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Abstract—Implementing algorithms on FPGAs is vital for designing, developing, and prototyping algorithms in 

various fields. FPGAs offer improved performance compared to software implementations and the ability to test 

algorithms in real-world conditions. However, FPGAs have limited hardware resources and algorithms often use 

resource-intensive floating-point arithmetic. To address this issue, algorithm designers switch to fixed-point arithmetic, 

which is faster and requires fewer resources. However, switching to a fixed-point format can lead to range violation 

and loss of precision. Therefore, it is crucial to validate and verify the correctness of algorithms after conversion to the 

fixed-point format. Moreover, debugging algorithms that use fixed-point arithmetic during emulation can be 

challenging, particularly for hardware-in-loop or customer-design-in setups. This paper is an extension of a lightweight, 

open-source and tool-agnostic framework to simplify the process of algorithm implementation and verification that 

involves fixed-point datatypes and arithmetic onto FPGA. Additionally, the paper systematically and effectively 

addresses challenges related to utilizing a fixed-point format, including precision loss, range violations 

(overflow/underflow), and algorithm debugging during simulation and emulation. The presented method is 

demonstrated with the effective development of the power conversion circuit algorithm. 
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I.  INTRODUCTION 

The fixed-point representation, an integer format with an implied binary point (also called radix-point), is an 

alternative to the IEEE 754 floating-point standard. The fixed-point format is preferred in place of the IEEE 754 

floating-point format for reasons like faster arithmetic, lower cost of design development, less power usage for the 

design, less hardware-software implementation resources, etc. And it fits well into integer data paths, so no 

additional hardware circuitry is required. Though, porting between floating and fixed-point formats often faces 

range issues (overflow/underflow) and precision loss. Also, fixed-point variables in hardware description languages 

(HDLs) are typically represented as bit arrays with a signed integer format. This makes analysis and debugging 

difficult during simulation and emulation as bit arrays require conversion to real numbers using binary point 

information. 

One such use case of fixed-point format is Analog/Mixed Signal simulation conducted on FPGA [14], where 

the behavior of analog circuitry is modelled with the SystemVerilog standard-supported real data type. Analysis 

and debugging of the real data type is straightforward during the simulation as the language standard natively 

supports it. However, most synthesizers do not synthesize the real type. Therefore, switching to fixed-point format 

and associated arithmetic is required if an algorithm or design is planned to be emulated, which is necessary and 

often the case to achieve faster simulation speed and customer-design-ins. Synthesis of the fixed-point format is 

easy as it stores the real value in a fixed-width multi-bit buffer with an implicit binary point. But analyzing the 

value stored in this buffer is not straightforward, consequently debugging the algorithm or design being 

implemented. 

II. RELATED WORK 

When prototyping algorithms on an FPGA that require real numbers, switching between fixed-point and 

floating-point formats with no or minimal design change is necessary. It is also essential to have a mechanism to 

identify range violations, precision loss and real number interpretation from the fixed-point buffer during the 

simulation and FPGA emulation, ensuring equivalence of fixed-point values against floating point values. 
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While there are established solutions to work with fixed-point formats, like MathWorks's Fixed-Point Designer 

[10] and Vitis HLS's `ap_fixed` type [11], these are commercial and tool-dependent solutions that work at a high 

level of abstraction, limiting HDL-level granularity. 

At present, publicly available fixed-point HDL libraries are FPHDL [9] and `Verilog Fixed point math library` 

[7] by Sam Skalicky. However, FPHDL support is more complex with the Vivado toolchain, and both libraries 

need a mechanism to detect precision loss issues and real value interpretation mechanisms during simulation and 

emulation. Moreover, quick port of fixed-point format to floating-point format and vice-versa needs to be included. 

 The aforementioned limitations have motivated us to develop an extension to a lightweight, robust, open-source 

framework that combines various practical approaches to overcome the shortcomings of fixed-point format during 

FPGA prototyping. 

III. FRAMEWORK 

Understanding fixed-point variable declaration is important to mitigate various fixed-point format issues. 

The method demonstrated here is based on the publicly available SVREAL [1] library. 

A. Fixed-point Format Variable Declaration 

A fixed-point number represented as a two’s complement signed integer s with an implicit exponent p 

and real number v i.e., 

𝑠 ≈  𝑣 ·  2𝑝 

A 32-bit fixed-point format with a 16-bit for fractional has the following fields: 

 

Figure 1:  32-bit fixed-point representation. 

The smallest and largest real value with the 32-bit fixed-point format can be represented as: 

 

Figure 2: Largest and smallest value with 32-bit fixed-point format. 

A declaration of fixed-point format variable in System Verilog is made in listing 1 
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The process of declaring fixed-point format 

variables involves explicitly specifying their 

range and width, while exponents are calculated 

implicitly. The range of a fixed-point variable 

represents a valid numerical range that spans 

from negative to positive values. By providing a 

range, the exponent and alignment details are 

handled automatically, enabling convenient 

customization of the format for each variable 

without any complications. A variable’s range 

controls its resolution; a smaller range provides 

a finer resolution. Overflow occurs if the range 

specified during fixed-point variable declaration 

exceeds the buffer capacity. This can be mitigated 

by adding an assertion on implicitly calculated 

exponent value within fixed-point variable 

declaration macro (i.e. MAKE_REAL). 

Keeping the buffer width as a global macro 

provides flexibility to configure it according to 

FPGA DSP (Digital Signal Processing) slice input width, so heavy operations like multiplication will 

utilize exactly one DSP slice per operation. However, there is still a provision to customize fixed-point 

variables individually in SVREAL [1]. 

Moreover, switching between fixed-point and floating-point is easy with just a macro definition, 

allowing for minimal changes when running algorithms on host PC simulations (with real data type) and 

emulations (with fixed-point data type). 

B. Mitigating Fixed-Point Format Challenges 

1) In Case of Simulation: 

a) Analysis and Debugging Issue: Algorithm development typically uses host PC simulation and the 

SystemVerilog-supported real data type. Converting data types from fixed-point to floating-point 

is straightforward due to how variables are declared. The real data type is simulatable in 

most simulators, making analyzing and debugging real values during simulation 

straightforward.  

    However, before switching the data type to a 

fixed-point format and synthesizing the 

algorithm, verifying the correctness of the 

fixed-point values against the floating-point 

values in the simulation is essential. This can be 

done by defining a implicit parallel real type 

variable that will be updated simultaneously 

based on changes in the fixed-point variable, as 

demonstrated in listing 2. 

Figure 3 shows the fixed-point format 

variable with a parallel floating-point format 

variable that helps in interpreting fixed-point 

format value during simulation: 

b) Range Issue: Range issues are 

basically overflow or underflow conditions 

which can easily be detected with real data type 

and range assertions during simulation. Range 

issues can be identified by comparing user-

provided (at the time of fixed-point variable 

Figure 3: Fixed-point value debugging during simulation. 
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declaration) range and operation result or current variable value. This is already been implemented 

in SVREAL [1] library. 

c) Precision Loss Issue: Precision errors 

occur when the number of bits used to represent a 

value is not enough. This can happen when using 

a fixed-width buffer to store a real number, as 

there are infinite real numbers even within a 

small range like 0.0 to 0.1. These errors can 

be detected by comparing a shadow real type 

variable (declared to analyse fixed-point values) 

with the fixed-point buffer during the simulation 

in listing 3. This can easily be extended to 

establish a tolerance level feature that evaluates 

the fixed-type value against the real-type value 

within an acceptable range, which is 

demonstrated in the case study section. 

2) In Case of Emulation: 

    During simulation, the limitations associated with fixed-point formats including range and precision 

loss can be addressed. However, during emulation, the main challenge is related to the real number 

value interpretation of the fixed-point buffer. This is because the debugging utilities provided by 

FPGA vendors, like Integrated Logic Analyzer (ILA [3]) or Virtual Input Output (VIO [4]) for Xilinx, 

do not support fixed-point representation. These utilities only display digital single or multi-bit logic 

and convert it to different formats, like signed/unsigned integers, binary or hexadecimal. However, they 

cannot convert the fixed-point bit stream to a real value due to the absence of binary point 

information. 

An efficient way to interpret real values 

through a fixed- point buffer is to use FPGA 

fabric to process the signal in real-time and 

drive the interpreted value through ILA 

[3]/VIO [4] interfaces during emulation. 

The real value is split into integral and 

fractional parts represented by different 

integer variables. An additional variable, an 

exponent, is needed to address leading zeros 

in the fractional part. 

a) Integrated Fixed-point Analyzer(IFA) 

Architecture: When declaring a fixed-point 

variable, an IFA module is instantiated, which 

separates the value into three integer variables 

(as shown in listing 4). These variables update 

simultaneously and send their values to the 

host PC through the supported radix type of 

ILA [3] or VIO [4]. 

To understand how IFA processes fixed-point 

buffers, consider the example of storing −1.5 real 

value to a 32-bit fixed-point buffer with 16 bits 

reserved for the fractional part. In that case 

signed integer s is: 

 

 

 

https://github.com/sgherbst/svreal/blob/master/svreal/svreal.sv
https://github.com/sgherbst/svreal/blob/master/svreal/svreal.sv
file:///C:/Users/chovatiya/Downloads/Addressing_Fixed_Point_Format_Issues_in_FPGA_Prototyping_with_an_Open_Source_Framework.docx%23_bookmark16
https://github.com/sgherbst/svreal/blob/master/svreal/svreal.sv
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s ≈ v·2p = −1.5∗216 = −98, 304 = (FFFE  8000)16 

 

 

Figure 4: 32-bit fixed-point buffer with ‘-1.5’ real value. 

 Integral computation: is straightforward since the original 32-bit buffer is split into 16 most significant 

bits (MSBs), including the sign bit. Negative numbers can be identified by the MSB, the integral part is 

incremented by 1 to obtain the actual number. Thus, the resultant value 1111_1111_1111_1111 represents 

−1 in signed integer format. 

 Fractional computation: is done by converting a 16-bit fractional split buffer to 2’s complement if it is a 

negative number. Then fraction(F) can be computed with: 

𝐹 = ∑ 𝑓[𝑘]  ∙  2−𝑘

0

𝑘=𝑛

 

Here, f [k] is kth bit in fractional split buffer, and n is the MSB number. 

For our example of 16-bit fractional, computation of decimal fraction is done as: 

    (8000)16 = (10...0)2 = 1×2−1 + ... + 0×2−16 = (0.5)10 

Here, the challenge is the multiplication operation as it is expensive in FPGA. Hence, the 

precomputed table of 2’s negative power is stored in unsigned integer format. And add up the relative 

value based on set bits in the fractional buffer. For 16-bit fractional width, the table will have 16 

unsigned integer values by discarding decimal points like 2−1 = 5000000, 2−2 = 2500000, . . . , up to 2−16 

= 0000153. The limitation here is the pre-computed value buffer will dictate the precision of the fixed-

point number. The larger the buffer, the more precise the fraction will be. 

 For example, if you prepare the precomputed table with a buffer width of 24-bit then the maximum 

decimal digit number you can represent in the fractional part is 224 −1 = 16, 777, 215. So the full range of 

decimal digit fractional part can represent is ⌊log10(16, 777, 215)⌋ ≈ 7 digit i.e. from 000 0000 to 999  

9999. 

 Exponent computation: presents both challenges and simplicity. Initially, one might question the 

necessity of performing this computation. However, it becomes apparent in scenarios when dealing with a 

real value like −1.0625. In this case, −1.0625 is represented as an integral part with a value of −1 and a 

fractional part with 625000, as the fractional part is interpreted as an unsigned integer with leading zeros 

being disregarded. Therefore, an extra variable is required to represent the number of leading zeros. The 

calculation of the exponent is directly related to the buffer width of the fractional part. For example, in case 

of real value −1.0625, the exponent will be 7 (maximum fractional decimal digit with 24-bit fractional 

buffer width) − (minus) 6 (decimal digit in calculated fractional that 625000) = 1. 

 Therefore, overall fraction will be (10−exponent || fractional) = (10−1 || 625000) interpreted as 

0.0625000. And resultant real value of the fixed-point buffer can be interpreted with a bundle of three 

independent variables, integral, fractional, and exponent, as shown in 5. 

Integral + (10−exponent || fractional))  

For example, −1.0625 will be interpreted as −1 + (0.0 || 625000) = −1.0625000 
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IV. CASE STUDY 

 The usage of the presented framework extensions is shown in the example of an algorithmic model 

of a buck converter circuit as depicted in figure 6. A buck converter is a topology for DC-to-DC conversion, 

where the voltage of the DC input line is stepped down to a targeted output voltage while stepping up the 

current.  

 

 

Figure 5: Fixed-point value interpretation in emulation  

Figure 6: Buck converter circuit schematic 

For this case study, we made use of msdsl [12] to model the buck converter as a system of linear 

differential equations (LDS) illustrated in listing 5. This is a common approach to model physical systems 

[13] and shows the broad applicability of the proposed framework extensions. 

  

 The stimulus of the buck converter is depicted in listing 6 and simulation results are shown in figure 

7. The original model is tested for an input voltage (v_in) range of +5/-5 volts. In order to analyze a 

different application, v_in is changed from 5V to 24V. Also, the ranges for v_out, i_ind and i_snub are 

adapted with the same range ratio and set to 24V and 48A. Running a simulation using floating point 

data types shows the same results as simulations with the input voltage set to 5V. Using the fixed-point 

format however shows significant deviation from the expected behavior despite previous range 

adaptations, see figure 8. For signals v_out, i_snub and i_ind in the corresponding upper graphs the 

waveforms of the floating-point representation in blue and the fixed-point representation in orange are 

shown. The corresponding lower graphs show the error between the fixed-point and floating-point 

representations, specified error tolerances and the tolerance checker signal to indicate tolerance 

violations. 
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 To resolve these tolerance violations, the presented framework extensions help to systematically 

analyze, understand, and address these fixed-point format related effects. First, range assertion violations 

can be identified by setting the RANGE_ASSERTIONS define when running a simulation. Range 

assertion violations are reported as displayed in listing 7. It can be seen that the range for the analog state 

v_snub is not sufficient. Compared to analog signals, ranges for analog states are specified within the 

model and not in the testbench which makes it easier to miss adapting them. After the identified range 

violations are fixed, it can already be observed in figure 9, that the deviation in behavior between the 

floating-point and fixed-point representations has significantly decreased. 

 

 

Figure 9: Deviation between fixed-point and floating-point representation has decreased after fixing range violations. 

In order to better understand where the remaining precision violations occur, the tolerance checker 

signals for each variable of the algorithmic model can be traced. Identified precision violations can be fixed 

through a gradual bit width increase for variables with tolerance violations. In the case of the buck 

converter model, bit widths of variables related to the computation of i_ ind had to be increased by three 

to resolve all remaining violations see figure 10. 

 

Figure 40: Fixed-point representation of buck converter is no longer violating tolerances after tuning variable precision. 

Figure 7: Input and output voltage with switching and 
leakage current of a buck converter during ramp-up. 

Figure 8: Fixed-point representation of buck converter violates tolerances 
after changing v_in from 5V to 24V. 
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Often, the algorithm represented with fixed-

point arithmetic is used as part of an 

application. In this example, the buck converter 

model is used within an MCU-based power 

controller application where the control 

algorithm is implemented in software. 

To enable nearly real-time development and 

debugging of the control algorithm, the complete 

system is simulated on FPGA. To attain full 

visibility to the system’s IOs and state variables 

of algorithmic buck converter model, in a 

human-readable form, the IFA can be used. In the given example, the variables v_ in, v_ out, v_ snub, 

i_ ind and i_ snub were traced via IFA. The impact on resource utilization and timing with or without 

using the IFA and recording 2048 samples for each signal is depicted in table 1. While timing is only 

reduced by 2.23%, resource utilization of the trace instrumentation is increased by 87%. This is mainly 

due to additional bits required per variable and can be reduced by adapting the signal bit widths 

representing the fractional, integral, and exponential fragments of a variable. 

V. CONCLUSION 

We propose a method that streamlines the development of algorithms and designs involving the fixed-

point format, while also facilitating the verification of fixed-point versus floating-point accuracy during 

simulation. Our approach to fixed-point variable declaration provides flexibility in detecting issues 

related to range and precision loss during simulation. It further offers configurable options for the fixed-

point buffer width, catering to various FPGA platforms and easing computation-intensive operations. 

In addition, the Integrated Fixed-Point Analyzer (IFA) serves as a plug-and-play, cost-effective solution 

for debugging the fixed-point format during emulation. Notably, it operates independently of the fixed-

point variable buffer and algorithm design. IFA enables real-time analysis of fixed-point values, 

empowering system behavior manipulation and the injection of faults. The case study presented in 

this paper serves as a testament to the effectiveness and efficiency of our proposed method.  
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Table 1: Resource Utilization and Timing (Pynq-Z1) 

 LUT FF BRAM DSP 

Trace Unit w/o IFA 1503 2646 11 0 

Trace Unit w IFA 2824 4763 19 0 

IFA units 305 0 0 0 

Total resource incr. 2000 2117 8 0 

Timing 

 without IFA with IFA Diff. 

Clock 25MHz 25MHz 0 

WNS 2.700ns 1.285ns -1.415ns 

 


