
Towards a memory-address translation
representation scheme

R. Madhukar Yerraguntla
NXP Semiconductors, Noida

rathnakar.y@nxp.com

Ravi Shankar Gupta
NXP Semiconductors, Noida
ravishankar.gupta@nxp.com

Abstract—Verification with application executables is common
phase in virtual development kits (VDKs), RTL simulations
and emulation. It involves loading and dumping application hex
images to/from memory abstractions, usually modelled as 2D
arrays. This is usually achieved in 2 ways (i) frontdoor loading
using design modules mimicking real silicon (ii) backdoor loading
using external methods such as simulator API to initialize the
design in an ”image-loaded” state. The former is slow and
inefficient since the design spends a lot of time in loading process
along with additional design modules for support. The latter can
be performed efficiently without additional design modules but
requires a lot of platform-specific infrastructure with memory-
dependent details (for ex: ECC, endianness, controller size). In
this presentation we argue that a succinct representation of such
details is possible for most memories. Such a representation
is possible because of stereotypical operations on the memory
abstractions. We show that tools processing such representations
dramatically reduce the maintainable code size.

I. INTRODUCTION AND BACKGROUND

A usual verification scenario at SoC and subsystem level
involves running eventual application executable on the de-
sign. This task involves compiling the application code with
GCC and converting it into a form amenable to be loaded
directly into the design’s memory arrays. The problem in
such a conversion is that it varies from memory to memory
and depends on various memory specific parameters (banks,
controllers, interleaving) to data modifications while writing to
the memory (ECC, encryption, parity etc.). The usual approach
in tackling this problem is to maintain memory specific scripts
which are brittle to changes and, hard to maintain and migrate.
In this work we attempt to reduce this maintenance and
bootstrap memory backdoor loading efficiently in a verifiable
manner.

II. RELATED WORK

The work [1] also attempts to solve a similar problem that
our work addresses, but in a simulation verification setting. In
[1], the authors develop a SystemVerilog driver to preload and
manage memories during runtime. Their architecture requires
a model of the memory to generate the data to backdoor
load. In contrast, we aim to standardize the memory-address
translation scheme in a concise format, that can independently
verify the assumptions on the addressing scheme. Instances of
such memory drivers can be auto-generated depending on the
verification scenario. We illustrate one such example in the
next sections.

III. METHODOLOGY ILLUSTRATION

Our approach involves representing the address translation
logic (represented by physical parameters of the memory
like controllers, banks, bank depth etc.) separate from the
data modifications (ECC, parity, encryption). This approach
drastically reduces the maintainable code to just that of data
modifications and hence enables better re-use.

Consider a model of 256 KB memory to be preloaded with
the application as in Figure 1. The memory is comprised of 8
controllers, each of which have a single bank with a depth of
4096 64-bit words. The input 64-bit data is appended with a 8-
bit ECC and split into 4 partitions of 20 bits each (64 (data) + 8
(ecc)+ 4*2 (redundancy bits of 0) = 80 bits). After a controller
is filled with 4096 units of data, the address assignment moves
to the next controller and the process repeats.

This memory can be represented by the specification shown
in Figure 2. The specification shows the start and end addresses
of the memory along with the usual 8 number of controllers.
ECC itself is modeled as a plugin that is executed once per
address and data pair. The field recurrence with a value of 0
represents that there is no interleaving between the controllers.
In other words, each controller is fully filled with data before
moving to the next controller. The rest of the details in the
specification determine where and how the redundancy bits are
filled. The hierarchy field is the hook from the specification to
the concrete location in the design array. For a given address,
the framework computes the controller, bank, partition and the
array index numbers which are filled in the hierarchy template
to get the exact location(s) in the design. A single logical
address could be made up of multiple entries from different
partitions as the example illustrates.

A dry run with just the configuration yields the address
arrangement that the framework computed and this can inde-
pendently verify the assumed translation logic.

IV. METHODOLOGY’S DATAMODEL

In this section we discuss the datamodel that drives method-
ology. In RTL the memories are modeled as 2D arrays. For
example, the memory in Figure 1 would be 4 instances of reg
[4095:0] mem[19:0] and the bus views the memory as a
64bit device. A tool implementing this methodology performs
the task of the controller that processes and saves the data in
the data arrays.

Fig. 1. A Simple 256KB memory

Fig. 2. Memory Specification

A. Memory’s Interface Details

The memory interface section contains the name (a unique
reference within the framework), address range, the bus
size (word_size) along with ECC/encryption details. It
is supposed to encapsulate all the tasks performed by the
memory controller on an address-data pair. Multiple ad-
dress ranges assigned to a memory, can be described using
alt_interfaces keyword. Consistency checks are auto-
run on the address spaces (same ranges assigned through
each interface, for example). The ECC sub-section describes
encryption and ecc details. The function is expected to take a
data and address, and return the modified data to be written
into the data array. To reverse this data modification, an
optional function can be provided that reconstructs the original
data but the default placeholder function removes the start
size bits of the modified data.

B. Physical Memory Information

The physical layout of the memory arrays is described in
the controllers section. Multiple controllers can be provided
as a list in this section. Each controller is assumed to hold
one or more memory arrays, and is assigned a contiguous
range of addresses determined by the recurrence value
and dataperline (of the underlying bank set). A bank is
the smallest hierarchy where a logical unit of hex data can be
constructed. It can consist of multiple arrays but each of the
individual arrays, do not hold the complete data. In Figure 1,
there is exactly one bank under each controller and each bank
consists of 4 arrays (called partitions) which hold 20 bits
of data in a single array entry (consists of input bus data,
redundancies and ecc data). All 4 data components together

need to processed to reconstruct the original 64 bit data at a
particular address.

The controller number is a concise way to represent a
list of controllers with the same underlying structure. One
could have written out the controller structure 8 times in
Figure 1 and Figure 4, and achieved a similar effect. The con-
trollers in Figure 1 are contiguous address range of 0x8000
(4096*1*1*64/8 bytes) addresses each. The special
recurrence value of 0 fills all of the current controller’s
arrays before moving to the next controller. The configuration
for Figure 4 would be similar to Figure 2 with the exception
of controller recurrence being 4 (each of the current
controller’s arrays are filled for 4 lines before moving to the
next in round-robin order).

Banks under a given controller also can have a recurrence
but the framework performs consistency checks. For example,
the total sum of recurrence in the banks must divide the
controller recurrence. By default the banks are considered to
have a recurrence of 1. In other words, the data is distributed
dataperline units at a time to each bank.

Additional details regarding the data arrays within a bank
include the positions of redundancy bits. Our claim is that this
datamodel suffices to represent the address translation scheme
of a wide range of memories including TCMs, BootROMs
and SRAMs. The tool supporting this methodology generates
mapping from each address in the memory range to memory
hierarchies. For example, for address 0x0 in Figure 1, the
mapping has 4 different hierarchies with controller value 0,
bank value 0 and partition range 0− 3.

1) Linking the abstract model and Design: The hier-
archy section uses the mapping and determines the de-

Fig. 3. Tool-generated address arrangement for Figure 2

Fig. 4. Example SRAM Memory

sign hierarchy corresponding to each memory address.
The computed values are substituted for in the corre-
sponding keys, namely %(controller)s, %(bank)s,
%(partition)s. This stratified design hierarchy generation
is crucial step of the entire methodology. The hierarchy
template is a major reason for the controller section accepting
a list of controllers and not a single controller section. The
template for the hierarchy might be different for controllers
with otherwise same configuration.

Figure 3 shows the address arrangement for the configura-
tion in Figure 2. One can verify the sanity of the configuration
of memory.

V. OPERATIONAL MODES

We discuss the operational modes of this methodology
assuming a TCL interface as the target, which is usually the
case with emulators and certain simulators. The principles
outlined are applicable to any backend schema, including SV
interface or a C/C++ based model. The extensions require an
appropriate visitor-generator class over the datamodel. While
the automation described here is considerably large, it is
however a one-time effort to develop such tools. The users
of the methodology are expected only to maintain the ECC

misc:
load_cmd : "emu_load %(hier)s %(file)s"
read_cmd : "memory -rd $hier $line"
write_cmd: "memory -wr $hier $line $data"

Fig. 5. An example miscellaneous section

functions (if any, 5̃0 lines) and the configurations (1̃20-150
lines) for memories.

A. Preload mode

This mode preprocesses a set of input hex files into output
files that can be readily loaded into design memory arrays
before the test execution. The pre-computed address-hierarchy
mapping described in the previous section, allows a straight-
forward implementation for this phase. For each address, the
ecc/encryption result is computed for the data-address pair
and the corresponding redundancy additions described in the
physical layout section (under bank) are performed. The data
is then split up (or combined) according to the array width
in the bank. These computations are rarely dependent on the
previous addresses results and hence are highly parellelizeable.
Dependency exists in case each bank array can hold more than
one word, but even in such cases the dependent addresses
can be determined upfront (hence also parellelizeable). These
computations can be performed efficiently for a large data in
the order of gigabytes, under minutes.

The miscellaneous section (load_cmd in Figure 5) in the
configuration file takes a template for loading a set of values
to a particular design hierarchy. The result from this mode
of operation is a list of output files and a mapping command
file (from hierarchy to files) that is to be executed before a
test. One could load a sequence of tests without needing to
restart the design, enabling a quick and easy scoreboarding
methodology.

B. API mode

During the test execution on the design, verification en-
gineers would like a debugger like access (using addresses
to read and write) to certain memories (ROMs, caches for
example). The usecase model would for such an operation is
shown in Figure 6. A single read/write command might require
more than one read/write to call to the emulator/simulator. The
read operation is a reverse instance of operations in preload
mode. The reconstruction of the original data happens by
removing the added redundancies, combing/splitting the indi-
vidual array entries in the bank and finally removing ECC bits.
The default behaviors suffice for most memories (removing 0s
in the middle of array data, no combine/split, remove first ecc
bits); however for non-trivial cases the placeholders provided
in the data are used. An instance of read call is shown in Fig-
ure 7. The read_cmd entry from the miscellaneous section
is used in generating the mem_read_unsafe function and
links the usemodel shown in Figure 6 to the actual emulator
implementation.

// get 64bit data from 0x3400000
mem_read 0x3400000 64

// write 32bit data to 0x3407000
mem_write 0x3407000 DEADBEEF 32

Fig. 6. API usecase model

Fig. 7. Auto-Generated read command for Emulation

The write command is a read operation (to read contents
of memory array) followed by a forward direction operation
after modifying the data.

VI. RESULTS

Using this framework, we were able to get rid of memory
specific scripts for over 10 different SoCs spanning 100 differ-
ent memories including TCMs, BootROMs, Flash memories
and SRAMs. The maintainable code for each memory was
reduced from about 1500 lines per memory to about 50-100
lines of configuration and 3̃0 lines of data modification (ECC)
functions. Figure 7 shows the auto-generated memory read
command generated for emulation by this framework. The
function mem_read_unsafe takes in an address and bit
size, and returns the logical data (after removing ECC, redun-
dancies etc.) to user, thus allowing a debugger-like transparent
access to the memory. All of the functions that are not shown
are parameterized with fields in the specification. For instance,
the function read_hier_wr returns all relevant hierarchies
for a given address following the explanation provided in the
previous section.

As described earlier, an advantage of this framework is
that changing 3 lines in configuration (read, write and load
commands), one can generate the collaterals for a different
emulator. A similar generator can produce a memory driver
instance such as the one described in [1] for simulation!

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework that streamlines verification
with memory abstractions. The core idea is to separate data
modification operations (ECC, parity etc..) from the address
translation logic which can be represented succinctly with a

few parameters for a wide range of memories. The frame-
work is not without its shortcomings. For instance, DDR
memories cannot be represented in this framework since
they have software-configurable address translation schemes
which cannot be represented with one set of static parameters.
We believe this representation scheme could eventually be
standardized along the lines of IP-XACT to achieve uniformity
across VDK, simulation and emulation verification.

REFERENCES

[1] GEISHAUSER, J., CHOPRA, A., RUETTIGER, S., ROSSI, L.,
KAKASANIYA, S., AND ZHANG, L. uvm mem – challenges of
using uvm infrastructure in a hierarchical verification. In 2022 DVCON
Europe proceedings (2022), DVCON Europe.

	I Introduction and Background
	II Related Work
	III Methodology illustration
	IV Methodology's Datamodel
	IV-A Memory's Interface Details
	IV-B Physical Memory Information
	IV-B1 Linking the abstract model and Design

	V Operational Modes
	V-A Preload mode
	V-B API mode

	VI Results
	VII Conclusions and Future Work
	References

