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Abstract—This paper presents a novel strategy for enhancing the Python verification ecosystem by integrating 

established SystemVerilog Verification IPs (SV-VIPs) utilizing the cocotb and pyuvm framework. Gradually gaining 

recognition within the verification community, Python-based environments are being explored for their potential to 

become mainstream in future verification processes. This approach taps into the established SystemVerilog ecosystem, 

enabling effective reuse of SV-VIPs within Python settings. By leveraging the Direct Programming Interface (DPI-C) 

and the ctypes library, our method ensures seamless integration between Python testbenches and SV-VIPs. This 

integration not only utilizes Python's simplicity and readability but also fortifies its capacity for handling sophisticated 

hardware verification tasks. The paper illustrates this methodology with two practical implementations. It shows 

Python's evolving significance as a powerful and adaptable verification language and bridges the current divides 

between software flexibility and hardware verification demands. 
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I.  BACKGROUND AND INTRODUCTION 

As verification tasks proliferate, the exploration of the future of verification is intensifying. It is widely 

accepted that writing testbenches is a software problem. Therefore, Python, as a powerful software programming 

language, has naturally gained attention. Engineers and researchers are considering the possibility of Python 

becoming the future verification language after SystemVerilog. Python offers several inherent advantages as a 

verification language, such as: 

● Enhanced Productivity and Widespread Use: Python's simplicity and efficiency speed up testbenches 

writing. Additionally, its popularity makes it more accessible and easier to learn compared to 

SystemVerilog or VHDL, broadening the pool of available talent and resources. 

● Extensive Libraries and OpenSource Community: Python's vast libraries facilitate code reuse, reducing 

the need to write new code. The active OpenSource community provides significant momentum for 

Python verification, leading to the continuous emergence of more and richer IPs. 

● Easy Interfacing: Python can seamlessly interface with other languages, increasing its flexibility and 

integration capabilities. This is especially beneficial for complex verification tasks, which require 

multiple interfaces. 

● Interpretative Nature: Python's interpretative nature allows for quick test edits and reruns without the 

need for recompilation, significantly speeding up the testing and debugging process. 

 With continuous exploration into Python verification, it is now feasible and practical to write testbenches and 

run simulations using Python. Cocotb [2] uses coroutines to simulate hardware parallelism and Generalized 

Procedural Interface (GPI) to enable communication between Python testbenches and simulators, making it 

possible to write testbenches in Python. On top of cocotb, pyuvm [1] integrates the Universal Verification 

Methodology (UVM), which is highly popular in the industry, into the Python verification ecosystem. This allows 

users to enhance code reusability and improve testbench writing efficiency by using UVM within Python 

testbenches. Additionally, pyuvm and cocotb, combined with OpenSource simulators like Verilator, enable 

OpenSource UVM verification applications, further enhancing the benefits of using Python. 
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In this paper, we introduce a novel approach to reuse SystemVerilog-based Verification IPs (SV-VIPs) in a 

Python verification environment leveraging cocotb and pyuvm. This method represents a significant shift from 

the current research trends, which primarily focus on using a purely Python-based environment for verification 

[3] [4]. Unlike the current efforts that aim to create a Python verification infrastructure from scratch, this paper 

proposes the integration of existing commercial SV-VIPs, thus augmenting the Python verification ecosystem by 

repurposing these SV-VIPs. SystemVerilog has dominated the verification industry for over a decade, with the 

industry investing heavily in millions of SV-VIPs, which significantly enhance verification efficiency. These 

commercial SV-VIPs are almost indispensable to the current verification industry. Rewriting these in Python 

would undoubtedly be complex and inefficient. In contrast, if there were a method to reuse these SV-VIPs within 

a Python testbench, it would be a highly promising development. This approach would not only improve efficiency 

but also provide a pathway and interface for connecting the Python software world with the SystemVerilog 

hardware world. 

The proposed methodology serves as a bridge between the established, hardware simulation oriented 

SystemVerilog environment and the versatile, high-level Python environment. This is achieved by establishing a 

pathway shown in Figure 1 where SV-VIPs are abstracted to the C language level via the Direct Programming 

Interface (DPI-C) and connected to Python through the ctypes library. Since we are discussing reuse, we assume 

we cannot make any changes to the internals of the SV-VIPs. Instead, we create an application programming 

interface (API) as a wrapper around the SV-VIPs and use DPI-C to achieve transaction-level communication via 

C language. This connection facilitates seamless interaction between Python testbenches and SV-VIPs, enabling 

the execution of verification tasks that leverage the strengths of both programming environments. 

II. IMPLEMENTATION 

The paper details two implementations that demonstrate the practicality and effectiveness of this approach. By 

discussing these implementations, readers can gain a comprehensive understanding of how communication and 

synchronization work, as well as how transaction-level data is transferred. 

A. Controlling SV-VIPs in Python testbench 

The first implementation allows a Python testbench to control the initiation and termination of an SV-VIP, 

integrating it as part of the Python testbench to complete verification tasks. As shown in Figure 2, the Python 

testbench connects to C language to control the SV-VIP by activating its internal sequence for initiation. The 

details of this process involve the design of a communication protocol, implementation of synchronization, and 

the addition of a user-defined task phase to allow the Python testbench to regain control. 

 

Figure 1. Pathway Diagram 
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The communication between the Python testbench and the SV-VIP follows the classic master-slave non-

blocking communication model. In this setup shown in the left part of Figure 3, the Python testbench acts as the 

master, while the SV-VIP acts as the slave. The slave continuously performs non-blocking wait and request 

operations until it receives a release signal from the master. Once the Python testbench releases control, the SV-

VIP executes its task. Meanwhile, the master performs non-blocking wait and query operations to monitor the 

state of the SV-VIP. Upon receiving a notification from the slave, the master regains control. The blue and green 

boxes in the figure represent which side currently has control. This non-blocking communication model ensures 

synchronization between the SV-VIP and the Python testbench, avoiding conflicts on the design side, and it also 

supports a master-to-multiple-slave configuration. 

 

However, since the SV-VIP needs to return control to the Python testbench after completing its task and then 

continue in a non-blocking wait state, we need to create an additional task phase for the SV-VIP. This user-defined 

task phase, called the PythonControlledRunTime, operates within the UVM phase mechanism framework [5], 

positioned between the report phase and the final phase. The whole simulation process of two sides and the 

addition of the user-defined task phase are shown in the right part of Figure 3. To preserve all the original 

functionalities of the SV-VIP as much as possible, we moved the internal function report_summarize() from the 

UVM's final phase to the PythonControlledRunTime. This adjustment allows the SV-VIP to maintain its full range 

of functions while integrating seamlessly with the Python testbench. 

 This first implementation illustrates how SV-VIPs can operate independently within a Python-driven 

environment, performing their internal tasks. 

Figure 2. Testbench Framework of controlling SV-VIP test 

 

Figure 3. Communication Model (left) and Addition of user-defined task phase (right) 
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B. SV-VIPs utilizing Python-generated Sequence  

The second implementation further explores the dynamic capabilities of this framework by enabling the 

Python testbench to generate sequences and send sequence descriptors to an SV-VIP via the established pathway. 

The SV-VIP, upon receiving these descriptors, generates and dispatches sequences to the Device Under Test 

(DUT), monitors the output from the DUT, and sends the results back to the Python testbench, which are checked 

and compared in a Python scoreboard, as shown in Figure 4. This implementation showcases the bidirectional 

freedom of the pathway and supports dynamic transmission of high-level (transaction level) data. Utilizing this 

feature, Python can fully leverage its software capabilities, laying a solid foundation for future extensions. 

One common concern when using Python, a software programming language, in the hardware world is the 

simulation wall-clock time. Therefore, in this implementation, paper employs two methods to reduce the delay in 

transaction transferring. Firstly, the transaction-level data transferring process is dynamic. Figure 5 shows how 

Python dispatches sequence descriptors to SystemVerilog: the Python testbench continuously sends descriptors to 

the C language, which are temporarily stored in a shared queue. When the C language receives data from Python, 

it activates a fork-join on the SystemVerilog side. One part receives the descriptor while the other processes the 

descriptor, generating the external sequence and sending it to the corresponding sequencer. The C language 

component includes two queues to continuously receive data from both the Python testbench and the SV-VIP. 

When the Python testbench dispatches sequence descriptors, the SV-VIP simultaneously sends back the monitored 

responses to the Python testbench.  

Additionally, it is important to note that the data type being transferred between Python testbench and SV-VIP 

is a descriptor. The Python testbench only needs to send the necessary information to the SV-VIP, which then 

generates the external sequence based on the descriptor content. This eliminates the need to send redundant 

information to the SV-VIP, thereby optimizing the data transfer delay. 

 

Figure 4. Testbench Framework of SV-VIP utilizing Python-generated sequence 

Figure 5. Sequence descriptor dispatch 
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This second implementation illustrates how the Python testbench can freely control and interact with the SV-

VIPs, enhancing their tasks. These two implementations not only validate the functionality of the pathway but 

also illustrate a future verification model where software languages like Python can handle the software aspects 

of verification, with SV-VIPs acting as the bridge to the hardware. This dual approach leverages the strengths of 

both domains—Python's flexibility and ease of use in software tasks, and SystemVerilog's specialization in 

handling hardware interactions. 

III. RESULTS ANALYSIS AND ENCAPSULATION 

Through two implementations, we have demonstrated that the pathway successfully connects the Python 

testbench and the SV-VIP. The Python testbench can effectively control the SV-VIP while also performing high-

level data transfers with it. This capability is crucial for simulation time efficiency, as our tests reveal that the 

primary factor affecting simulation performance is the communication frequency between Python and 

SystemVerilog. 

Based on our experimental results, we analyzed the combined outcomes of two implementations and the results 

from pyuvm example tests, as shown in Table I. In the pyuvm example tests (including random_test, parallel_test, 

fibonacci_test and error_test), where all verification tasks occur within the Python environment, a single 

transaction data requires 2.98ms of wall-clock time. In the SV-VIP test, where Python controls the SV-VIP and 

subsequent verification tasks are completed in SystemVerilog, the wall-clock time for a single sequence item is 

0.8ms. Lastly, in the test utilizing Python-generated sequences, where Python generates the sequence items, the 

SV-VIP sends these to the design, and then the response is sent back to Python's scoreboard, the wall-clock time 

for a single transaction data is 72ms. 

Table I. Simulation performance analysis 

Test 

Simulation Performance 

Total Real Time/ms 
Total # of 

Sequence Items 

Time for Single 

Sequence item/ms 

Pyuvm_Example_Test 170 57 2.98 

SV_VIP_Test 240 300 0.8 

Utilizing_Python-
generated_Sequence_T

est 

1440 20 72 

 

Although experimental results may be influenced by various factors, the primary impact is clear: frequent 

interactions between Python and SystemVerilog increase the simulation time greatly. This indirectly supports the 

feasibility of our pathway, as it enables transaction-level data transferring. In contrast, using existing cocotb's GPI 

interface, like VPI (Verilog Procedural Interface) or VHPI (VHDL Procedural Interface), would limit the 

transferring to the signal level, requiring significantly more simulation time. Higher-level data transfer reduces 

interaction frequency, thus decreasing simulation time while leveraging Python's flexibility in handling complex 

data as a software language. 

Finally, we encapsulated the entire pathway to further enhance its standardization, code portability, and 

reusability. For the encapsulated package, we utilized virtual class [8] and interface class [7] at the code level to 

separate user-dependent and user-customizable components. This approach facilitates user integration and 

simplifies future maintenance and extensions by developers.  

We named this pathway BSHL (Bridge-path for SystemVerilog and High-Level Language). This bridge-path 

is not limited to Python, as it is fundamentally independent of pyuvm and cocotb. We envision it as a language-

independent pathway, serving as a window connecting SystemVerilog with any languages that can connect the C 
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language. 

 The package has been successfully implemented in a practical project at Infineon, demonstrating its 

applicability and effectiveness in real-world scenarios. The integration diagram is illustrated in Figure 6 and the 

whole implementation in Infineon’s project demonstrates the package's ease of portability and the functionality 

of the pathway, making it capable of supporting complex projects. 

To summarize the results, we tested the functionality of the entire pathway with two implementations in both 

a simple alu-design demo and a practical project at Infineon, and the results proved several points: 

● Through this pathway, a Python testbench can control SV-VIPs. 

● Python testbench and SV-VIPs can interact at the transaction level through the pathway. 

● The encapsulated pathway offers good portability and code reusability. 

● Compared to signal-level integration, this pathway requires lower simulation effort. 

IV. FUTURE PREDICTION AND CONCLUSION 

For the future research directions of this pathway, we see two main areas of focus. First, further leveraging 

Python's software characteristics to enhance its utilization of SV-VIPs. This could involve applying machine 

learning for adaptive sequence generation or optimizing coverage. Second, refining the entire pathway to optimize 

data transfer delays and enrich the interactions between SV-VIPs and the Python testbench. During the 

implementation, we recognize that, about Python as a future mainstream verification language, there is still a long 

way to go. When dealing with complex projects, the scarcity of IP and the slow execution speed of Python can 

pose challenges. However, we are optimistic about the future of this pathway as it provides a new possibility of 

involving Python in the verification world more deeply, not just as a scripting language. We believe that Python's 

simplicity and open-source nature will attract more people to the field and bring a new dynamism to the 

verification world. 

In conclusion, this paper presents a novel method for reusing SystemVerilog VIPs within a Python 

environment, a capability previously unexplored in research. This approach not only demonstrates the possibility 

of Python to complement the verification toolbox but also enhances the Python verification ecosystem. Moreover, 

it provides a conceptual framework for future integrations between Python environments and SystemVerilog, 

paving the way for more cohesive and efficient verification strategies. This innovative method ensures that Python 

can continue to expand its role in the field of hardware verification, bridging traditional and modern verification 

techniques. Finally, this paper predicts future related work and points out a significant issue with using Python as 

a verification language and its integration with SystemVerilog: simulation performance. However, given the 

prevailing trend of software-based verification tasks, Python, as a powerful programming language, is certain to 

have an impact on the field of verification. 
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