H. de Figueiredo, “An introduction to affine arithmetic,”
Trends in Computational and Applied Mathematics, vol. 4, no. 3,
pp. 297–312, 2003. doi: 10.5540/tema.2003.04.03.0297.

[16] A. C. Belkina, C. O. Ciccolella, R. Anno, R. Halpert, J. Spidlen, and J. E.
Snyder-Cappione, “Automated optimized parameters for t-distributed
stochastic neighbor embedding improve visualization and analysis of
large datasets,” Nature Communications, vol. 10, p. 5415, Nov. 2019.

[17] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time,” J. ACM, vol. 51,
p. 385–463, may 2004.


