

1

A UVM Testbench for Checking the Global
Convergence of Analog/Mixed-Signal Systems:

An Adaptive Decision-Feedback Equalizer Example

Jaeha Kim, Seoul National University, Seoul, Korea (jaeha@snu.ac.kr)

Abstract— A UVM testbench capable of verifying the global convergence property of an analog/mixed-signal system
is presented. For example, a sign-sign LMS adaptation algorithm for a decision-feedback equalizer (DFE) may
converge to a false final state depending on the initial state. To detect the existence of such false final states, the testbench
launches a sequence of trial runs, each starting from a random, unvisited initial state, until all possible states of the
system are tried or traversed, or a problematic initial state is found. The simulation is run entirely in SystemVerilog
by modeling the analog components of the high-speed wireline transceiver using the XMODEL primitives. To generate
a sequence of trial runs based on the previous results and evaluate the termination conditions, the testbench utilizes a
shared state coverage database and a global UVM event. The experimental results show that the testbench swiftly
uncovers the false final states caused by high channel loss or insufficient constraints, and successfully confirms the
global convergence of the adaptation loop when no such issues exist.

Keywords—analog/mixed-signal verification; universal verification methodology (UVM); SystemVerilog; XMODEL;
global convergence; decision-feedback equalizer (DFE).

I. INTRODUCTION

Equalizers are key building blocks of high-speed wireline transceivers that compensate for the frequency-
dependent loss in their channels. Since the exact characteristics of the channels are not known at the design time,
the equalizers are often accompanied with adaptation loops, which calibrate the equalizer filter coefficients during
the initialization stage. However, an adaptation loop may not always find the optimal coefficients, especially
depending on the initial coefficient values it starts with. To address this concern, this paper aims to build a UVM
testbench that can verify the global convergence property of a digital adaptation controller for a decision-feedback
equalizer (DFE) of a high-speed wireline receiver. In other words, we present a testbench that can check if the DFE
adaptation algorithm can settle to the desired optimally equalized state, starting from an arbitrary initial state.

Building such a UVM testbench presents several challenges. The first challenge is the need to simulate analog
circuits (e.g., the high-speed transceiver circuits including the DFE) alongside digital systems (e.g., the DFE
adaptation controller) on a platform that supports UVM, which is SystemVerilog. This requires the capability to
model and simulate analog circuits in SystemVerilog, using methods such as Real-Number Modeling or XMODEL.
The second challenge is the necessity to test every possible initial state of the DFE and verify their convergence to

Figure 1. A high-speed wireline receiver with an adaptive decision-feedback equalizer (DFE).

2

the same equalized state. For a 4-tap DFE, with each tap coefficient having a 6-bit value, a brute-force approach
would require 224 (≈16.8 million) trials. To address this, the presented UVM testbench leverages the fact that each
trial run, starting from a given initial state, traverses through multiple intermediate states before reaching the final
state. This means that one trial run can verify more than one initial state. To accomplish this, the testbench needs
to keep the records of all previously visited states and initiate new trials with unvisited states until all possible states
are marked as visited, or a problematic initial state is found.

 The rest of the paper is organized as follows. Section II reviews the background of DFE and its sign-sign least-
mean-squares (LMS) adaptation algorithm. Section III describes how these can be modeled in SystemVerilog using
XMODEL. Section IV presents the UVM testbench that verifies the global convergence property of the adaptive
DFE. Finally, Section V discusses the experimental results obtained with the UVM testbench, and Section VI
concludes the paper.

II. SIGN-SIGN LEAST-MEAN-SQUARES (LMS) ADAPTATION FOR DECISION-FEEDBACK EQUALIZERS

Fig. 1 illustrates the front-end part of a high-speed wireline receiver with a 4-tap adaptive DFE. The receiver
produces the output data Dout[n] recovered from the incoming signal in by first filtering it with a continuous-time
linear equalizer (CTLE), second subtracting the expected inter-symbol interference (ISI) caused by the previously-
transmitted data Dout[n-1], Dout[n-2], Dout[n-3], and Dout[n-4], and finally slicing the result [1]. Here, the ISI is
computed as a weight sum of w1⋅Dout[n-1] + w2⋅Dout[n-2] + w3⋅Dout[n-3] + w4⋅Dout[n-4], where w1, w2, w3, and w4
are called the tap coefficients of the DFE. To support a wide range of communication channels with diverse
characteristics, most advanced wireline receivers have the capability of adapting the DFE tap coefficients
automatically, typically via a simplified form of the least-mean-squares (LMS) algorithm, called the sign-sign
LMS algorithm [2]. The algorithm updates each tap coefficient value wk using the update formula listed below:

 (1)

where y[n] is the actual input to the DFE sampled at time n, e[n] is the difference between y[n] and the desired
input level (=dlev⋅Dout[n]), and μ is a scaling factor controlling the amount of change made with each observation.
Basically, the algorithm adjusts the tap coefficients wk's in a direction that can reduce the mean squared value of
the error e2[n]. To simplify the implementation, the sign-sign LMS algorithm detects only the polarity of the
change necessary to each wk, by approximating sign(y[n-k]) with Dout[n-k].

However, it is this approximation that can cause the global convergence issues. Note that y[n-k] is the input to
the DFE before the ISI is subtracted, whereas Dout[n-k] is the data decision made on the signal after the ISI is
subtracted. When the subtracted ISI term is small, the approximation holds well. However, when it is not, the
adaptation can progress in a wrong direction, leading to a false convergence, i.e., the state that the DFE cannot
properly recover the correct data. For example, the channel may have significant loss at high frequencies,
demanding large DFE tap coefficient values. Or, the DFE tap coefficients may start with large values for some
reason. In these cases, the computed ISI term can become large enough to cause global convergence failures.

III. MODELING OF HIGH-SPEED WIRELINE RECEIVER WITH ADAPTIVE DECISION-FEEDBACK EQUALIZER

Fig. 2 shows the overall block diagram of an example 16-Gb/s high-speed wireline transceiver model, including
the adaptive DFE and its sign-sign LMS adaptation loop. This model is largely similar to the one presented in [3].
On the transmitter side, a charge-pump phase-locked loop (TX-PLL) generates a 16-GHz clock (tx_clk) from a 2-
GHz reference (tx_ref_clk), and a differential current-mode transmitter with 1-tap de-emphasis (TX-EQ) drives the
input data stream (Din) onto a pair of transmission lines with termination loads. On the receiver side, a continuous-
time linear equalizer stage (RX-CTLE) followed by a 4-tap DFE stage perform equalization on the received signal
before the data sampler makes decisions to produce the output data (Dout). Additionally, a phase-interpolator-based
clock-and-data recovery loop (RX-CDR) recovers the clock (rx_clk) that triggers the data and edge samplers, as
guided by a bang-bang phase detector (PD) and a digital loop filter (LF).

3

The analog components of this high-speed wireline transceiver are modeled in SystemVerilog using the
primitives provided by XMODEL from Scientific Analog [4]. For example, the model of the 4-tap adaptive DFE
can be composed using the add, compare, dac, and filter_disc_var primitives, with a structure closely resembling
Fig. 1. Specifically, a compare primitive samples the incoming analog signal subtracted by the output of a
filter_disc_var primitive modeling a discrete-time, finite-impulse-response filter and produces a digital data output
Dout. And two additional compare primitives serving as error detectors measure the polarity of the error between
the equalized signal and the desired levels dlev1 and dlev0. The sign-sign LMS adaptation is then performed by a
digital controller named eq_adapt based on the data and error polarity values. The controller produces the desired
level and four DFE tap coefficients in 6-bit digital values, which are then converted to analog values via a set of
dac primitives. This DFE model with the XMODEL primitives delivers a superior speed to the Real-Number Model
counterpart without sacrificing the accuracy thanks to the event-driven computation of continuous-time analog
signals using Laplace-domain equations [5].

The sign-sign LMS adaptation controller (eq_adapt) basically computes Eq. (1) to update the DFE tap
coefficient values based on the product of the error polarity and the data. The time shift between the error e[n] and
data applied before computing the product depends on the tap position. For example, w1 is updated based on the
product of sign(e[n]) and Dout[n-1] and w4 is updated based on the product of sign(e[n]) and Dout[n-4]. On the other
hand, the desired level dlev is increased when the error polarity indicates that the equalized signal has the larger
swing than dlev and vice versa. To avoid excessive dithering at the locked states, one update decision is made after
accumulating 255 observations.

The Verilog model of the controller also contains additional components that facilitate verification by the UVM
testbench to be presented shortly. First, it includes a task named init(), which initializes the DFE tap coefficient
values and resets the internal accumulator states. Second, it triggers a SystemVerilog event named updated when
the controller makes changes to the DFE tap coefficient values. Using these, the UVM testbench sets a new initial
state and monitors the progression of the state over time.

 TX-EQ

VCOPFD CP

÷N

Din

tx_ref_clk

RX
CTLE

PLL

LF

PD

PI

Dout

rx_clk rx_ref_clk

tx_clk

TX-PLL

RX-CDR
vdd

T-lines DFE

ADAPT

Figure 2. The overall block diagram of a high-speed wireline transceiver model with adaptive DFE.

IV. UVM TESTBENCH VERIFYING THE GLOBAL CONVERGENCE OF DFE ADAPTATION

The objective is to verify that the DFE tap coefficients consistently converge to the same values through the
sign-sign LMS adaptation loop regardless of their initial values. To achieve this, the testbench needs to launch a
series of trial runs, each starting from a different initial state—that is, a different set of DFE tap coefficient values—
and check if they all converge to the same final state, i.e., the same set of tap coefficient values. During each trial
run, if the adaptation loop traverses through intermediate states before reaching the final state, each of those
intermediate states can be considered as a valid initial state leading to the same final state. Furthermore, some trial
runs can be stopped early when they reach a state whose final state has already been verified. The verification
concludes when all possible initial states have been visited or when a problematic initial state leading to a different
final state is identified.

Fig. 3 illustrates the organization of the proposed UVM testbench to verify the global convergence property of
the adaptive DFE. Following the approach described in [6],[7], all the analog-specific details are encapsulated
within a fixture module, allowing the rest of the testbench to be built using standard UVM components. For the
testbench to be able to choose a next initial state that has not been tried or traversed, a common database containing

4

the state coverage information is shared among the sequencer, monitor, and scoreboard components via the UVM
configuration database (uvm_config_db). In this approach, the monitor component updates this coverage database
with the observed state values, and the sequencer component selects the next initial state by querying it. Furthermore,
when the monitor component determines that a trial run has reached a new final state or one of the previously
verified states with a known final state, it triggers a UVM event named LOCKED, which is stored in the global
uvm_event_pool. This event allows the sequencer component to initiate a new trial run. The following subsections
provide detailed descriptions of each component within this UVM testbench.

Driver

Sequencer

Scoreboard

Fixture

Environment
UVM Test

Adaptive
DFE

Coverage
Measurement

DFE Coefficient
Initialization

DIFVDIF

Driver Agent

Monitor
MIF VDIF

Monitor Agent

Coverage Database

Access via
uvm_config_db

uvm_event
LOCKED

uvm_eventLOCKED

Figure 3. Conceptual diagram of the UVM testbench performing the global convergence checks on the adaptive

decision-feedback equalizer (DFE) of a high-speed wireline receiver.

`define SIZE_STATE 24

typedef bit [`SIZE_STATE-1:0] DATA_t;
typedef virtual IF_t VIF_t;

class COVERAGE;
 shortint visited[DATA_t];
 DATA_t locks[$];
 int num_trials = 0;
 int size_full = (1 << `SIZE_STATE);

 function new();
 DATA_t v = 0;
 for (int i=0; i<size_full; i++) begin
 if (!check_constraint(v)) visited[v] = -1;
 v++;
 end
 endfunction: new

 function int check_constraint(DATA_t value);
 real c1 = calc_coeff(value[23:18]);
 real c2 = calc_coeff(value[17:12]);
 real c3 = calc_coeff(value[11:6]);
 real c4 = calc_coeff(value[5:0]);
 return (`fabs(c1) + `fabs(c2) +
 `fabs(c3) + `fabs(c4) <= 0.05 &&
 `fabs(c1) > `fabs(c2) &&
 `fabs(c2) > `fabs(c3) &&
 `fabs(c2) > `fabs(c4));
 endfunction: check_constraint

 function real calc_coeff(bit [5:0] v);
 real scale = 0.1;
 return scale * (v*2.0/63 - 1.0);
 endfunction: calc_coeff

endclass: COVERAGE

Figure 4. The coverage database class for maintaining a list of traversed states and their corresponding final states.

A. Coverage Database
Fig. 4 presents the code defining a class named COVERAGE, maintaining a list of previously traversed states

and their corresponding final states using two member variables: visited and locks. First, visited is a SystemVerilog
associative array mapping each 24-bit state value, comprising four 6-bit tap coefficient values, to an integer-valued
index of its final state, with valid values starting from 1. States not stored in visited have a default mapped value
of 0 and are considered not visited yet. On the other hand, locks is a SystemVerilog queue keeping the list of final
states discovered so far. Therefore, the goal of this UVM testbench is to populate visited with all possible initial
states and verify that only one final state is registered in locks. The COVERAGE class also includes additional

5

member variables such as num_trials, which tracks the number of trial runs executed so far, and size_full, defining
the size of the array visited when it is full.

The COVERAGE class also defines a set of member functions, such as new(), check_constraint(), and
calc_coeff(), to handle cases where the initial state space needs to be constrained. For example, the
check_constraint() function listed in Fig. 4 constrains the initial state space to the tap coefficient values satisfying
|w1|+|w2|+|w3|+|w4| ≤ 0.05, |w1| > |w2| > |w3|, and |w2| > |w4|, which occupies only 0.014% of the total state space.

An instance of the COVERAGE class named CVG is created within the top-level module UVM_TB and shared
globally with the UVM components, using the uvm_config_db::set() and get() methods. The UVM_TB module
calls uvm_config_db::set() to register the handle to the CVG instance in the UVM configuration database, and
each UVM component calls the uvm_config_db::get() to retrieve it and access the CVG instance's contents.

B. Sequencer and Driver Components
Fig. 5 the code lists the sequencer component that launches a sequence of trial runs. The sequencer randomly

selects the next initial tap coefficient values that have not been tried or traversed by finding the state value not
registered in the coverage database (CVG) using the constrained randomization solver of SystemVerilog. The driver
component (not shown) then feeds this value to the fixture module via the driver-side interface bus (VDIF) and
initiates a new trial run by triggering its member event named TRIG. Each trial run concludes when the monitor
component finds that a termination condition is met and triggers the global UVM event named LOCKED. The
sequencer keeps launching new trial runs until the CVG.visited array is full or the CVG.locks queue has more than
one entry.

Figure 5. The sequencer component launching a sequence of trial runs with randomly selected initial tap coefficients.

C. Fixture Module
The fixture module, shown in Fig. 6, instantiates the model of the high-speed wireline transceiver described in

Section III, including the 4-tap DFE and its sign-sign LMS adaptation controller. It also includes the necessary
instrumentations to apply new initial tap coefficient values to the adaptation controller and observe the tap
coefficient values being traversed by the adaptation controller afterwards.

Specifically, when the TRIG event of the driver-side interface bus (DIF) is triggered, the fixture module calls
the init() task of the eq_adapt module instance to set its tap coefficients to the values provided by the sequencer
component (DIF.DATA). Additionally, when the updated event of the eq_adapt module instance is triggered,

class PACKET extends uvm_sequence_item;
 `uvm_object_utils(PACKET)
 rand DATA_t DATA;
 COVERAGE CVG;
 constraint EXCLUDE_con { !CVG.visited.exists(DATA); }
 ...
endclass: PACKET

class SEQ_EQADAPT extends uvm_sequence #(PACKET);
 `uvm_object_utils(SEQ_EQADAPT)
 COVERAGE CVG;
 PACKET PKT;
 DATA_t init_state;
 task body();
 void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG));
 PKT = PACKET::type_id::create("PKT");
 PKT.CVG = CVG;
 while (CVG.visited.size() < CVG.size_full && CVG.locks.size() <= 1) begin: LOOP
 start_item(PKT);
 if (CVG.num_trials == 0) PKT.DATA = init_state;
 else void'(PKT.randomize());
 CVG.num_trials++;
 finish_item(PKT);
 end: LOOP
 endtask: body
 ...
endclass: SEQ_EQADAPT

6

indicating a change in the tap coefficient values, the fixture module forwards the values to the monitor component
via the monitor-side interface bus (MIF) and triggers its TRIG event.

Figure 6. The fixture module instantiating the high-speed wireline transceiver model and facilitating the trial runs by

setting new initial tap coefficient values and observing their traversal afterwards.

D. Monitor Component
The monitor component in Fig. 7 plays an important role in this UVM testbench by collecting a trace of the tap

coefficient values traversed by the adaptation controller and updating the coverage database when one of the
termination conditions is met. Specifically, the monitor continues collecting the trace until either a new final locked
state is reached or a previously-visited state is revisited. Depending on which termination condition occurs, the
monitor records the states included in the trace in the coverage database with a new final state or an existing final
state, respectively. Note that the determination of whether the adaptation controller has reached a final locked state
is based on checking if the controller revisits a state that was recorded in the trace of the current trial run 8 or more
update cycles earlier.

E. Scoreboard Component
The scoreboard component in this UVM testbench simply reports the pass/fail result after the sequence of trial

runs is completed. It determines whether the global convergence property of the sign-sign LMS adaptation
controller is verified as true or false, based on the number of final locked states registered in the locks queue of the
coverage database (CVG.locks). If CVG.locks has only one entry, it implies that the adaptation loop consistently
converges to the same final state for all possible initial states. If CVG.locks has multiple entries, it suggests that
there are some initial states that lead to different final states, which requires further examination.

`define DUT_EQADAPT DUT.IRXCDR.IRXEQ.IEQADAPT

interface IF_t (input bit RST);
 DATA_t DATA;
 event TRIG;
endinterface: IF_t

module FIXTURE (IF_t DIF, IF_t MIF);
 parameter real data_freq = 16.0e9; // data rate
 parameter real ref_freq = 2.0e9; // RX reference clock frequency
 parameter real ref_RJ = 1e-12; // RX reference clock jitter
 xbit ref_txclk, ref_rxclk, tx_clk, rx_clk, Din, Dout, Dout_os;
 xreal delay_txclk, vdd;
 bit [5:0] init_dfe1, init_dfe2, init_dfe3, init_dfe4;

 // DUT instantiation
 hslink #(.channel_noise(0.001), .rx_noise(0.001))
 DUT (.ref_txclk, .ref_rxclk, .tx_clk, .rx_clk, .Din, .Dout, .Dout_os, .delay_txclk, .vdd);
 // clock, data, and supply sources
 clk_gen #(.freq(ref_freq), .RJ_rms(ref_RJ)) U1 (ref_txclk);
 clk_gen #(.freq(ref_freq), .RJ_rms(ref_RJ)) U2 (ref_rxclk);
 prbs_gen #(.length(15)) U3 (.trig(tx_clk), .out(Din));
 dc_gen #(.value(0.0)) U4 (delay_txclk);
 dc_gen #(.value(1.2)) U5 (vdd);

 // interfaces with driver & monitor
 always @(DIF.TRIG) begin
 // initialize DFE coefficients
 {init_dfe1, init_dfe2, init_dfe3, init_dfe4} = DIF.DATA;
 `DUT_EQADAPT.init(
 .init_dlev(6'b010110), // NOTE: fixing dlev at 6'b010110
 .init_dfe1(init_dfe1), .init_dfe2(init_dfe2), .init_dfe3(init_dfe3), .init_dfe4(init_dfe4)
);
 end
 always @(`DUT_EQADAPT.updated) begin
 MIF.DATA = {`DUT_EQADAPT.dfe_tap1, `DUT_EQADAPT.dfe_tap2, `DUT_EQADAPT.dfe_tap3, `DUT_EQADAPT.dfe_tap4};
 -> MIF.TRIG;
 end
endmodule: FIXTURE

7

Figure 7. The monitor component observing the tap coefficients being traversed and updating the coverage database

depending on whether a new final locked state is reached or a previously-visited state is revisited.

V. EXPERIMENTAL RESULTS

This section discusses the simulation results obtained using the presented UVM testbench described in Section
III. The simulations are run with Cadence Xcelium and Scientific Analog's XMODEL, and the reported runtimes
are measured on a 64-bit Linux machine with 2.3-GHz 4-core Intel Core i7 processor and 8-GB of memory.

A. Case with High Channel Loss
First, the simulation is run with a channel having very high loss, such as a -45dB loss at the Nyquist rate of

8GHz. Fig. 8 shows the simulation log generated by the UVM testbench. After running 7 trials with randomized
initial tap coefficient values, the testbench identified two final locked states that the DFE adaptation loop could
converge to. Since the simulation was aborted as soon as the second locked state was found, the total runtime was
only 85 seconds.

class MONITOR extends uvm_monitor;
 `uvm_component_utils(MONITOR)
 VIF_t VMIF;
 COVERAGE CVG;
 uvm_event LOCKED;
 ...
 function void build_phase(uvm_phase phase);
 void'(uvm_config_db #(VIF_t)::get(null, "uvm_test_top", "Key_VMIF", VMIF));
 void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG));
 endfunction: build_phase

 task run_phase(uvm_phase phase);
 DATA_t queue[$];
 shortint index_lock;
 int result[$];
 LOCKED = uvm_event_pool::get_global("LOCKED");
 wait(!VMIF.RST);
 forever begin:LOOP
 @(VMIF.TRIG);
 // collect a trace of states until a lock is reached
 if (CVG.visited.exists(VMIF.DATA) && CVG.visited[VMIF.DATA] > 0)
 index_lock = CVG.visited[VMIF.DATA];
 else begin
 result = queue.find_first_index with (item == VMIF.DATA);
 if (result.size() != 0 && result[0] < queue.size() - 8)
 index_lock = -1;
 else begin
 queue.push_back(VMIF.DATA);
 index_lock = 0;
 end
 end
 // put the trace into the coverage database
 if (index_lock != 0) begin
 if (index_lock < 0) begin
 CVG.locks.push_back(queue[$]);
 index_lock = CVG.locks.size();
 end
 `uvm_info("MON", $sformatf("\n | MON #%0d: reaching %b (final state #%0d: %b)", CVG.num_trials,
queue[$], index_lock, CVG.locks[index_lock-1]), UVM_HIGH);
 foreach (queue[i]) CVG.visited[queue[i]] = index_lock;
 queue.delete();
 // trigger LOCKED to initiate a new search
 LOCKED.trigger();
 end
 end: LOOP
 endtask: run_phase
endclass: MONITOR

8

Figure 8. The UVM simulation log reporting a global convergence failure for a channel with -45dB loss at 8GHz.

DFE Tap 1
DFE Tap 2
DFE Tap 3
DFE Tap 4

(a)

(b) (c)
Figure 9. (a) The trajectories of the DFE tap coefficients during the simulation with a -45dB channel loss; (b) the

equalized eye diagram of the first locked state, and (c) that of the second locked state.

Fig. 9(a) plots the trajectories of the DFE tap coefficient values traversed during the entire simulation. The time
points where the tap coefficient values have abrupt changes indicate when the testbench initiates a new trial run
with a newly generated set of tap coefficient values. Fig. 9(b) and (c) show the equalized eye diagrams using the
two sets of tap coefficients identified by the simulation. The first set seems adequate, although the eye opening is
still small due to the uncompensated loss of the channel. The second set clearly represents a false locked state,
yielding no eye opening at all. In this second set, the tap coefficients have relatively large values: w1=010111 (-
27mV), w2=011010 (-17mV), w3=100000 (1.6mV), and w4=011100 (-11mV). These values cause the DFE receiver
to produce an alternating data pattern of 10101010 regardless of the actual input to the receiver.

B. Case with Unconstrained Tap Coefficients
Next, the simulation is run with a channel exhibiting a moderate loss of -20-dB at 8GHz and no constraints on

the tap coefficient values, other than the minimum and maximum bounds of -0.1 and +0.1V, respectively. Fig. 10
shows the simulation log generated by the UVM testbench for this case. After running just 6 trials in 25 seconds,
the testbench identified two final locked states that the DFE adaptation loop could converge to.

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #1: trying new initial state: 100000100000100000100000
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1137.467ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #1: reaching 100111100100100001100000 (final state #1: 100111100100100001100000)
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1138.467ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #2: trying new initial state: 011001011010100001011110
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1823.684ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #2: reaching 101001100110100010100000 (final state #1: 100111100100100001100000)
 ... omitted for brevity ...
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 3071.904ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #7: trying new initial state: 011010011100100010011110
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 3422.325ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #7: reaching 010111011010100000011100 (final state #2: 010111011010100000011100)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(45) @ 3423.325ns: uvm_test_top.E.SCB [SCB]
 | SCB: [FAIL] more than one locked states are found:
 #1: 100111100100100001100000
 #2: 010111011010100000011100
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 3423.325ns: uvm_test_top.E.SCB [SCB]
 | SCB: number of trials = 7, final coverage = 0.999862 (16774909/16777216)

9

Fig. 11(a) plots the trajectories of the DFE tap coefficient values and Fig. 11(b) and (c) show the equalized eye
diagrams using the two sets of tap coefficients identified by the simulation. The first set is clearly the desired one,
yielding a wide eye opening of 58mVpp,diff. In contrast, the second set produces a very strange-looking eye diagram.
Similar to the case with the high-loss channel, the DFE tap coefficients have large values that can force the decision
solely based on the previous outputs, regardless of the current input. The DFE receiver in this case also produces
an alternating data pattern of 10101010.

Figure 10. The UVM simulation log reporting a global convergence failure for unconstrained tap coefficients.

DFE Tap 1
DFE Tap 2
DFE Tap 3
DFE Tap 4

(a)

(b) (c)
Figure 11. (a) The trajectories of the DFE tap coefficients during the simulation when the state space is

unconstrained; (b) the equalized eye diagram of the first locked state, and (c) that of the second locked state.

C. Case with Constrained Tap Coefficients
Finally, the simulation is run with the moderate-loss channel and the constraints discussed in Section IV-A,

namely, |w1|+|w2|+|w3|+|w4| ≤ 0.05, |w1| > |w2| > |w3|, and |w2| > |w4|. These constraints exclude the problematic initial
states identified in the previous subsection and make the simulation feasible by reducing the state space. The
simulation log shown in Fig. 12 reports a successful global convergence after running 1,721 trials for 5 hours and
12 minutes. The simulation verified a total of 2,347 states, achieving an effective 26.7% reduction in the number

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #1: trying new initial state: 100000100000100000100000
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 818.731ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #1: reaching 100110011111100010011111 (final state #1: 100110011111100010011111)
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 819.731ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #2: trying new initial state: 011010010010111110011101
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1361.606ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #2: reaching 100110100000100011100000 (final state #1: 100110011111100010011111)
 ... omitted for brevity ...
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 3580.856ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #6: trying new initial state: 111001001000101011001011
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 3883.683ns: uvm_test_top.E.AGNTM.MON [MON]
| MON #6: reaching 101111010010100001010101 (final state #2: 101111010010100001010101)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(45) @ 3884.683ns: uvm_test_top.E.SCB [SCB]
 | SCB: [FAIL] more than one locked states are found:
 #1: 100110011111100010011111
 #2: 101111010010100001010101
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 3884.683ns: uvm_test_top.E.SCB [SCB]
 | SCB: number of trials = 6, final coverage = 1.15037e-05 (193/16777216)

10

of trial runs required. Further improvement may be possible by providing more guidance to the random selection
of the next initial state, so that each trial run can traverse as many intermediate states as possible.

Figure 12. The UVM simulation log reporting a successful global convergence success when the initial tap coefficient
space is constrained with |w1|+|w2|+|w3|+|w4| ≤ 0.05, |w1| > |w2| > |w3|, and |w2| > |w4|.

VI. CONCLUSION

This work demonstrated that the power of UVM can be harnessed to verify the global convergence property of
analog/mixed-signal systems. Specifically, it presented a UVM testbench capable of checking whether a sign-sign
LMS adaptation controller for a high-speed wireline DFE receiver can reach the desired equalized state regardless
of its initial state conditions. To achieve this, the proposed testbench launches a sequence of trial runs with different
initial states with an objective of exploring all possible states in the system, by utilizing a state coverage database
shared via the UVM configuration database and a UVM event maintained by the global event pool. Further
directions may include improving the efficiency of state exploration and verifying the global convergence property
of other analog/mixed-signal systems.

VII. ACKNOWLEDGMENT

The EDA tools used in this work were supported by the IC Design Education Center (IDEC), Korea and
Scientific Analog, Inc, Palo Alto, U.S.A.

VIII. REFERENCES
[1] R. W. Lucky, "Techniques for Adaptive Equalization of Digital Communication Systems," The Bell Systems Technical

Journal, Feb. 1966.
[2] V. Stojanovic, et al., “Autonomous Dual-Mode (PAM2/PAM4) Serial Link Transceiver with Adaptive Equalization and

Data Recovery,” IEEE J. Solid-State Circuits, April 2005.
[3] J. Kim, "A UVM Reactive Testbench for Jitter Tolerance Measurement of High-Speed Wireline Receivers," Design and

Verification Conference and Exhibition (DVCON) U.S., Mar. 2023.
[4] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com/xmodel.
[5] J. E. Jang, et al., “True Event-Driven Simulation of Analog/Mixed-Signal Behaviors in SystemVerilog: A Decision-

Feedback Equalizing (DFE) Receiver Example,” IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2012.
[6] C. Dancak, "A UVM SystemVerilog Testbench for Analog/Mixed-Signal Verification: A Digitally-Programmable

Analog Filter Example," Design and Verification Conference and Exhibition (DVCON) U.S., Mar. 2021.
[7] C. Dancak, "A UVM SystemVerilog Testbench for Directed & Random Testing of an AMS LDO Voltage Regulator,"

Design and Verification Conference and Exhibition (DVCON) U.S., Mar. 2024.

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #1: trying new initial state: 100000100000100000100000
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 882.482ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #1: reaching 100100100000100001100001 (final state #1: 100100100000100001100001)
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 883.482ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #2: trying new initial state: 011001011010100001011110
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1074.667ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #2: reaching 100011100001100010100000 (final state #1: 100100100000100001100001)
 ... omitted for brevity ...
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 83992.481ns: uvm_test_top.E.AGNTD.DRV [DRV]
 | DRV #1721: trying new initial state: 100101011011011110011100
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 84024.354ns: uvm_test_top.E.AGNTM.MON [MON]
 | MON #1721: reaching 100101011011011110011100 (final state #1: 100100100000100001100001)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(41) @ 84025.354ns: uvm_test_top.E.SCB [SCB]
 | SCB: [PASS] all tested initial states lead to the same locked state.
UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 84025.354ns: uvm_test_top.E.SCB [SCB]
 | SCB: number of trials = 1721, final coverage = 1.0 (16777216/16777216)

