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Abstract- According to the automotive ISO-26262 standard, random bit-errors in registers controlling safety-critical 

function in modules of microcontroller SoCs for vital applications need to be detected. Dangerous failure modes are to be 

caught by taking adequate and timely reactions and driving the system into a safe state before potential harm is caused to 

human lives. Using a library of formally pre-verified parametric safety components, a specific register monitoring 

mechanism has so far been manually integrated in many modules of automotive microcontroller product families of 

Infineon. The integration of these library components must follow certain well-defined rules, which is ensured by 

dedicated integration checks of the modules. We now have taken the next step: Having demonstrated that the integration 

verification of this safety mechanism can be automated, we felt that the previously manual integration process itself 

should also be automatable. This paper summarizes how analysis and verification routines are enhanced to fully automate 

the installation of the safety mechanism in such a way that not only substantial manual design effort is saved, but also 

correctness by construction is achieved. 

 

I.   INTRODUCTION 

Since the first generation of the AURIX microcontroller family from Infineon, we have integrated a register-

monitoring mechanism in many safety-critical modules which have to fulfill the requirements of automotive-safety-

integrity levels (ASIL) according to ISO 26262[1]. Examples are system control modules like reset- and clock-control 

units and memory controllers. For this purpose, we have developed and continuously enhanced a Safety-Flip-Flop 

(SFF) library of highly configurable safety components (Fig. 1) and specified a corresponding design methodology 

together with integration rules. From the very beginning, we have supported integration verification by formal-

property-checking and more recently by fast structural analysis routines[2]. This has been essential to ensure that the 

quite sophisticated pre-defined safety components have been correctly installed. However, module designers so far 

could not enjoy comparable support and automation. They had to study work-instructions and spend manual effort for 

transforming previously unprotected logic blocks in a sound way so that the safety function was added without 

corrupting the regular mission function and no alarms could be lost. While the comprehensive post-hoc verification 

safeguarded the correctness of final design versions before release, bugs could well occur in preliminary versions and 

cause substantial debugging and correction efforts even in late design phases.  

This paper presents an automated methodology which transforms an unprotected register-transfer-level (RTL) 

design of a module or design part (DP) into a safeguarded version preserving all previous mission function. Additional 

function is integrated for error detection and optional correction, which also includes a hardware self-test mechanism 

that can be started at any time by customer software without interruption of the regular operation. The resulting safety 

architecture consists of inserted instances of the formally- and field proven safety-library components and generated 

wiring between these. These components encapsulate all register function, alarm- and self-test-logic, so that designers 

don’t have to re-invent similar solutions. Moreover, the automatic insertion procedure avoids potentially suboptimal 

implementations adding more redundant area than necessary, even if being functionally correct. A preliminary study 

was done in[3]. We chose the script language TCL[4] for implementation, because the used formal-property-checker 

environment[5] provides a TCL-shell with basic utilities for accessing data of compiled designs like constant-values, 

signal-fan-ins and much more. Moreover, proprietary routines we developed for our integration-verification flow[2] 

are re-usable for design transformation. They could be re-implemented in other languages and tool environments, 

provided these support comparable design data extraction function. Some routines have been written in Python[8]. 

 

This paper is organized as follows. In Section II, three basic library components of our hardware safety mechanism 

are recapitulated. Section III roughly describes the manual methodology for integration of this safety mechanism in 

unprotected designs. Section IV sketches automatic sub-routines contributing to structural integration verification. We 

indicate how some of these are used for design analyses required for setting up a sound safety architecture based on 

the library components. In Section V, sub-routines for transforming original register logic are explained.  

In Section VI, everything is put together to our coherent automated register hardening flow. Section VII discusses 

results and gives an outlook on extensions for the next future. 



 

II.   LIBRARY FOR REGISTER PROTECTION 

Three parametric library components for installing our register monitoring hardware safety mechanism are offered: 

a register wrapper, an alarm reductor, and an umbrella controller. Internal SFF-library component details not relevant 

for the automated flow are neglected. 

 

 
 

 

A. SFF-Wrapper 

The wrapper contains regular register function and configurable redundancy which allows random faults to be 

detected. It can be configured with a self-test feature for flipping redundant, and optionally also data bits in a defined 

way to make sure that the alarm logic and propagation works and to detect stuck-at faults. For this purpose, the wrapper 

has an extra test-input vector (sfftd_i) which encodes self-test phases. In each phase, bits are flipped according to a 

specific protocol so that at the end of a test sequence the register contains the correct functional value. In each phase, 

alarm signals behave in a pre-defined way, so that any deviation indicates malfunction of the safety mechanism. 

The wrapper has a data input vector (d_i) and an update vector (ud_i), which enables bit-precise writing of new 

values. Each bit of the register can be configured to be combinational or sequential, unprotected or protected, testable 

or non-testable. Another generic parameter allows the protection method to be chosen, such as double or triple modular 

redundancy, parity, or ECC protection. Implementing register function, the wrapper has a reset and a clock input. 

Alarms are generated by combinational logic in case of any discrepancy between productive and redundant data. 

 

B. SFF-Alarm-Reductor 

To reduce the number of domain alarms to be processed by the central controller, alarm signals from different 

wrappers with same clock and reset domain (:= SFF-domain) can be combined before being propagated. 

 

C. SFF-Umbrella-Controller 

All control function regarding alarm collection and test-phase generation is encapsulated in a highly configurable 

umbrella controller which includes a separate domain controller for each SFF-domain. 

Apart from synchronizing and combining alarms received from the different SFF-domains, the umbrella controller 

generates the test-phases to the domains, which potentially requires synchronization in the other direction. The 

generation of synchronization logic is configured by way of a generic parameter which depends on the clock relations 

between the ultimate alarm to the Safety-Management Unit (SMU) and the local domains. 

 

III.  MANUAL INTEGRATION OF SAFETY COMPONENTS 

For automating a manual methodology, its individual steps need to be carefully analyzed. Manual integration of the 

register monitoring mechanism is recommended to be carried out by first replacing original registers with SFF-

wrappers, then inserting SFF-alarm-reductors and finally installing an SFF-umbrella controller, and wiring everything 

together. In the following, the basic steps for integrating the library components are summarized, which comprise 

insertion and configuration of these, and wiring them through the hierarchical module architecture. 

 

A. Insertion of SFF-wrapper 

1. Extraction of the next-state logic into a combinational process for assigning the write value and generating 

the write strobes at bit-level for overwriting the previous register value. 

 

Figure 1: SFF-Library Components 



2. Providing conversion functions of data-inputs and -outputs of the SFF-wrapper between the original 

register datatype and the bit-vector type expected by the SFF-wrapper. 

3. Inserting an SFF-wrapper, connecting its data and update input vectors to the converted signals. 

4. Connecting the re-converted SFF-wrapper data output to the fan-out of the previous register. The approach 

is here just to give the converted data output the same name of the previous register so that the RTL code 

of the register fan-out logic needs no update. 

5. Configuring protection method and self-test-support of the wrapper according to the specification table. 

6. Configuring bit-mask constants which decide upon the protection of each individual register bit according 

to the specification table. This approach particularly allows different bit-fields of software-accessible 

special-function-registers (SFR) to be individually chosen to be protected or not, depending on their safety-

criticality. Unused bits of an SFR can additionally be masked away so that no superfluous flip-flops are 

allocated for them and there is no necessity that the design engineer maps index ranges of SFF-wrapper 

ports manually to bit-slices of original vector signals. 

 

B. Insertion of SFF-alarm reductor 

1. Identify combinable alarms according to SFF-domains, starting with component instances containing SFF-

wrappers, and proceeding with instances at higher levels which get combined alarms from their sub-

components, from SFF-wrappers and subordinate alarm-reductors. 

2. For each SFF-domain in each component instance with more than one alarm insert one SFF-alarm-

reductor, otherwise no reductor is needed.  

3. Augment the component instance interface by the required combined-alarm outputs. 

4. Connect the SFF-alarm reductor input to compatible domain alarms from SFF-wrappers or from sub-

components and wire its combined-alarm output through to the current component interface. 

 

C. Insertion of SFF-umbrella controller 

1. In a selectable parent component, insert an SFF-umbrella-controller. 

2. Configure it according to the overall number of different SFF-domains, their self-test support and whether 

they provide error correction or detection only. 

3. Connect all combined alarms received for the different SFF-domains to the domain controller inputs of the 

SFF-umbrella controller. Augment the interfaces of all components in all paths from SFF-umbrella 

controller to SFF-wrappers and wire the test-control inputs of these to the test-control outputs of the SFF-

umbrella controller for the corresponding domains. 

 

The described steps are schematic and in total not very difficult, but their manual execution is error-prone and costs 

the design engineers quite some effort.  

 

IV.   SUBROUTINES FOR STRUCTURAL INTEGRATION VERIFICATION 

In [2] we described our automated SFF integration verification flow, which contains elements also useful for design 

transformation. In this section, such re-usable routines are summarized. Additional background algorithms are invoked 

to generate area-optimal error-detection logic, taking into account gate-counts and -areas. 

 

A.  Fan-in- and -out tree-computation 

A proprietary very versatile and efficient recursive routine for determining transitive fan-ins and fan-out of bits or 

signals can specifically be used for tracing alarm-, reset-, clock-, and test-control signals between SFF-components 

and global module ports. It takes a bit or a signal as first argument and can work at bit or signal level according to the 

second parameter. As third parameter a direct-fan-in or -out function can be given, as provided by the tool 

environment, followed by a number for the maximum recursion depth, which can be unlimited if the value 0 is given. 

In this case, the recursion is stopped when either a global input, a previously visited, or a member of a termination list 

has been reached. The complete fan-in tree of a global output can have a depth of several 100 levels. Further parameters 

specify bit or signal lists for local or global termination of the recursion. Finally, the construction can be selected to 

be depth-first or breadth-first, yielding different results if global termination is applied. In the context of SFF 

integration verification., this basic procedure is used for different purposes, like the following one. 

 

B. Determination of global clock and reset domains of registers 

Another routine allows us to determine the SFF-domains of the safety-critical registers which have been or shall be 

protected. Global clock and reset domains are traced from local clock and reset inputs of registers to identify equal 



SFF-domains of registers in different module components. By tracing clock signals through clock gates to global clock 

inputs, we are further able to determine clock relationships. From these we can infer whether synchronization logic 

and which kind of it needs to be allocated in the SFF-umbrella-controller. For instance, if an SFF-domain clock is 

asynchronous to the clock in which the global alarm is sent from the SFF-umbrella controller to the safety management 

unit, synchronization needs to provide a handshake protocol in both directions, i.e. for sending the test phase to the 

SFF domain and receiving the domain alarm so that no alarm is lost even if the domain alarm pulse is shorter than the 

clock period of the external alarm to the SMU. The asynchronous clock is assumed if it depends on a different global 

clock input of the module than the global alarm. Such information is used to check whether a design engineer has 

correctly chosen the corresponding generic parameter of the SFF-umbrella controller. In the flow for generating the 

SFF-architecture, it is used to determine this configuration parameter of the umbrella controller automatically. 

 

C. Checking whether registers are safeguarded as specified 

A specification of all registers to be safeguarded is given as a table (Fig. 2) where for each register the protection 

method, e.g., double-bit error detection (DED), and the bits to be protected are specified, and whether it should be 

self-testable, e.g. by reduced testing (RT: only redundant bits flipped). If this specification table is not yet available, 

at least a register file will be provided by concept engineering which specifies bit-field layouts and attributes of all 

special function registers and bit-fields, including their safety properties. A specific sub-routine also used for automatic 

register verification locates the implementation signals of the special function registers in the RTL design. It works 

regardless of whether the special function registers have been implemented by SFF-wrappers or ordinary unprotected 

state signals. One SFF-integration check then compares the specified attributes with the actual implementation.  

The specification table contains at least all safety-critical special function registers and specifies protection and self-

test method. Ideally, design, concept, and functional-safety engineers have also agreed which internal registers should 

be protected. By way of structural analyses of internal registers in the fan-in and fan-out cone of safety-critical module 

ports and registers, we can optionally generate suggestions for the protection of further internal registers. In this case, 

the SFF attributes of the previous registers are inherited to the additional ones. Regardless of how the specification 

table has been created, or of whether just the special function registers or additional internal registers are contained, 

any such specification table will be accepted as input to the automatic register-protection flow. 

 

 

 

 

 

 

 

 

 

 

D. Routine for determining reset values 

After the reset domain of each register in the design has been automatically determined by structural analyses, a 

pseudo property is generated which activates a reset and yields a counterexample. From this, the reset values of all 

registers in that reset domain are extracted by way of a function available in the formal property checker which returns 

the bit-values of any signal from a given property counterexample- or witness trace at any timepoint. The check of 

this pseudo property is very fast and allows the extraction of the values for all signals and bits which have been reset 

due to the reset activation assumption in the property. 

Although SFR-verification is a topic for regular functional verification, structural SFF-integration verification can 

already check whether reset values and domains of SFF-wrappers implementing SFRs are consistent to specifications. 

In our SFF-insertion flow, these automatically determined reset values are used to configure the generic reset 

parameters of the corresponding SFF-wrappers. 

 

V.   TRANSFORMING REGISTER WRITE LOGIC 

A. Extracting synchronous assignments into combinational process 

A new sub-routine which is not part of the SFF-integration-verification flow deals with the transformation of 

synchronous RTL processes with register write logic into combinational processes for computing the next state values. 

Some RTL designers follow a design style where they provide one combinational process for the next-state logic, and 

a second, synchronous process for assigning the next state value to the register signal. In this case, the combinational 

process can just be kept, and the synchronous process be removed, since the register update is instead implemented in 

 

Figure 2: Specification Table 



an SFF-wrapper. If a synchronous process writes several registers only some of which are to be protected, the process 

is split into one keeping registers not to be safeguarded and another combinational one for the write data values of 

those to be protected. For all combinational next state values and update vectors to be connected to the SFF-wrapper 

input ports, new signal declarations are inserted. 

To handle synchronous signal assignments in which the combinational logic has not already been written into a 

separate process by the designer, a VHDL parser is used to analyze the process. From this analysis, a new, 

asynchronous process is generated, in which the signal is assigned based on the same conditions as in the synchronous 

process with the only change being that the clock edge condition as well as the reset branch are removed. The 

information from this parsing step is used to modify the existing HDL code in such a way that any other signals from 

the transformed process remain unaffected unless they too are supposed to be secured in SFFs. This ensures not only 

that the signals to be secured are assigned correctly to an SFF, but also that there are no side effects on signals which 

may be assigned in the same process. The use of a parser in this step helps to guarantee the correctness of the SFF 

integration regardless of the language constructs used, as well as making the conversion algorithm less specific to the 

target HDL. This is particularly important with regard to the goal of correctness by construction as mentioned above, 

as well as the development of a SystemVerilog version of the tool. 

The parser used to extract this information was generated using ANother Tool for Language Recognition (ANTLR4) 

[6]. This tool allows for the generation of a parser in a specified target language given a grammar in extended Backus-

Naur form (EBNF). For this use case, ANTLR4 was used with the grammar of the VHDL93[7] standard to generate 

a VHDL parser implemented in Python[8]. Python was chosen as a target language due to its ease of use and relative 

speed compared to TCL[9], however, other targets such as C++ or Java would have also been possible. This made it 

comparatively simple to obtain a parse tree from any syntactically correct VHDL document. ANTLR4 can also be 

used to generate so-called visitor classes which traverse such a parse tree in a depth-first search and can be modified 

to perform specific actions when encountering certain language constructs (e.g. a VHDL signal assignment). Such a 

visitor was then used to extract from a synchronous VHDL process the information required to construct an equivalent, 

combinational process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fsm_comb_p : PROCESS(ccucon_reg_o, fsm_state_s, 

                     reload_i, ccucon_i)  

BEGIN  -- fsm_comb_p 

   nx_ccucon_reg_o  <= ccucon_reg_o;   

   upd_ccucon_reg_o <= (others => '0'); 

      nx_fsm_state_s <= fsm_state_s;      

  upd_fsm_state_s <=  (others => '0'); 

  CASE fsm_state_s IS 

     WHEN IDLE => 

        IF (ccucon_valid_sync = '1') THEN 

          nx_fsm_state_s    <= CAPTURE; 

         upd_fsm_state_s   <=  (others => '1'); 

       END IF; 

     WHEN CAPTURE => 

      IF (reload_i = '1') THEN 

         nx_fsm_state_s     <= ACK; 

         upd_fsm_state_s <=  (others => '1'); 

        nx_ccucon_reg_o  <= ccucon_i; 

        upd_ccucon_reg_o <= (others => '1'); 

       END IF; 

   WHEN ACK => 

     IF (ccucon_valid_sync = '0') THEN 

       nx_fsm_state_s  <= IDLE; 

       upd_fsm_state_s <=  (others => '1'); 

    END IF; 

   WHEN OTHERS => 

        nx_fsm_state_s    <= IDLE; 

       upd_fsm_state_s   <=  (others => '1'); 

   END CASE;  

END PROCESS fsm_comb_p; 

fsm_seq_p : PROCESS(clk_i, reset_n_i)  

BEGIN  -- fsm_seq_p 

 IF (reset_n_i = '0') THEN 

  --SFFed:   fsm_state_s      <= IDLE; 

  --SFFed:  ccucon_reg_o <= (OTHERS => '0'); 

  idle_s <= ‘1’; 

 ELSIF (clk_i'EVENT AND clk_i = '1') THEN 

  CASE fsm_state_s IS 

   WHEN IDLE => 

    idle_s <= ‘1’; 

    IF (ccucon_valid_sync = '1') THEN 

    --SFFed   fsm_state_s     <= CAPTURE; 

    END IF; 

   WHEN CAPTURE => 

     idle_s <= ‘0’; 

    IF (reload_i = '1') THEN 

     -- SFFed:  fsm_state_s     <= ACK; 

      --SFFed  ccucon_reg_o  <= ccucon_i; 

    END IF; 

   WHEN ACK => 

     idle_s <= ‘0’; 

    IF (ccucon_valid_sync = '0') THEN 

     --SFFed  fsm_state_s  <= IDLE; 

      ... 

    END IF; 

   WHEN OTHERS => 

     idle_s <= ‘1’; 

    --SFFed:  fsm_state_s     <= IDLE; 

   END CASE; 

 END IF; 

END PROCESS fsm_seq_p; 

Figure 3: Reduced Synchronous VHDL Process Figure 4: New Combinational VHDL Process 



 

The code example in Fig. 3 shows a synchronous process after transformation, where the registers fsm_state_s and  

ccucon_reg_o  are hardened, while the register idle_s is kept unprotected. All assignments in the synchronous process 

which are moved to the new combinatorial process shown in Fig. 4 are just commented out. The combinational process 

preserves the control structure of the clocked sub-block of the original synchronous process. 

 

B. Type conversions 

In above example, the protected register ccucon_reg_o already has bit-vector type, but for the state signal 

fsm_state_s, the result of the combinational process as shown in Fig. 4 needs to be converted from the original 

enumeration type into bit-vector type.  For enumeration types, encodings are available, which can be directly used for 

generating conversion functions in both directions. Either default encodings have been defined by the RTL designer, 

or an enum_attribute has been added to introduce a user-defined encoding, which could be a one-hot encoding for 

safety-purpose. Especially in the latter case, it is questionable whether the one-hot encoding is still needed, as the 

register is now going to be protected by the SFF-mechanism. For now, we use the original encoding for conversion of 

the enumeration type into bit-vector type and backwards. The conversion functions are generated automatically by a 

sub-routine which reads the type declaration. In above example, let us assume the type declaration to look like: 

 

 

 

 

 

The generated VHDL conversion functions directly follow this encoding. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

With the standard encoding, the VHDL attribute ‘pos can just be used for this purpose.  

 

FUNCTION conv_fsm_t_sulv(ARG : fsm_type) 

RETURN std_ulogic_vector IS 

  BEGIN 

    CASE ARG is 

      WHEN IDLE => 

          RETURN “001”; 

      WHEN CAPTURE => 

          RETURN “010”; 

       WHEN ACK => 

          RETURN “100”; 

       WHEN OTHERS => 

          RETURN “000”; 

       END CASE;  

  END conv_fsm_t_sulv; 

 

FUNCTION conv_sulv_fsm_t(ARG: 

std_ulogic_vector) RETURN fsm_type IS 

  BEGIN 

    CASE ARG is 

      WHEN “001” => 

          RETURN IDLE; 

      WHEN “010” => 

          RETURN CAPTURE; 

       WHEN “100” => 

          RETURN ACK; 

       WHEN OTHERS => 

          RETURN IDLE; 

       END CASE;  

  END conv_sulv_fsm_t; 

TYPE fsm_t IS (IDLE, CAPTURE, ACK); 

    ATTRIBUTE enum_encoding OF fsm_t: TYPE IS "001 010 100";  (6) 

 

Figure 5 

inst_sff_wrapper_wrp0: sff_wrapper 

 GENERIC MAP ( sff_pmeth_g => sff_pded_c,…) 

  PORT MAP ( 

     clk_i      => clk_i,  reset_n_i => reset_n_i, …, 

     sff_d_i   => nxv_wrp0_s,  sff_ud_i  => upd_wrp0_s,sff_d_o   => wrp0_s,sffar_o   => sffar_o); 

nxv_wrp0_s        <= conv_fsm_t_sulv(nx_fsm_state_s) & nx_ccucon_reg_o; 

upd_wrp0_s        <= upd_fsm_state_s & upd_ccucon_reg_o; 

ccucon_reg_o     <=  wrp0_s(ccucon_reg_o’range); 

fsm_state_reg_o <=  conv_sulv_state_t(wrp0_s(nxv_wrp0_s’left downto ccucon_reg_o’length); 

 

Figure 6: Conversion to Bit-Vector Figure 7: Conversion to State Type 

Figure 8: Instantiation of SFF-Wrapper 



C. Instantiation of SFF-wrapper 

The converted and concatenated next-state and update vectors are connected to the corresponding SFF-wrapper 

inputs, and the output is converted back and assigned to the original signal which had been the unprotected register 

signal before. In the example in Fig. 8, we assume the two previously mentioned signals to be protected together, and 

the protection method is configured as “double-error-detection”, as assumed to be chosen in said specification table.  

 

 

VI.   AUTOMATIC REGISTER HARDENING FLOW 

The complete top-level procedure takes the compiled RTL design and a specification table with the registers to be 

safeguarded. Internally, it comprises four major steps: 

1. Collecting data needed for optimum pre-structuring of the set of all register bits to be protected into SFF-

wrappers depending on clock- and reset domains, instance hierarchies, protection methods, self-testability 

requirements, and maximum wrapper widths. If ECC (error correcting code) protection[10] is specified as 

protection method, i.e. double-bit error detection and optionally additional single-bit error correction, 

combining more bits into one wrapper is advantageous, as the required ECC-width grows just logarithmically 

with the data width. On the other hand, depending on the maximum clock frequency in which the specific 

module shall be operated, the allowable combinatorial run-time for ECC-computation is limited, therefore the 

user can specify the maximum SFF-wrapper width. By this preparatory step, an implementation plan is 

generated which contains the logical wrapper partitioning of register bits to be protected and more information 

to place and route the SFF-components to be inserted in the next steps. 

2. Replacing the registers with SFF-wrappers, connecting the data-inputs and -outputs of it as described. 

3. Inserting alarm reductors and connecting their alarm input vectors to the alarm outputs of the SFF-wrappers 

which belong to the same SFF-domain. 

4. Inserting the SFF-umbrella controller and configuring it according to the total number of SFF-domains, 

connecting the domain alarm inputs to the corresponding alarm reductors or SFF-wrappers for each domain 

and in the other direction the wiring of the domain test-vectors to the SFF-wrappers of the same domain, and 

the global connections to the safety management unit. 

 

Since the automatic SFF integration flow requires connecting automatically generated components as well as 

instances and signals that do not yet exist, a customized wiring algorithm was developed to complete the specific 

wiring tasks required for the SFF integration. This has the additional advantage that the SFF instantiation, process 

modification and signal wiring can be done in one step without the need for recompilation, speeding up the integration 

flow. To achieve this, the same parser that is used for converting synchronous signal assignments to be asynchronous 

above is reused to connect the new instances required to integrate the SFF components into a design. 

 

Dedicated formal properties are additionally generated with wrapper architectures instantiating original and 

safeguarded design components to prove that mission function is not affected by the design transformation. They are 

structured like usual induction proofs with a base case in which the equivalence of corresponding signal bits is checked 

after reset, and a step case checking preservation of equivalence from one cycle to the next. 

 

If a module design already contains SFF, it can occur that some previously safeguarded registers are decided not to 

be protected in a specific other product for a different use case in non-safety applications, so that redundant area can 

be saved. As the SFF-wrappers can be configured to implement individual bits just as regular flip-flops, the approach 

included in the automatic flow is to just adapt the configuration parameters accordingly but keep the SFF-wrappers in 

the module. If all bits of resulting SFF-wrappers are configured as unprotected, the alarm outputs of just left 

unconnected. 

 

In summary, the automatic flow generates an implementation plan based on user specification and design analysis, 

transforms register assignment processes, inserts and configures the SFF-library components bottom-up, and wires 

these up through the instance hierarchy and to the module interface. 

 

 

VII.   RESULTS AND DISCUSSION 

We have shown the applicability of the flow for system control units from Infineon 32-bit microcontroller families 

with several 10k lines of code as a pilot, where the complete code transformation takes < 10 minutes including 



identification of clock domains, reset classes and values, once the original unprotected design has been elaborated in 

the formal-property-checking environment so that all structural analyses can be run. 

As in our current product family the register-monitoring mechanism has already been installed manually, the benefit 

for productive usage of the automated flow will be fully visible for future families. Nevertheless, there may well be 

changes for new derivatives of the current product family, where the automatic flow will be applied not only for 

modification of the protected register set, but also for optimization of safety architectures with respect to area 

consumption and unnecessary signal complexities which also affect the legibility of manually generated RTL code. 

In total, we see following major benefits of the new flow: 

1. Design effort reduction:  

Up to now, a design engineer has needed several days using the manual methodology to familiarize with the 

register-monitoring concept, and then further days to weeks to integrate the safety mechanism, all on top of 

the regular design effort for the mission function. With the automatic flow, this extra effort is saved. 

2. Chip area 

The automated flow generates an optimal result due to structural analyses a designer not having deeper 

knowledge about the safety mechanisms would typically not be able to achieve. In particular, the partitioning 

of register flip-flops into SFF-wrappers has an impact on the total amount of extra flip-flops and logic gates 

which can be better controlled by the automatic flow. 

3. Verification effort reduction: 

Despite our claim to yield correctness by construction, we would not recommend skipping integration 

verification, but we expect at least saved efforts for verification, bug analyses and corrections. 

 

We plan to address SystemVerilog[11] designs and optimization of previously hand-written safeguarded designs. 

As the development was example-driven by representative modules, we might have to augment the procedure for 

designs with rare HDL features not yet supported. In the worst case, the designer could still update the automatically 

generated safety enhancements, but spending much less effort than adding the safety components completely manually 

like in the past. Even if our presented methodology is based on a company-proprietary safety library, the general 

approach could be applied to other libraries of pre-defined components which encapsulate configurable function and 

are supplied together with well-defined and machine-readable integration rules, possibly by third-party IP vendors.  

 

Overall, we conclude that the step from automatic verification to design generation is feasible and very beneficial. 

Such automation is simplified by a uniform design concept based on well-defined library components, which allow 

all relevant signals and constants to be identified and filtered. The resulting RTL design is handled like previously 

fully hand-written RTL designs, where physical separation rules according to ISO26262 are followed in later steps. 

Like any automatic procedure, the real benefit depends on how often it is applied, and on the effort saved each time. 

In our chip projects with many safeguarded ASIL D modules and different product derivatives, it is advantageous. 

 

We believe that our approach, which is based on expert knowledge and experience with this safety mechanism in 

combination with automated design analysis, is (still?) superior to generative AI which would have to be fed with a 

big collection of potentially suboptimal manually transformed designs by individual designers with varying 

understanding of the methodology who may not fully grasp all complex signal dependencies within the design. 
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