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Abstract—-Emulation is ubiquitous for verifying and validating complex silicon systems, comprising of a full 

software stack driving highly intricate hardware. However, as some of these silicon systems move towards the intelligent 

edge, the underlying hardware becomes exceedingly mixed signal with the integration of sensors, real-world interfaces, 

high-speed data convertors, buck/boost regulators, etc. Traditional emulation techniques only support synthesizable 

digital logic. As a result, the scope of what can be verified or validated, and to what extent is limited. This means that 

software driven chip configuration that goes all the way down to a primitive hardware elements or complex calibration 

loops and low power techniques involving the full software stack, cannot be fully verified prior to tapeout. This is an 

absolute necessity in today’s complex systems at the cutting-edge manufacturing technologies owing to the cost of 

unplanned tape-outs and the pressure of delivering first-pass sampleable silicon to customers. The novel techniques 

presented in this paper focus on removing this limitation and enabling analog/mixed-signal behavioral modeling 

methods, thereby enabling "true" system-level, mixed-signal emulation. 
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I.  INTRODUCTION 

The advent of SoCs that run basic software stacks on processor cores really challenged validation techniques 

that relied on silicon samples for developing and testing software. Increasing tapeout costs, and pressures of time-

to-market implied that the software had to be co-developed with hardware and validated pre-silicon. Doing so with 

traditional dynamic simulation-based tools and techniques is highly impractical, and in majority of the cases, not 

feasible, given prohibitive runtimes. Hardware emulation emerged as the answer to this, delivering speed-up of 

several orders of magnitude over traditional simulation.  

Fast forward to today, silicon systems (SoCs, Chiplets, 2.5/3D ICs, SiPs, etc.) are now even more complicated 

and programmable than ever, with multiple heterogenous processing cores running full-fledged operating systems, 

DSP, and AI/ML algorithms. To make matters more interesting, a majority of these also have a considerable mixed-

signal component to them as data analytics and processing gets increasingly closer to the intelligent edge. This is 

true of all end-markets, automotive, industrial, communications, healthcare, to name a few. Since hardware 

emulation can only support synthesizable digital logic, a lot of features of these complex systems cannot be fully 

validated pre-silicon. Further, running a true AMS (or Analog Mixed Signal Simulation) where the digital simulator 

simulates the digital content, and an analog simulator simulates the analog content (the two simulators synchronized 

in time using vendor specific technologies) limits the number of tests that can be run. This is primarily due to the 

runtime limitations imposed by the analog simulator. Other approaches, such as, standard FPGA-based emulation, 

hybrid simulation & emulation, or representing floating point real datatypes via equivalent fixed-point bit models 

[1] have not proven to be sufficient or easy to use. These either result in a major hit to emulation throughput, 

emulation capacity or require a major change to well-established analog modeling techniques, such as 

SystemVerilog Real Number Modeling (RNM) and the associated Digital-Mixed Signal (DMS) verification 

methodology [2]. The novel, innovative techniques presented in this paper aim to address the challenge of enabling 

true system-level emulation, including synthesis of mixed-signal models without the limitations of prior works in 

this area. 
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The rest of the paper is organized as follows: the next section describes some related work involving fixed-point 

modeling and explains the downside of such an approach. We then describe the high-level methodology and take a 

deeper dive into supported and unsupported constructs of the SV LRM within the enhanced compiler that can 

handle RNMs in section III. It will also include code examples and workarounds as needed so that the simulation 

and emulation models yield equivalent functionality and accuracy. Section IV describes the application of these 

techniques on a basic PLL, an arithmetic PLL, as well as a real-life SoC, a 4T4R transceiver running full-blown 

Ubuntu OS on an application-class, multi-core processor environment. We will also give examples of some RNMs 

that comprise of the signal chain and auxiliary analog circuits that constitute this DUT. Next, we will take a deeper 

dive into results obtained, including waveform comparisons between simulation and emulation to illustrate the 

accuracy. The runtime for each solver will be highlighted to show the performance gains achieved. We finally 

conclude in Section V, presenting a summary, our conclusions and future work. 

II. RELATED WORK 

As cited in the introduction, fixed-point bit models have been shown to enable mixed-signal emulation but have 

not proven to be sufficient or easy to use. An example of this modelling approach was applied to an Image Sensor 

[3]. The Image Sensor shown in the center of Figure 1 was originally modelled using RNM and executed in 

simulation. Those models could not run directly on standard FPGA-based and purpose-built emulation platforms 

due to their inability to directly process real numbers. Fixed-point bit models can replace the real number models 

but there are multiple factors to consider. One of the most significant is the accuracy versus emulation model size 

tradeoff. The greater the number of bits, the more accurate the model but that also creates a larger emulation 

footprint. For FPGA-based emulators, if the model grows too large, routing and timing can impact the ability to 

emulate the model. For purpose-built emulation platforms, the size of the emulation model can lead to longer 

compile times affecting the debug turn-around time when used in a production verification flow. 

The fixed-point bit models implemented for the Image Sensor in Figure 1 enabled the emulation of 5.6s of real 

system function in 2.1 hrs. of emulation time. Of course, other commonplace techniques of transforming a 

simulation environment to emulation, like replacing VIP drivers/monitors with synthesizable BFMs, replacing 

memories with their synthesizable equivalents, etc. must be deployed in addition to synthesizable, fixed-point 

RNMs to realize this gain. However, the key message is that RNM synthesizability is the cornerstone to successfully 

realize this use-case in emulation. This demonstrates the potential value of system-level, mixed-signal emulation 

even though it required months of work to recode the model for emulation and a large emulation model size. While 

the speed is attractive, the engineering cost to create the fixed-point model, to connect the verification environment 

to that model, to maintain synchronization with the RNM simulation models, and validate the overall model 

accuracy often preclude the development of these models. Any work that can directly make the original RNMs 

synthesizable without having to recode them, would thus be of immense value. 

 

Figure 1. Image Sensor Emulation use-case deploying fixed-point models in simulation-acceleration mode 
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III. OUR APPROACH – SOLUTIONS, OVERALL METHODOLOGY AND APPLICATION 

Our approach to an end-to-end mixed-signal emulation solution is via innovative enhancements to RNM coding 

guidelines combined with compiler enhancements and the subsequent proof of those guidelines with a real-world 

example. These guidelines were implemented on an emulation hardware platform and the associated front-end 

compilers (ixcom), to demonstrate the efficacy of the RNMs via execution on emulation hardware. These compilers 

now support critical RNM features including SV-2009 real datatype, SV-2012 nettypes and resolution functions 

(includes UDNs such as  EEnet), delays, floating-point operations, basic math operations, etc. The compiler output 

is still mapped to compute elements in hardware which limits the use of RNM behavior language features like 

dynamic arrays and loop limits. However, these are easy to work around without significant issues. As a result of 

this approach, the overall emulation methodology that the end user is familiar with is relatively unchanged and only 

requires some additional options and configuration. Below are the examples of some classes of supported constructs 

and known limitations. This is not an exhaustive list. 

A. Datatype support 

All standard ‘real’ datatypes, such as, real, shortreal, realtime are supported, along with their unpacked arrays 

and structs. SV-2012 nettypes are also fully supported, including resolution functions for multi-driver scenarios. 

However, the resolution functions must be synthesizable. This means that it cannot use any dynamic arrays, which 

are quite common. These can easily be replaced with fixed-sized arrays. Vendor-specific packages of commonly 

used nettypes are also supported. 

B. Delay support 

Pound (#) delays are typically not synthesizable. However due to the ubiquitous usage of such delays in RNM, 

support for these has been enabled. Statements such as the ones below are fully supported: 

always process with time delay and no event.  

Example:  

𝑎𝑙𝑤𝑎𝑦𝑠 #10 𝑎 =  𝑏; 
 

Continuous assignment with a single delay. 

Example: 

𝑎𝑠𝑠𝑖𝑔𝑛 #10 𝑦 =  𝑎 +  𝑏; 

always process with time delay and explicit event.  

Example:  

𝑎𝑙𝑤𝑎𝑦𝑠 @(𝑎 𝑜𝑟 𝑏)𝑏𝑒𝑔𝑖𝑛 

    #10;  
    𝑦 =  𝑎 +  𝑏; 
𝑒𝑛𝑑 

Rise/Fall delays specified with a Verilog gate 

primitive. 

Example: 

𝑛𝑜𝑡 #( 𝑅𝑖𝑠𝑒𝐷𝑒𝑙𝑎𝑦, 𝐹𝑎𝑙𝑙𝐷𝑒𝑙𝑎𝑦 ) 𝑜𝑢𝑡𝐺𝑎𝑡𝑒1 ( 𝑂, 𝐼 ); 

C. Floating-point operations, Math functions and Conversion functions 

Operators with real operands in Table 11-1 in the IEEE Std 1800-2017 [4] are supported in DUT except for the 

inside operator. Majority of the real math functions in Table 20-4 in the IEEE Std 1800-2017 [4] are supported with 

some minor caveats. For example, the inputs to the $sin and $cos functions must be bounded to ± 40π. The inverse 

functions, $atan, $asin, $acos etc are not supported. 

The following code snippet shows how an expression can be bounded to ± 2π 

𝑝ℎ𝑖_ℎ𝑎𝑡_𝑛𝑜𝑟𝑚 =  𝑝ℎ𝑖_ℎ𝑎𝑡/(2.00 ∗ `𝑀_𝑃𝐼); 
𝑝ℎ𝑖_ℎ𝑎𝑡_𝑛𝑜𝑟𝑚_𝑓𝑙𝑜𝑜𝑟 =  $𝑓𝑙𝑜𝑜𝑟(𝑝ℎ𝑖_ℎ𝑎𝑡_𝑛𝑜𝑟𝑚); 
𝑡ℎ𝑒𝑡𝑎 =  2.00 ∗ `𝑀_𝑃𝐼 ∗ (𝑝ℎ𝑖_ℎ𝑎𝑡_𝑛𝑜𝑟𝑚 −  𝑝ℎ𝑖_ℎ𝑎𝑡_𝑛𝑜𝑟𝑚_𝑓𝑙𝑜𝑜𝑟); 

 

Section 20.5 in the IEEE Std 1800-2017 [4] describes system functions for converting values to and from real 

number values - $rtoi, $itor, $realtobits, $bitstoreal, $shortrealtobits, $bitstoshortreal are all supported. 

D. DMS Connectivity 

All industry standard simulators over the years have built various features into their compilers and elaborators 

to help with DMS connectivity mismatches between the high-connection and low-connection ends of any segment 

in the design hierarchy. These features are typically not part of the SystemVerilog LRM and are commonly referred 
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to as (a) datatype coercion and (b) automatic Connect Module (CM) or Interface-Element (IE) insertion. The front-

end compiler for the emulation platform has been enhanced to incorporate datatype coercion to a great degree. 

However, it still is not a 1:1 match with the simulator’s capabilities. CM insertion is not supported. To proactively 

identify and fix any connection mismatches that would cause issues for the emulation build, we developed a VPI 

and a post-processing Python script to trace every connection from the top-level IO of the design hierarchy to the 

IO on leaf instances (instances with no further underlying hierarchy). The VPI dumps the high connections and low 

connections starting from the top-level IO to IO at each intermediate hierarchy all the way to the IO on the leaf 

cells. The Python script reads all these high connections and low connections and assembles the signal paths, 

identifying the signal’s type (logic, interconnect, coerced wreal, real variable etc.) for every signal in the hierarchy. 

The signals are then written into an Excel spreadsheet, identifying if there are segments in the hierarchy of a given 

signal path that might cause a problem during building the emulation object. Logic, wreal and other custom nettypes 

endpoints are identified vividly. 

E. Other Limitations 

All standard limitations of emulation systems related to synthesizability apply unless otherwise stated (example: 

# delays are typically non-synthesizable but are supported with this novel methodology as clarified above). In 

addition, following constructs that might be important from RNM & DMS point of view are not supported: (a) 

Dynamic arrays (b) SV constructs operating on real data types: concurrent assertions, immediate assertions, 

coverage (c) Force and release operations of real datatypes. 

IV. TEST VEHICLES AND RESULTS 

A. Charge Pump Phase Locked Loop (CP-PLL) 

As a basic proof-of-concept, we used a basic charge-pump PLL. This is a predominantly analog circuit – which 

is perfect to prove out the RNM synthesizability aspects of the enhanced compiler. It also helped us with validating 

the modeling guidelines, quantifying the changes required and identifying any necessary enhancements to our tools 

and methods. This work has been presented previously [6]. 

B. 4T4R Transceiver SoC 

Next, we turned our attention to a real-life SoC – a 4T4R ORAN transceiver running a complex Ubuntu OS 

over complex, highly mixed-signal hardware. The current approach with emulation of this system was to black box 

the entire analog portion. Selective AMS blocks would be replaced with non-functional, overly simplistic models 

of just their configuration registers and the use-cases being run on emulation would simply check for the resulting 

register configuration bits and not for the actual “real” signal output. As for complex calibration loops, there is not 

really an effective way to verifying these end-to-end as they rely on feedback from the analog and an appropriate 

response from the digital or all the way from the software/firmware itself. The baseline, digital-only emulation 

setup that we use as a starting point is in “simulation acceleration” mode i.e., a portion of the UVM testbench (non-

synthesizable) runs on the standard CPU-based simulation engine and the entire DUT, as well as synthesizable 

portions of the testbench run on the emulation platform. A lot of optimizations have been incorporated into this 

setup over a few generations of the product, ensuring maximum possible speedup and efficiency with the emulation 

platform. These include well established techniques such as replacing pure simulation-based Verification IPs (VIPs) 

with their emulation-friendly equivalents, Accelerated VIPs (AVIPs) [5], optimizing the interface between the 

simulator and emulator using platform-specific proprietary techniques, optimizing the DUT build, et cetera. 

The first RNM that we white-boxed was the bias generator. All the analog blocks rely on correct configuration 

and functioning of this block for their proper operation. The bias generator provides 50µA bias current to the main 

oscillator on the device. Its core section includes a bandgap reference. From this reference, the various bias currents 

are generated. These can be trimmed, some currents are constant, others are PTAT (Proportional to Absolute 

Temperature). The model, however, does not consider temperature dependencies. It implements a set voltage output 

which can be brought to the off state by powering down the block. The block contains a comparator which can be 

used to trim some of the bias currents relative to one another. The trimming routine is controlled by a state machine 

activated in response to a register write.  
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Several modeling techniques are used to produce the overall bias circuit behavioral model. These are described 

next: 

• Category 1: Model Library - There were several standard components used from the Analog Devices 

simulation library. These components have views which can operate across multiple simulators. These 

include voltage sources, voltage-controlled voltage sources, OR gates, AND gates, comparators etc. 

The necessary subset of this library has been updated to ensure that they are emulation compliant.  

• Category 2: Extracted Look Up Table (LUT) - The bias currents are generated in direct proportion to 

an input voltage from the bandgap reference. The ratio between the voltages and currents can be 

trimmed. Such a circuit can be modelled using an extracted look up table. An internally developed 

Analog Devices application was used to extract the LUT and generate the model. The output model 

types are SV compatible. This application had been used on previous Analog Devices projects; the SV 

code generated by it required no modification for use with emulation. 

• Category 3: Handwritten System Verilog - The use of handwritten models was restricted only to those 

cases where absolutely needed – such as those where `𝑖𝑓𝑑𝑒𝑓 … `𝑒𝑙𝑠𝑒 … `𝑒𝑛𝑑𝑖𝑓 constructs are required 

to differentiate between emulation and simulation behavior. Cases where this differentiation is required 

are (a) simpler behavior for emulation vs. simulation to avoid complexities (b) manually managing 

signal disciplines and (c) inserting hand-instantiated connected modules. This is an exceedingly small 

subset of the overall model of the bias generator. 

The bias generator model is automatically netlisted from the analog design environment where the leaf-level 

models sit next to their transistor-level equivalent circuit. This updated “emulation-friendly” model was then 

validated by running the test-bench with the transistor-level circuit, RNM model in simulation and RNM model in 

emulation for various use cases – power-down, trim, etc. In the emulation case, the test-bench runs on the CPU-

based simulator and the model runs on the emulator. This is also commonly known as “simulation acceleration” 

mode. 

As mentioned previously, the emulation environment for these products has evolved over a number of 

generations to facilitate an effective emulation environment, this included black boxing of the analog circuits. To 

integrate this new RNM model, we had to selectively open the black box of the analog_top. The original compile 

environment used the −𝑚𝑜𝑑𝑢𝑙𝑒𝑆𝑡𝑢𝑏𝐿𝑖𝑠𝑡 feature of the ixcom compiler to specify several modules to be ignored 

at compile time. The analog_top module was removed from this list. A netlist of the analog_top was created using 

a configuration view which selectively instantiated the two instances of the bias generator. These instantiations 

within the emulation run are shown in Figure 2 

 

Figure 2. Bias generator instantiations within the emulation run. 

As the emulation environment was originally targeted at exploring digital and software interaction, there was 

no provision for analog centric topics. For example, in simulation the power supplies are modelled as real numbers, 

the values represent the actual voltages which will be supplied to the device. Supplies were not modelled in the 

emulation environment; they are assumed to be always on. As a result, the, supply pins to the newly added 

analog_top are undriven and default to logic 0. The components within the RNM model feature supply checking, 

these checks were disabled using 𝑖𝑓𝑑𝑒𝑓 … `𝑒𝑙𝑠𝑒 … `𝑒𝑛𝑑𝑖𝑓 statements, also the inputs to these checks were 
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converted to logic types to avoid coercion problems. Again, this was achieved using 𝑖𝑓𝑑𝑒𝑓 … `𝑒𝑙𝑠𝑒 … `𝑒𝑛𝑑𝑖𝑓 

statements, examples of these are shown in Figure 3. 

 

Figure 3. Code snippet showing examples of handling power supplies in simulation and emulation. 

One of the interesting test cases is the bias generator self-trim routine that is triggered via register writes from 

the processor core on the SoC. This shows all the key components interacting with each other; software, digital and 

analog. Figure 4 below shows the results from the simulation run. The results from the emulation run are shown in 

Figure 5. The trim routine executes successfully on both. There are differences in the output of the constraint 

randomization solver that results in the waveforms not being identical. However, this additional capability of 

incorporating RNMs on to the emulation platform comes at a cost. The maximum frequency achieved on the 

emulation platform using full-fledged bias generator RNM drops from 959kHz (with an all-digital bias generator) 

to 635kHz (33% degradation). For our case, this tradeoff of being able to synthesize RNMs in floating-point fidelity 

by sacrificing some emulation speedup, is well within bounds and worth it considering all the additional system-

level mixed-signal use-cases that can be validated, pre-silicon. The emulation runtime is 45s vs. the pure simulation 

runtime of 14400s, thereby yielding a 320x speedup. We expect the speed-up using the emulation platform to be 

significantly higher as we move to more complicated cases, most of which would be runtime prohibitive on a pure 

DMS simulation setup. Once the compilation for emulation is complete, the output logs provide information 

regarding the emulator utilization. This includes information on the Float Point Units (FPU) loading, for this design 

the utilization was 52.47%. 

 

Figure 4. Simulation results for the bias generator self-trim routine 

 

Figure 5. Emulation results for the bias generator self-trim routine 
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C. Arithmetic Phase Locked Loop (A-PLL) 

The emulator does not natively support computing the inverse tangent of a variable. In many RNMs the inverse 

tangent is used to compute the phase difference between two-time varying (often periodic) signals. In such cases, 

user code can be written to implement an approximation of the required function. 

The code snippet in Figure 6 shows an example of such an implementation, this is based on the following 

references: [7][8]. Results obtained in the arithmetic PLL experiment yielded a high level of accuracy when a signal 

from a reference source and a local oscillator where phase matched using a phase detect and modify feedback loop. 

The phase detection was done by measuring the phase difference between the local oscillator and reference source 

using the arctan implementation. 

The waveforms in Figure 7 shows the operation of the A-PLL as it locks to the reference clock, these results 

closely matched the reference simulations from Xcelium. 

 

Figure 6. Code snippet from the APLL showing the user code approximation of the arctan function. 

 

Figure 7. Waveform showing the locking operation of the APLL in emulation. 
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V. CONCLUSION AND FUTURE WORK 

Being able to synthesize RNMs to floating-point fidelity on standard emulation platforms, opens immense 

potential for comprehensive pre-silicon validation of complex, mixed-signal silicon systems with the entire 

software stack at the edge. 

As a basic proof-of-concept, we used a basic charge-pump PLL. This is a predominantly analog circuit, which 

is perfect to prove out the RNM synthesizability aspects of the enhanced compiler. It also helped us validate the 

modeling guidelines, quantifying the changes required and identifying any necessary enhancements to our tools 

and methods. 

With the real-life transceiver, we can attest that the tools, techniques, and methodology outlined in this work 

are ready for production use with known limitations that have proven workarounds. We can now reliably and truly 

validate complex mixed-signal systems, pre-silicon. 

The A-PLL example demonstrates the realization of a complex feedback loop utilizing the FPU capabilities of 

the emulation hardware. These capabilities enabled the implementation of complex trigonometric functions which 

were not natively supported by the compiler. 

As part of future work, Analog Devices will continue to enhance its simulation library to be fully emulation 

compliant. As a result of this, any models created using this library of building blocks will be emulation-ready 

without any overhead.  

From Cadence’s point of view, as tools and emulation hardware platforms advance there will be more support 

for additional RNM and DMS constructs along with underlying hardware enhancements as needed. Furthermore, 

the single RNM code base for simulation and emulation will enable engineers to devote more time to full-system 

verification driving additional innovation resulting in higher quality products. 
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