

1

Enable Reuse of SystemVerilog Verification IPs in

cocotb/pyuvm

Yilou Wang, Munich, Germany

Thorsten Dworzak, Dr. Johannes Grinschgl, Infineon Technologies AG, Neubiberg, Germany

wangyilou123@gmail.com, Thorsten.Dworzak@infineon.com, Johannes.Grinschgl@infineon.com

Abstract—This paper presents a novel strategy for enhancing the Python verification ecosystem by integrating

established SystemVerilog Verification IPs (SV-VIPs) utilizing the cocotb and pyuvm framework. Gradually gaining

recognition within the verification community, Python-based environments are being explored for their potential to

become mainstream in future verification processes. This approach taps into the established SystemVerilog ecosystem,

enabling effective reuse of SV-VIPs within Python settings. By leveraging the Direct Programming Interface (DPI-C)

and the ctypes library, our method ensures seamless integration between Python testbenches and SV-VIPs. This

integration not only utilizes Python's simplicity and readability but also fortifies its capacity for handling sophisticated

hardware verification tasks. The paper illustrates this methodology with two practical implementations. It shows

Python's evolving significance as a powerful and adaptable verification language and bridges the current divides

between software flexibility and hardware verification demands.

Keywords—SystemVerilog; UVM; Python Verification; reuse; pyuvm; cocotb

I. BACKGROUND AND INTRODUCTION

As verification tasks proliferate, the exploration of the future of verification is intensifying. It is widely

accepted that writing testbenches is a software problem. Therefore, Python, as a powerful software programming

language, has naturally gained attention. Engineers and researchers are considering the possibility of Python

becoming the future verification language after SystemVerilog. Python offers several inherent advantages as a

verification language, such as:

● Enhanced Productivity and Widespread Use: Python's simplicity and efficiency speed up testbenches

writing. Additionally, its popularity makes it more accessible and easier to learn compared to

SystemVerilog or VHDL, broadening the pool of available talent and resources.

● Extensive Libraries and OpenSource Community: Python's vast libraries facilitate code reuse, reducing

the need to write new code. The active OpenSource community provides significant momentum for

Python verification, leading to the continuous emergence of more and richer IPs.

● Easy Interfacing: Python can seamlessly interface with other languages, increasing its flexibility and

integration capabilities. This is especially beneficial for complex verification tasks, which require

multiple interfaces.

● Interpretative Nature: Python's interpretative nature allows for quick test edits and reruns without the

need for recompilation, significantly speeding up the testing and debugging process.

 With continuous exploration into Python verification, it is now feasible and practical to write testbenches and

run simulations using Python. Cocotb [2] uses coroutines to simulate hardware parallelism and Generalized

Procedural Interface (GPI) to enable communication between Python testbenches and simulators, making it

possible to write testbenches in Python. On top of cocotb, pyuvm [1] integrates the Universal Verification

Methodology (UVM), which is highly popular in the industry, into the Python verification ecosystem. This allows

users to enhance code reusability and improve testbench writing efficiency by using UVM within Python

testbenches. Additionally, pyuvm and cocotb, combined with OpenSource simulators like Verilator, enable

OpenSource UVM verification applications, further enhancing the benefits of using Python.

mailto:wangyilou123@gmail.com
mailto:Thorsten.Dworzak@infineon.com
mailto:Johannes.Grinschgl@infineon.com

2

In this paper, we introduce a novel approach to reuse SystemVerilog-based Verification IPs (SV-VIPs) in a

Python verification environment leveraging cocotb and pyuvm. This method represents a significant shift from

the current research trends, which primarily focus on using a purely Python-based environment for verification

[3] [4]. Unlike the current efforts that aim to create a Python verification infrastructure from scratch, this paper

proposes the integration of existing commercial SV-VIPs, thus augmenting the Python verification ecosystem by

repurposing these SV-VIPs. SystemVerilog has dominated the verification industry for over a decade, with the

industry investing heavily in millions of SV-VIPs, which significantly enhance verification efficiency. These

commercial SV-VIPs are almost indispensable to the current verification industry. Rewriting these in Python

would undoubtedly be complex and inefficient. In contrast, if there were a method to reuse these SV-VIPs within

a Python testbench, it would be a highly promising development. This approach would not only improve efficiency

but also provide a pathway and interface for connecting the Python software world with the SystemVerilog

hardware world.

The proposed methodology serves as a bridge between the established, hardware simulation oriented

SystemVerilog environment and the versatile, high-level Python environment. This is achieved by establishing a

pathway shown in Figure 1 where SV-VIPs are abstracted to the C language level via the Direct Programming

Interface (DPI-C) and connected to Python through the ctypes library. Since we are discussing reuse, we assume

we cannot make any changes to the internals of the SV-VIPs. Instead, we create an application programming

interface (API) as a wrapper around the SV-VIPs and use DPI-C to achieve transaction-level communication via

C language. This connection facilitates seamless interaction between Python testbenches and SV-VIPs, enabling

the execution of verification tasks that leverage the strengths of both programming environments.

II. IMPLEMENTATION

The paper details two implementations that demonstrate the practicality and effectiveness of this approach. By

discussing these implementations, readers can gain a comprehensive understanding of how communication and

synchronization work, as well as how transaction-level data is transferred.

A. Controlling SV-VIPs in Python testbench

The first implementation allows a Python testbench to control the initiation and termination of an SV-VIP,

integrating it as part of the Python testbench to complete verification tasks. As shown in Figure 2, the Python

testbench connects to C language to control the SV-VIP by activating its internal sequence for initiation. The

details of this process involve the design of a communication protocol, implementation of synchronization, and

the addition of a user-defined task phase to allow the Python testbench to regain control.

Figure 1. Pathway Diagram

3

The communication between the Python testbench and the SV-VIP follows the classic master-slave non-

blocking communication model. In this setup shown in the left part of Figure 3, the Python testbench acts as the

master, while the SV-VIP acts as the slave. The slave continuously performs non-blocking wait and request

operations until it receives a release signal from the master. Once the Python testbench releases control, the SV-

VIP executes its task. Meanwhile, the master performs non-blocking wait and query operations to monitor the

state of the SV-VIP. Upon receiving a notification from the slave, the master regains control. The blue and green

boxes in the figure represent which side currently has control. This non-blocking communication model ensures

synchronization between the SV-VIP and the Python testbench, avoiding conflicts on the design side, and it also

supports a master-to-multiple-slave configuration.

However, since the SV-VIP needs to return control to the Python testbench after completing its task and then

continue in a non-blocking wait state, we need to create an additional task phase for the SV-VIP. This user-defined

task phase, called the PythonControlledRunTime, operates within the UVM phase mechanism framework [5],

positioned between the report phase and the final phase. The whole simulation process of two sides and the

addition of the user-defined task phase are shown in the right part of Figure 3. To preserve all the original

functionalities of the SV-VIP as much as possible, we moved the internal function report_summarize() from the

UVM's final phase to the PythonControlledRunTime. This adjustment allows the SV-VIP to maintain its full range

of functions while integrating seamlessly with the Python testbench.

 This first implementation illustrates how SV-VIPs can operate independently within a Python-driven

environment, performing their internal tasks.

Figure 2. Testbench Framework of controlling SV-VIP test

Figure 3. Communication Model (left) and Addition of user-defined task phase (right)

4

B. SV-VIPs utilizing Python-generated Sequence

The second implementation further explores the dynamic capabilities of this framework by enabling the

Python testbench to generate sequences and send sequence descriptors to an SV-VIP via the established pathway.

The SV-VIP, upon receiving these descriptors, generates and dispatches sequences to the Device Under Test

(DUT), monitors the output from the DUT, and sends the results back to the Python testbench, which are checked

and compared in a Python scoreboard, as shown in Figure 4. This implementation showcases the bidirectional

freedom of the pathway and supports dynamic transmission of high-level (transaction level) data. Utilizing this

feature, Python can fully leverage its software capabilities, laying a solid foundation for future extensions.

One common concern when using Python, a software programming language, in the hardware world is the

simulation wall-clock time. Therefore, in this implementation, paper employs two methods to reduce the delay in

transaction transferring. Firstly, the transaction-level data transferring process is dynamic. Figure 5 shows how

Python dispatches sequence descriptors to SystemVerilog: the Python testbench continuously sends descriptors to

the C language, which are temporarily stored in a shared queue. When the C language receives data from Python,

it activates a fork-join on the SystemVerilog side. One part receives the descriptor while the other processes the

descriptor, generating the external sequence and sending it to the corresponding sequencer. The C language

component includes two queues to continuously receive data from both the Python testbench and the SV-VIP.

When the Python testbench dispatches sequence descriptors, the SV-VIP simultaneously sends back the monitored

responses to the Python testbench.

Additionally, it is important to note that the data type being transferred between Python testbench and SV-VIP

is a descriptor. The Python testbench only needs to send the necessary information to the SV-VIP, which then

generates the external sequence based on the descriptor content. This eliminates the need to send redundant

information to the SV-VIP, thereby optimizing the data transfer delay.

Figure 4. Testbench Framework of SV-VIP utilizing Python-generated sequence

Figure 5. Sequence descriptor dispatch

5

This second implementation illustrates how the Python testbench can freely control and interact with the SV-

VIPs, enhancing their tasks. These two implementations not only validate the functionality of the pathway but

also illustrate a future verification model where software languages like Python can handle the software aspects

of verification, with SV-VIPs acting as the bridge to the hardware. This dual approach leverages the strengths of

both domains—Python's flexibility and ease of use in software tasks, and SystemVerilog's specialization in

handling hardware interactions.

III. RESULTS ANALYSIS AND ENCAPSULATION

Through two implementations, we have demonstrated that the pathway successfully connects the Python

testbench and the SV-VIP. The Python testbench can effectively control the SV-VIP while also performing high-

level data transfers with it. This capability is crucial for simulation time efficiency, as our tests reveal that the

primary factor affecting simulation performance is the communication frequency between Python and

SystemVerilog.

Based on our experimental results, we analyzed the combined outcomes of two implementations and the results

from pyuvm example tests, as shown in Table I. In the pyuvm example tests (including random_test, parallel_test,

fibonacci_test and error_test), where all verification tasks occur within the Python environment, a single

transaction data requires 2.98ms of wall-clock time. In the SV-VIP test, where Python controls the SV-VIP and

subsequent verification tasks are completed in SystemVerilog, the wall-clock time for a single sequence item is

0.8ms. Lastly, in the test utilizing Python-generated sequences, where Python generates the sequence items, the

SV-VIP sends these to the design, and then the response is sent back to Python's scoreboard, the wall-clock time

for a single transaction data is 72ms.

Table I. Simulation performance analysis

Test

Simulation Performance

Total Real Time/ms
Total # of

Sequence Items

Time for Single

Sequence item/ms

Pyuvm_Example_Test 170 57 2.98

SV_VIP_Test 240 300 0.8

Utilizing_Python-
generated_Sequence_T

est

1440 20 72

Although experimental results may be influenced by various factors, the primary impact is clear: frequent

interactions between Python and SystemVerilog increase the simulation time greatly. This indirectly supports the

feasibility of our pathway, as it enables transaction-level data transferring. In contrast, using existing cocotb's GPI

interface, like VPI (Verilog Procedural Interface) or VHPI (VHDL Procedural Interface), would limit the

transferring to the signal level, requiring significantly more simulation time. Higher-level data transfer reduces

interaction frequency, thus decreasing simulation time while leveraging Python's flexibility in handling complex

data as a software language.

Finally, we encapsulated the entire pathway to further enhance its standardization, code portability, and

reusability. For the encapsulated package, we utilized virtual class [8] and interface class [7] at the code level to

separate user-dependent and user-customizable components. This approach facilitates user integration and

simplifies future maintenance and extensions by developers.

We named this pathway BSHL (Bridge-path for SystemVerilog and High-Level Language). This bridge-path

is not limited to Python, as it is fundamentally independent of pyuvm and cocotb. We envision it as a language-

independent pathway, serving as a window connecting SystemVerilog with any languages that can connect the C

6

language.

 The package has been successfully implemented in a practical project at Infineon, demonstrating its

applicability and effectiveness in real-world scenarios. The integration diagram is illustrated in Figure 6 and the

whole implementation in Infineon’s project demonstrates the package's ease of portability and the functionality

of the pathway, making it capable of supporting complex projects.

To summarize the results, we tested the functionality of the entire pathway with two implementations in both

a simple alu-design demo and a practical project at Infineon, and the results proved several points:

● Through this pathway, a Python testbench can control SV-VIPs.

● Python testbench and SV-VIPs can interact at the transaction level through the pathway.

● The encapsulated pathway offers good portability and code reusability.

● Compared to signal-level integration, this pathway requires lower simulation effort.

IV. FUTURE PREDICTION AND CONCLUSION

For the future research directions of this pathway, we see two main areas of focus. First, further leveraging

Python's software characteristics to enhance its utilization of SV-VIPs. This could involve applying machine

learning for adaptive sequence generation or optimizing coverage. Second, refining the entire pathway to optimize

data transfer delays and enrich the interactions between SV-VIPs and the Python testbench. During the

implementation, we recognize that, about Python as a future mainstream verification language, there is still a long

way to go. When dealing with complex projects, the scarcity of IP and the slow execution speed of Python can

pose challenges. However, we are optimistic about the future of this pathway as it provides a new possibility of

involving Python in the verification world more deeply, not just as a scripting language. We believe that Python's

simplicity and open-source nature will attract more people to the field and bring a new dynamism to the

verification world.

In conclusion, this paper presents a novel method for reusing SystemVerilog VIPs within a Python

environment, a capability previously unexplored in research. This approach not only demonstrates the possibility

of Python to complement the verification toolbox but also enhances the Python verification ecosystem. Moreover,

it provides a conceptual framework for future integrations between Python environments and SystemVerilog,

paving the way for more cohesive and efficient verification strategies. This innovative method ensures that Python

can continue to expand its role in the field of hardware verification, bridging traditional and modern verification

techniques. Finally, this paper predicts future related work and points out a significant issue with using Python as

a verification language and its integration with SystemVerilog: simulation performance. However, given the

prevailing trend of software-based verification tasks, Python, as a powerful programming language, is certain to

have an impact on the field of verification.

REFERENCES

[1] R. Salemi, "Python for RTL Verification: A Complete Course in Python cocotb and pyuvm", 2021.

[2] Welcome to cocotb’s documentation! cocotb 1.8.1 documentation, [online] Available: https://docs.cocotb.org/en/stable/.

Figure 6. Integration of BSHL in a demo project

7

[3] H. Liang, N. Tan, Y. Ren, W. Hu, J. He and J. Xia, "Python Based Testbench for Coverage Driven Functional Verification," 2022 7th

International Conference on Integrated Circuits and Microsystems (ICICM), Xi'an, China, 2022, pp. 361-365, doi:

10.1109/ICICM56102.2022.10011364.

[4] M. H. Fayez et al., "Fault simulation Framework using pyuvm," 2023 International Conference on Microelectronics (ICM), Abu Dhabi,

United Arab Emirates, 2023, pp. 158-161, doi: 10.1109/ICM60448.2023.10378910.

[5] Qiang Zhang, UVM Combat, Machinery Industry Press, 2014.

[6] Liu, Bin, A Walking Guide to SoC Verification, Publishing House of Electronics Industry, Beijing, 2018.

[7] Sokorac, S., SystemVerilog interface classes – more useful than you thought, DVCon, USA, 2016.

[8] Spear, Chris, System Verilog for Verification, 2 Aufl., Springer Publishing Company, Incorporated, 2008.

