
Formal RTL Sign-off with Abstract Models
Lucas Deutschmann∗†, Osama Ayoub∗§, Rohith Batthineni§, Michael Schwarz§,

Tobias Ludwig§, Dominik Stoffel†, Wolfgang Kunz†
†RPTU Kaiserslautern-Landau, Kaiserslautern, Germany §LUBIS EDA, Kaiserslautern, Germany

lucas.deutschmann@rptu.de – osama.ayoub@lubis-eda.com

Abstract—The complexity of today’s hardware (HW) systems
has exhausted the scalability of conventional register transfer
level (RTL) design flows. The need for more efficient HW design
and verification led to the introduction of abstract prototypes
at the electronic system level (ESL). However, the semantic
gap between such untimed ESL models and cycle-accurate RTL
designs remains a critical issue, preventing HW sign-off at the
higher abstraction layer. Existing approaches that aim to bridge
this gap are often application-specific or do not establish a formal
relationship between the two levels of abstraction. The concept of
Path Predicate Abstraction (PPA) can establish formal soundness
of the abstraction for general-purpose designs, however at the
cost of high manual effort.

In this work, we present three techniques to automate large
parts of this abstraction technique and its corresponding design
methodology. We propose a way to generate HW prototypes
directly from the abstract model, taking advantage of the
strengths of conventional code generation flows. Furthermore, we
contribute two novel approaches to automate, or even obliterate,
the most manually-intensive step of the original abstraction
technique. We demonstrate the effectiveness of the proposed
approaches in several case studies, including industrial designs.

I. INTRODUCTION

Abstraction has always been a key enabler for increasing
scalability of digital hardware (HW) design. What began with
grouping sets of transistors into standardized gates, continued
with describing the behavior of the design with hardware
description languages (HDLs) at the register transfer level
(RTL). Modern synthesis tools support these abstraction layers
seamlessly, relieving the HW designer from detailed knowl-
edge about transistor-level and physical design. Still to date,
RTL descriptions remain the golden reference model for HW
sign-off in most applications [1].

However, the increasing complexity of today’s System-on-
Chip (SoC) designs exhausts the scalability limits of the RTL
and demands an even higher level of abstraction. Nowadays,
it is common practice to create abstract system models in
software (SW) at the the so-called electronic system level
(ESL). These models, often referred to as virtual prototypes
(VPs), can vary in their degree of abstraction compared to the
RTL descriptions which are always cycle-accurate. A widely
used abstraction is transaction-level modeling (TLM). In TLM,
the microarchitectural (bit- and cycle-accurate) details of trans-
actions, such as the signal waveforms of a handshaking proto-
col, are omitted. Instead, TLM only considers the information
transfer of transactions, i.e., what data goes from where to
where. This abstraction allows for a significantly increased
scalability, which is especially useful when simulating entire

*Both authors contributed equally to this research.

systems. However, the loss of cycle-accuracy makes it difficult
to compare the behavior of a TLM model to the corresponding
RTL design. This is known as the semantic gap.

The most prominent approach that aims to overcome this
gap is high-level synthesis (HLS) [2]. In HLS, a cycle-accurate
RTL description is generated from an abstract behavioral spec-
ification. Especially for data-centric accelerators, it produces
efficient results and has been widely adopted in industry.
However, HLS struggles to generate competitive designs for
control-heavy systems [3]. Furthermore, there is no direct,
explicit relationship between the abstract specification and
the generated design, which means that potential changes
at the RTL are very difficult to map back to the higher
level. A different approach to closing the semantic gap, called
Path Predicate Abstraction (PPA), is proposed in [4]. PPA
establishes a formal relationship between the different levels
of abstraction so that any verification performed at the ESL is
also valid at the RTL. PPA enables a sound top-down design
methodology [5]. The approach can be facilitated with tool
support, however, it still requires two manual steps: Creating
the RTL design itself and refining the abstract model with
its timing behavior. This manual effort can be infeasible,
especially for complex systems or when there is a tight tape-
out deadline.

In this work, we propose three novel approaches to simplify
and increase automation of the PPA-based abstraction process
between ESL and RTL beyond previous methods:

• Operation-Level Synthesis (OLS) (Sec. III) is a new
approach to generating HW from abstract models. It
incorporates conventional HLS, but complements its
weaknesses when applied to control-heavy systems and
establishes a formal relationship between the model and
the generated RTL.

• Operational Equivalence Checking (Sec. IV-B) eliminates
the detailed, internal refinement process between the RTL
and the abstract model. Instead, end-to-end properties
are used to verify that a manually created RTL design
correctly implements the given PPA.

• Automatic State Refinement (Sec. IV-C) can be used to
extract refinement information from a manually created
RTL design. It follows the original methodology [5], but
automates the refinement process to a large extent.

II. BACKGROUND

A. Path Predicate Abstraction

Path Predicate Abstraction (PPA) [4] closes the semantic
gap by constituting a formally sound abstraction between

Specification
ESL Model

RTL Design

Formal Verification
Framework

1 2

4

5

Create Generate

Refine

Sound
Abstraction

3

Implement

Fig. 1. Property-Driven Design Flow

ESL and RTL. Through the establishment of a well-defined
formal relationship, this technique allows untimed system-
level properties to be mapped to a cycle-accurate description
of the design. In particular, this means that any verification
performed at the ESL is also valid at the RTL. We therefore
believe that the PPA has the potential to contribute the required
trust to sign-off intellectual property (IP) with untimed ESL
models.

PPA models the behavior of the design as operations
between abstract states. Operations can be viewed as single-
or multiple-cycle transactions. In practice, abstract states are
often represented by the main state machine of the RTL
implementation responsible for the control behavior. Since
microarchitectural details are omitted, such an abstract state
can cover many concrete design states. In PPA, not every
concrete RTL state needs to have a corresponding abstract
state, as such an ”unimportant” state is implicitly traversed by
an operation between abstract states. These characteristics of
the PPA thus allow a single abstract model to have several
possible concrete RTL implementations. Microarchitectural
details are omitted in the abstraction, reducing the system-
level model to mere functional behavior.

In order to ensure that a concrete RTL design implements
a given PPA, a formal verification technique called Interval
Property Checking (IPC) [4] is used. Every operation of the
abstract model is translated into an interval property that
starts and ends in an abstract PPA state. The way that these
operations describe the entire behavior of the abstract model
ensures that the set of properties is complete [4]. Each abstract
state and each operation must then be refined towards the
concrete RTL description and its timing characteristics. The
verification of these properties on the RTL ensures that the
design covers the same functional behavior as its abstract
model. This formal relationship enables a top-down design
methodology as in Sec. II-B. PPA can also be used in a bottom-
up flow that raises the abstraction of existing RTL designs.
This allows for creating sound ESL models of legacy designs.
However, since the manual refinement step is identical for both
approaches, we omit the bottom-up flow in this work.

B. Property-Driven Design

Property-Driven Design (PDD) [5] leverages the sound
abstraction of the PPA to create a novel design methodol-
ogy for HW. It takes inspiration from software engineering,
where Test-Driven Development (TDD) [6] is a prominent

ESL Model

Operations Conventional
HLS

Operation-Level
Synthesis

Formal Verification
Framework

RTL Design

Control

Computations

Fig. 2. Operation-Level Synthesis Flow

programming paradigm. The main idea is that the verification
framework, i.e., the formal properties, is created before and
drives the design process.

Fig. 1 shows an overview of the the PDD flow. The method
starts by creating and verifying an abstract system-level model,
the PPA. From this model, a complete set of interval properties
is generated. The design engineer then proceeds to create the
cycle-accurate RTL description. For every functionality that
has been implemented, the formal properties are refined with
the timing information of the concrete implementation. When
all properties have been refined, it is guaranteed that the RTL
design has the same functional behavior as the ESL model.
Consequently, all verification results verified at the abstract
level also hold for the concrete implementation, creating a
sound abstraction.

Two elements of the PDD methodology require high manual
effort. Firstly, the RTL design itself is created manually. The
second manual effort is spent refining the PPA with timing
information of the RTL design. This process can quickly
become cumbersome, especially if the level of abstraction
between the ESL model and the concrete implementation is
high. In this work, we propose several techniques to reduce
this manual effort. We present a method that generates an RTL
description from the PPA directly in a fully automatic fashion.
Furthermore, we present new ways to minimize the refinement
effort for manually created designs.

III. OPERATION-LEVEL SYNTHESIS

OLS automates the top-down design process of PDD. An
overview of the approach is given in Fig. 2. OLS leverages
the strengths of conventional HLS, combining it with the
well-defined formal relationship that the PPA provides. HLS
can efficiently generate data paths, but may struggle when
applied to control-oriented systems [2], [3]. Therefore, in
OLS, conventional HLS is only used to generate the compute-
intensive parts of the system, while the control behavior is
extracted directly from the abstract model. From the PPA
model, all operations, i.e., the transitions between abstract
states, are synthesized by a conventional HLS tool. The control
logic, which keeps track of the abstract state and determines
which operation to trigger next, is generated directly from
the abstract model. Since the HLS tool is free to choose any
timing, we employ a handshake protocol between the control
logic and the computation module. In addition to the RTL
design itself, a complete set of properties is generated and
automatically refined.

Generated RTL

DUV

Assertion IP

I/O Refinement I/O Refinement

Primary
Inputs

Primary
Outputs

Fig. 3. Verification Wrapper setup

The OLS methodology can be used to quickly generate RTL
designs that inherit the same functional behavior as their ab-
stract ESL models. This allows the engineer to perform design
space exploration or early integration testing. Furthermore, by
utilizing advanced HLS tools, we can take advantage of all
of their optimization features. For example, constraints can be
applied to guide the synthesis process to split an operation
into multiple cycles depending on power and performance
requirements. However, the greatest benefit comes from the
formal verification framework, which enforces the functional
equivalence of the design with the abstract model. In particular,
late changes or even a complete replacement of an OLS-
generated prototype with a manually created design will not
affect the functional correctness of the system, because the
generated property set can be re-used any time to verify
functional correctness and soundness of the PPA model.

IV. VERIFICATION APPROACHES

While OLS can be very useful for rapid prototyping, the
performance and resource utilization of the generated de-
signs are often inferior compared to manually created ones.
Tight timing or resource constraints may require designs to
be carefully crafted by hand using the conventional PDD
flow (cf. Sec. II-B). In PDD, the engineer needs to manu-
ally refine the generated properties. However, this refinement
process can be a non-trivial task that requires some expertise
and knowledge of the RTL implementation. In this work,
we contribute two approaches that can either automate or
completely avoid the detailed refinement of internal signals.

A. General Setup
Fig. 3 shows the computational setup used for both ap-

proaches. The key idea is to use an OLS-generated design
for reference when computing a refinement for the DUV.
The analysis is performed operation by operation. For each
operation, the reference design is used to constrain the DUV
to the same abstract starting state. This is achieved by binding
the primary inputs (PIs) of the design under verification (DUV)
to the PIs of the generated RTL design and letting the formal
tool inject equivalent input sequences triggering the PPA
operation under consideration. Since the DUV may have a
different timing behavior compared to the generated design,
we still need to refine the interface with information about the
timing of operations in the DUV. The output synchronization
between the DUV and the generated RTL design is achieved
by monitoring the validity signals of the output values. We
store the output value of a specific operation in the generated

design at the time point given by the OLS flow, typically one
clock cycle after the operation was triggered. For the DUV,
the user has to specify a latency range for the given operation.

This setup reduces the refinement effort of the abstraction
to refining only the PIs and primary outputs (POs). For each
operation, the setup constrains both the the DUV and the OLS
reference design to the set of concrete states corresponding to
the same abstract state. We can leverage this setup to perform
operational equivalence checking (cf. Sec. IV-B) or to extract
information about the implementation of the abstract state in
the DUV (cf. Sec. IV-C). The corresponding formal properties
of each approach can be generated directly from the abstract
ESL model and are depicted as the assertion IP (AIP) in Fig. 3.

B. Operational Equivalence Checking

Operational equivalence checking compares an RTL design
to an abstract PPA model. The setup of Fig. 3 has a similar
structure as a classical equivalence checking miter. However,
the two design instances may have different timing. If the
DUV is functionally correct, both instances are refinements of
the same PPA. Operational equivalence checking is performed
operation by operation, by driving the DUV and the gener-
ated RTL design to the same abstract state, as described in
Sec. IV-A, and then comparing their output behavior.

A suite of properties is generated that completely covers the
functional behavior of the PPA. It contains one property for
each combination of operation and PO. This is represented as
the Assertion IP of the Verification Wrapper in Fig. 3.

1 property ec_property(op, i);
2 operation_sequence(op)
3 ##1 stored_val = OLS.PO[i]
4 |->
5 ##[0:delay(op)] stored_val == DUV.PO[i];
6 endproperty

Listing 1. Generalized equivalence checking property

Listing 1 shows a generalized equivalence checking property
that is used to detect any difference between the output
generated by the DUV and the output from the generated RTL.
The presented property compares the value of output i for PPA
operation op. The macro operation sequence(op) triggers the
given PPA operation in both, the generated RTL design and
in the DUV. One clock cycle later, the output value of the
generated RTL is stored. After a user-defined number of cycles
delay(op) for the given operation, the output of the DUV is
compared to the stored value.

Technically, the equivalence checking property can take
several formats. One format accomodates for DUVs that are
purely combinational. Another format handles DUVs that
deliver outputs through a handshake mechanism, e.g., using
valid and ready signals. In this case, we distinguish two types
of properties:

• An internal transition property that is used to verify
operations during which no valid output data is being
produced. This means that only the validity of the hand-
shake mechanism needs to be verified. The user-defined
delay is used to specify the length of the operation in the
DUV.

• A communication point property that covers operations
whose endpoint is given by a handshake signal. The
corresponding output of the DUV is checked against
the generated RTL design once it is marked valid. The
handshaking is verified in a separate property and requires
to specify a latency range.

Operational equivalence checking can be leveraged to min-
imize the manual refinement effort by requiring the engineer
only to consider the interface, thus overcoming the need to
have knowledge of the internal structure of the RTL design.
However, the complexity of its end-to-end style properties can
become prohibitively expensive for systems with very long and
complex operations. For such cases, we propose an alternative
approach that aims at automatically extracting the internal state
refinement.

C. Automatic State Refinement

As discussed in Sec. II, the conventional PDD approach
requires a manual refinement step that maps information about
the abstract model to the concrete RTL implementation. This
step can be time-consuming because it may require detailed
knowledge of the design’s behavior and internal structure. In
this work, we propose a new approach to extract the refinement
of the abstract states in full automation. This approach uses
the same setup as presented in Sec. IV-A and significantly
decreases the manual time required for PDD.

The basic idea is to drive the DUV to each abstract state and
determine the value of each signal in that particular abstract
state. This process thus extracts information about the concrete
RTL implementation and thereby determines the refinement of
each abstract state. To generalize the notation, we denote S as
the set of all bits in the design and define a Refinement Vector
(RV) as the concatenation of a subset of S, i.e., |RV | ≤ |S|. If
signals of the design can be identified as not related to the HW
control state, e.g., a cache or the register file of a processor,
they can be omitted in the RV to reduce the complexity.

The proposed approach comprises three main steps:
1) Bit-Probing: For each transition between abstract states,

each bit in the RV is checked with two formal properties to
see if it evaluates to 0 (or 1). An example for such a property
that probes the value 0 is given in Listing 2. If only one of the
properties holds, we conclude that the abstract state requires
that particular bit to be 0 (or 1). In case both properties fail,
we cannot extract any information about the implementation
of the abstract state.

1 property bp_property_0(op, i);
2 operation_sequence(op)
3 |->
4 ##1 RV[i] == 1’b0;
5 endproperty

Listing 2. Bit-Probing Property that checks if bit i evaluates to 0
after PPA operation op has executed.

This step results in a total of 2 ∗ |RV | ∗ |OP | bit-probing
properties, where |OP | is the number of operations in the
abstract model. While this can produce in a large number
of properties for large-scale designs, the complexity of each
property is very low and they can be proven independently.

Furthermore, this approach can be fully automated. In Sec. V,
we discuss the scalability of the automatic state refinement in
more detail when presenting our case studies.

2) Bit-Clustering: The bit-probing step might not be suf-
ficient to create an unambiguous refinement. In some cases,
information about certain bits of the DUV can only be ex-
tracted in combination with other bits. As an example, assume
that for a given abstract state, some 2-bit signal of the DUV
can evaluate to 00, 01 and 10, but never 11. In this case,
bit-probing alone would not provide any information because
each individual bit can take any arbitrary value.

1 property 2bc_property_00(op, i, j);
2 operation_sequence(op)
3 |->
4 ##1 RV[i] & RV[j] == 2’b00;
5 endproperty

Listing 3. 2-Bit-Clustering Property that checks if the concatenation
of bits i and j can evaluate to 00 after PPA operation op has executed.

Therefore, in the second step, we perform an n-bit clustering
of all remaining RV bits. We start with 2-bit clusters and in-
crease their size until an unambiguous refinement is achieved.
Listing 3 shows an exemplary 2-bit clustering property that
checks whether it is possible that the two given bits evaluate
to 00. These properties always fail, since bit-probing has
already shown that there is no uniquely determined value
for the given bits. For the bit-clustering properties, however,
we are only interested in whether the given configuration is
reachable or not. To this end, we let the formal tool compute a
witness. If the property is unreachable, i.e., no witness exists,
we can exclude the configuration from the state refinement.

For a cluster of k bits, we can generate up to 2k ∗
(|RV ′|

k

)
∗

|OP | properties, where RV ′ ⊆ RV denotes the bits in RV
that were not identified during bit-probing. In our experiments,
it proved sufficient to cluster only 2 bits at a time and
to consider only adjacent bits, which kept the number of
properties manageable.

3) Exclusion: In the final step, we combine the extracted
information to create a refinement for each abstract state.
An example is given in Listing 4. Since multiple operations
can lead to the same abstract state, its refinement is the
disjunction of the refinements extracted from each individual
operation. Within each operation, the refinement consists of
the conjunction of all bits extracted from bit-probing and the
negation of all unreachable values from bit-clustering. Finally,
to remove any overlap between state refinements, we exclude
the refinement of all other abstract states.

1 // Abstract State 1 Refinement
2 (
3 // Operation 1 Bit-Probing
4 (RV[0] && RV[1] && RV[2] && !RV[3]) ||
5 // Operation 2 Bit-Probing and Bit-Clustering
6 (RV[2]) && !(RV[1] && RV[3])
7) &&
8 // Exclusion
9 !(Abstract State 2 Refinement) &&

10 !(Abstract State 3 Refinement) && ...

Listing 4. Example of an extracted abstract state refinement

We performed the automatic state refinement on several

designs (for more details, see Sec. V). In each case study, the
abstract states were correctly refined without any manual effort
and without increasing the complexity of the PDD properties.

V. EXPERIMENTS

We evaluate the approaches with case studies on several
designs of different type and complexity. Tab. I gives an
overview of the results. Runtimes are given in the format
hh:mm:ss. We conducted all experiments using the commercial
property checker OneSpin 360 DV (Version 2024.1 3) by
Siemens EDA on an AMD EPYC 7502P 32-Core Processor
with 256 GB of RAM running Ubuntu 22.04. All experiments
are publicly available in our repository [7].

For each design, we measure:
• the number of abstract states, operations |OP | and PI/PO

in the PPA,
• the number of state-holding bits |S| in the RTL design,
• the estimated manual effort for the internal state re-

finement required in the PDD [5] methodology, this
time reflects the manual engineering time saved by the
approaches proposed in Sec. IV-B and Sec. IV-C,

• the number of properties and cumulative property runtime
if the operational equivalence checking is performed,

• the number of bits in the RV, the number of bit-
probing |BP | and bit-clustering |BC| properties, as well
as the cumulative property runtime.

A. Counter

This design implements a simple counter that counts up
with a cycle delay when enabled and outputs the value via a
dedicated PO. The PPA consists of one abstract ”ready” state
and four operations that cover reset, enable low, counting up
and the overflow case. Due to the simplicity of the design,
the runtime of the PDD and equivalence checking properties
was negligible. The automatic state refinement successfully ex-
tracted the refinement of the abstract state in roughly a minute.
The extracted refinement did not increase the complexity of
the PDD properties compared to a manual refinement.

B. Arbiter

This design implements a round-robin arbiter. The PPA
comprises a single abstract state and six operations. The
runtime of the operational equivalence checking properties
is similar to the PDD approach, while reducing the manual
effort. Both approaches were able to detect a bug in the RTL
implementation. In addition, the automatic state refinement
was also successful and did not affect the runtime of PDD
properties compared to a manual refinement. Since this IP is
confidential, it cannot be published.

C. Processor

This design implements a sequential, unpipelined version
of Hennessy and Patterson’s DLX processor [8]. In a con-
ventional PDD flow on this design, the manual refinement
process requires more effort because the five abstract states
are reflected in 16 registers at the RTL. The runtime of the
operational equivalence checking properties was higher than

for the conventional PDD flow, but with the advantage of not
needing to manually refine the abstract states.

The automatic state refinement approach was successfully
performed by generating 7880 bit-probing and 13852 bit-
clustering properties. Despite the large number of properties,
the extraction step only took about 10 minutes due to the effi-
ciency of commercial model checkers. Additionally, no manual
effort was required and each individual property finished
instantly. In contrast, a manual refinement can take up to 4
hours depending on the experience of the verification engineer.
The extracted refinement did not increase the computational
complexity compared to a manual refinement.

D. Option Parser

The Option Parser takes a byte sequence of predefined
length as input, parses it, and outputs a structure containing
information about the sequence, including flags for special
cases. This design has a complicated control flow because it
processes the input stream sequentially, i.e., its state depends
on the sequence of bytes already received, resulting in a high
complexity proof for the model checker.

The runtime for the 152 operational equivalence checking
properties is approximately 3 hours, which is significantly
longer than for the PDD approach, in which running the
properties took only 4 minutes and 30 seconds. However, the
manual engineering time is much lower. A manual refinement
of this module can take several days due to the complexity
of capturing the abstract states. Several bugs, some of them
corner-case bugs, were injected to demonstrate the complete
coverage of the approach, even in highly complex designs. All
were detected.

Nevertheless, the high runtime of the end-to-end-style
proofs advocate a shift to the automatic state refinement,
using the properties from the PDD approach. After a quick
inspection of the design, 18 bits were considered control-
relevant. Extracting the abstract state refinements took roughly
40 minutes due to the high complexity of the design, but did
not increase the complexity of the PDD properties when using
the refinement.

E. SHA512 Core

This module implements the SHA512 algorithm, which is
commonly used to hash email addresses and passwords, and
even plays an important role in blockchains.

The application of operational equivalence checking re-
vealed the complexity of the end-to-end-style properties for
proving the correctness of the message digest. Due to the large
bit width of the data ports combined with the many rounds of
the algorithm, this single proof did not converge or lead to a
counterexample, even after running for several days. All other
properties, such as verifying the correctness of the handshake,
are proven immediately. This complexity issue is a general
problem in formal verification. One possible solution is to
break the property into several shorter steps. In the case of
PPA, this would mean introducing additional abstract states.

The design contains many data registers, which would result
in a large number of properties in automatic state refinement.

Design PPA RTL PDD Operational EC Automatic State Refinement
States |OP | PI/PO |S| Est. Manual Effort Properties Runtime |RV | |BP | |BC| Runtime

Counter 1 4 1/1 9 < 1 hour 4 00:00:05 10 80 72 00:00:12
Arbiter 1 6 2/1 224 < 1 hour 6 00:00:06 291 3492 5972 00:02:32
Processor 5 20 2/4 156 2-4 hours 80 00:00:08 197 7880 13852 00:09:39
Option Parser 6 24 3/4 1630 2-3 days 152 03:07:56 18 864 320 00:37:54
SHA512 3 11 5/3 2067 1-2 days 15 –:–:–* 40 880 364 00:01:08

TABLE I
CASE STUDIES

However, these data signals were easy to identify due to their
bit width, resulting in a refinement vector of only 40 out of
4330 possible bits. In our experiments, and we believe for the
general case as well, the identification and exclusion of data
path signals can be done without much effort. We will explore
methods for an automatic exclusion in future work.Extracting
the abstract states therefore took only 15 minutes to complete,
and the extracted refinement did not increase the complexity
of the PDD properties when used.

It should also be noted that the abstract model was suc-
cessfully applied to an updated, more optimized version of
the RTL design without much effort. This demonstrates the
reusability of the abstract model for multiple design versions,
boosting verification productivity in iterative design processes.

VI. RELATED WORK

Several related methods for generating RTL designs from
ESL descriptions have been proposed in the literature.
HLS [2], [3] is by far the most prominent approach that can
produce high-quality results, especially in data-centric accel-
erators. Other methods that aim to create universal generation
frameworks generate RTL based on metamodels [9] or func-
tional HW description languages [10]. However, in contrast to
OLS (Sec. III), none of these approaches target a generation
flow related to PPA [4]. PPA offers the unique advantage of not
only allowing for a formally sound abstraction of individual
modules, but also enabling a sound composition of multiple
IPs into a system. As a result, system properties proven at the
ESL hold “automatically” also on the composed RTL design,
without further proof. In addition, OLS leverages the strengths
of conventional HLS which is a mature and effective technique
with wide adoption in industry.

There are several approaches that aim to prove equivalence
between ESL and RTL using simulation [11] or formal meth-
ods [12], [13], [14]. However, none of these approaches use
the notion of equivalent operations, nor do they employ a
generated, cycle-accurate prototype to map the problem down
to RTL–RTL equivalence checking. This allows us to leverage
the power and flexibility of conventional and sophisticated
model checkers combined with standardized languages like
SystemVerilog Assertions (SVA). Nevertheless, we see some
of these approaches and concepts, such as event-based equiv-
alence [15], as complementary to our method and to PPA, and
will explore possible synergies in future work.

VII. CONCLUSION

In this paper, we presented several ways to automate the
sound abstraction process between ESL and RTL. With OLS,

we introduced a method to generate IP prototypes directly
from a PPA description. Leveraging these prototypes, we
proposed operational equivalence checking and an automatic
state refinement approach to overcome the complex manual
refinement step of PDD. The efficacy of these methodologies
was demonstrated through case studies on several designs.
Our future work aims to further increase the robustness of
the approaches and to apply them to more complex systems.

REFERENCES

[1] M. Meredith and S. Svoboda, “The next IC design methodology transi-
tion is long overdue,” Open SystemC Initiative, 2010.

[2] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? a study on the state of high-level synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911, 2019.

[3] D. G. Bailey, “The advantages and limitations of high level synthesis for
FPGA based image processing,” in Proceedings of the 9th International
Conference on Distributed Smart Cameras. ACM, 2015, p. 134–139.

[4] J. Urdahl, D. Stoffel, and W. Kunz, “Path predicate abstraction for sound
system-level models of RT-level circuit designs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 2, pp. 291–304, 2014.

[5] T. Ludwig, J. Urdahl, D. Stoffel, and W. Kunz, “Properties first—correct-
by-construction RTL design in system-level design flows,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 10, pp. 3093–3106, 2020.

[6] K. Beck, Test-Driven Development: By Example. Addison-Wesley,
2022.

[7] “Formal RTL sign-off with abstract models,” https://github.com/
OsamaOAyoub/Formal-RTL-Sign-off-with-Abstract-Models.git, 2024.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. Elsevier, 2011.

[9] R. Kunzelmann, E. Baerens, D. Gerl, M. Bhadra, N. Schwarz, and
W. Ecker, “A universal specification methodology for quality ensured,
highly automated generation of design models,” in 27th Workshop on
Methods and Description Languages for Modelling and Verification of
Circuits and Systems (MBMV). VDE/IEEE, 2024, pp. 90–98.

[10] F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Towards automatic
hardware synthesis from formal specification to implementation,” in 25th
Asia and South Pacific Design Automation Conf., 2020, pp. 375–380.

[11] D. Große, M. Groß, U. Kühne, and R. Drechsler, “Simulation-based
equivalence checking between SystemC models at different levels of
abstraction,” in 21st Great Lakes Symposium on VLSI (GLSVLSI).
ACM, 2011, p. 223–228.

[12] A. Koelbl, Y. Lu, and A. Mathur, “Embedded tutorial: Formal equiva-
lence checking between system-level models and RTL,” in Int. Conf. on
Computer-Aided Design (ICCAD). IEEE, 2005, pp. 965–971.

[13] C. I. C. Marquez, M. Strum, and W. J. Chau, “Formal equivalence
checking between high-level and RTL hardware designs,” in 14th Latin
American Test Workshop (LATW). IEEE, 2013, pp. 1–6.

[14] J. Hu, T. Li, and S. Li, “Formal equivalence checking between SLM
and RTL descriptions,” in 28th IEEE International System-on-Chip
Conference (SOCC). IEEE, 2015, pp. 131–136.

[15] N. Bombieri, F. Fummi, G. Pravadelli, and J. Marques-Silva, “To-
wards equivalence checking between TLM and RTL models,” in 5th
IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE). IEEE, 2007, pp. 113–122.

