

1

Heartbeat based early detection of Hang issues

Vinaykumar Kori, Cadence Design Systems, Noida, India (vkori@cadence.com)

Tejbal Prasad, Cadence Design Systems, Noida, India (tejbal@cadence.com)

Abstract— Test hangs are a significant roadblock in verification process. For the Verification team, most of the time

is spent on debugging test hang/timeout issues and hindering efficient validation and causing delays in project timelines.

It consumes unnecessary compute resources.

This paper aims to provide a comprehensive and effective framework. It enables test writers to code run time

expectation in the test at logical level. Thereby it eases out detection of hang/timeout issues.

Keywords— Verification, Error Handling, Debugging, Hang Issues

I. INTRODUCTION

Debugging test hang scenarios is a critical aspect of Verification, particularly in complex and distributed

computing environments. Test hangs, where the execution of test cases becomes unresponsive or stalls

indefinitely, can significantly impact the efficiency and reliability of testing processes, leading to delays in release

and potential quality issues.

Hang scenarios are very frequent in any verification environment. These scenarios are very expensive with

respect to compute resource usage. A significant amount of Verification team’s effort and time are spent on

debugging these scenarios. Identifying and resolving test hangs require sophisticated debugging techniques and

tools to pinpoint the root causes and underlying issues effectively.

Some of the conventional ways are listed below.

1. Test timeout (UVM Timeout)

Test timeout (UVM Timeout) is a safety switch to prevent run-away simulation. In verification

environment, every test cases have a test timeout duration and after timeout it will terminate the

simulation. But it suffers from below limitations.

• It does not pinpoint which process is hogging the test.

• Setting proper timeout for each test is cumbersome and often leads to common UVM Timeout for

all tests.

2. Feature Specific Timeout Checkers:

This timing checkers does a decent job on flagging timeout failure.

• These checkers are written only for specific features.

• Orthogonal sequence, which takes the test in a different mode makes these checkers ineffective.

E.g., While running traffic test went through a low power mode transition.

Conventional verification environment does not provide a mechanism to add the timing expectation of different

processes. A robust verification environment with clear and best practices can help minimize the effort spent on

debugging the hang/timeout issues.

II. SOLUTION

To take care of this challenge, we have introduced a specialized component which will maintain the run time

expectation of each main process running in a test.

Figure 1 illustrates a simple block diagram having multiple components with multiple thread running on and

an instance of a Heartbeat component. The heartbeat component instance is going to keep track of all the current

running process. Test writer will have to register their process when it starts with its nature and timeout duration.

mailto:vkori@cadence.com

2

Figure 1: Block diagram of heartbeat-based component with verification environment

 Figure 2 illustrates a simple use scenario, where test writer has to register time consuming processes with

Heartbeat component on various stages of execution.

Figure 2: Flow chart with heartbeat flow

 Figure 3 illustrates a heartbeat flow with orthogonal sequence, each sequence will register its process inside

the heartbeat component. Heartbeat component will look at the timeout duration and nature of each process. Based

on the nature of process Heartbeat could pause/terminate the other process timeout.

E.g., if a reset sequence, all the process timeout needs to be terminated, whereas if low power sequence has started

the other process’s timeout needs to be paused.

Test Start
Reset Seq registered

reset Process

Reset process
timeout

Yes

Reset Done and Link
up seq registered

link up process

No

Link Up process
timeout

Link up Done
Traffic process

registered

Flag Error
End Test

Yes

No

Traffic process
timeout

Traffic timeout
refreshed

Yes

Traffic finished &
post traffic process

registered

Post Traffic
Process timeout

No

Test End

Yes

No

3

Figure 3: Heartbeat flow with orthogonal sequence

III. WORKING MODEL

This chapter demonstrates the use/integration of Heartbeat component in user’s testbench.

A. Creating Instance

The user is expected to create a single instance of this component and pass this handle to all the sub env’s from

Top TB env. Below example demonstrates the creation of heartbeat component.

Figure 4: Example of Creating heartbeat component.

B. Triggering Event

It is essential to check the current running threads on certain time intervals to detect if the current running

process is not exceeding the expected time duration. We have used an event-based algorithm to check the current

running threads, which user have to trigger in the testbench on certain time interval. This trigger event has nothing

to do with timing values. Heartbeat component will just only perform timing checks when this event is triggered.

`HB_TRIGGER_EVENT macro is used to trigger the event and it takes heartbeat component instance as input

argument.

Below is the example where we are triggering heartbeat component on each clock edge.

Test Start
Reset Seq registered

reset Process

Reset process
timeout

Yes

Reset Done and Link
up seq registered

link up process

No

Link Up process
timeout

Link up Done
Traffic process

registered

Flag Error
End Test

Yes

No

Traffic process
timeout

Traffic timeout
refreshed

Yes

Traffic finished &
post traffic process

registered

Post Traffic
Process timeout

No

Test End

Yes

No

Traffic Process
timeout Paused

Low Power
Process timeout

Yes

Traffic Process
timeout resumed

Low Power Entry
Process Registered

No

Traffic process
timeout

No

Traffic timeout
refreshed

4

Figure 5: Example of triggering event

C. Registering/Completion of Thread

1) Registering Thread

To add a specific thread in heartbeat component, `HB_ADD_THREAD macro is used. Adding thread will

take the current time as Thread start time. It takes below four arguments.

• Heartbeat component Instance

• Thread Name: A unique name given to each thread.

• Thread Class: It will specify the type of thread to be added in heartbeat component.

o NORMAL: It is used to add normal thread or process which does not require special handling

and can run concurrently. Like Normal Traffic, Link up sequence, Config Sequence etc.

o PRIORITY: It is used for special thread/process which is going to affect the existing thread

execution. E.g., Interrupt/Power Management related sequence.

o RESET: This thread class is used for special thread which is going to terminate all the existing

thread execution. E.g., Reset/Link down sequence.

• Expected finish time duration.

2) Completion of Thread

After completion of thread, it is required to remove thread from heartbeat component and to remove a

specific thread from heartbeat component, `HB_DEL_THREAD macro is used, and it takes below two

arguments.

• Heartbeat component instance.

• Thread Name

It is mandatory to give the same thread name as given while registering the thread.

Below figure shows the example of Registering/Completion of thread from a given heartbeat component. Here,

we have started a sequence and expecting that sequence will be completed within 30us time duration from given

start time.

 Figure 6: Example of Adding and Deleting Thread in heartbeat component.

5

Once the thread is registered, the heartbeat component will take care about how long the thread is expected to

run and would report error if it does not finish in the expected time.

D. Pausing and Resuming Thread

There are scenarios where we need to pause timeouts running for existing threads. This is to cater for ISR

(Interrupt Service Routine) or Low Power scenario.

While registering these special processes the user needs to specify the thread class as “PRIORITY”. When a

thread is registered with this thread class our Heartbeat component puts all the processes running with

“NORMAL” thread class into pause state.

On completion of PRIORITY thread process, paused timeouts resume. Completion of thread is assumed when

a thread is deleted using the `HB_DEL_THREAD macro.

Below example shows pause/resume scenario because of a PRIORTY thread registration. So, the moment a

PRIORTY thread is registers all running threads with thread class NORMAL will be paused, and their timeout

counters will be frozen. After this thread is over this is deleted from heartbeat component.

Figure 7: Example of Pausing and Resuming Thread

E. Reset Thread Class handeling

To support multiple resets in the same test and their implications on the existing running process we have

defined this thread class. It is to mimic the normal expectation of what happens when a reset is asserted while

normal traffic is ongoing.

When a thread is registered with thread class reset, we terminate all the registered thread on completion of this

thread. This is to ensure that post reset sequence needs to register new thread.

1) Terminate Thread

To terminate the concurrent threads, we must use `HB_ADD_THREAD macro with thread class as RESET.

It will remove all the concurrent thread from heartbeat container, and it will not allow to add any new

concurrent thread until it is not being removed.

2) Activate Thread

To activate addition of concurrent threads, we have to use `HB_DELETE_THREAD macro. It will remove

thread with RESET thread class and allow new concurrent sequence in heartbeat component.

Below example shows the pausing and resuming traffic running thread when certain event has occurred.

6

Figure 8: Example of terminating and Activating Thread

F. Result

The Heartbeat component accumulates all the data given by user or calculated within component and provides

interactive way of reporting of all the running thread. In addition, UVM_ERROR is reported whenever the thread

is exceeding the expected completion time duration.

The reporting mechanism contains following information.

• Thread Name

• Current Status of each running threads.

• Start time and finish time (Expected completion time of thread)

• Pause time and Resume time of each thread.

• Remaining time of each thread.

Below figure shows an example of current active running thread.

Figure 9: Example of Running thread.

Below figure shows an example of paused thread. For paused threads, timing check will be skipped, and remaining

time will not be calculated.

Figure 10: Example of paused thread

Below figure shows an example of an error occurred due to thread has exceeded the expected execution time.

Figure 11: Example of error when thread exceeding time.

User can control frequency of reporting prints using +HB_THREAD_PRINT_DELAY command line arg.

Below error print can be received when thread is exceeding expected completion time duration.

UVM_ERROR @ 155.244 us: uvm_test_top.sve.link_env[0].dev_env0.heartbeat_env

[heartbeat_env] Thread with CXL_RP.top_level_tlp_traffic name took more than

expected 20.000 us time

7

IV. CONCLUSION

We have used the mentioned Heartbeat component in our existing project and the seamless integration of

heartbeat component in testbench paves the way of tracking all the long running threads. It also provides the

interactive reporting mechanism of all the running threads.

By the use of heartbeat-based test hang detection, we were able to detect timeout issues on early stage and it

has significantly reduced the effort on debugging timeout/hang issue. It enables test writers to add timing

expectation for each process. Heartbeat component had pinpointed the process that has timed out and saved

compute resource usage by eliminating long running test. Heartbeat component has also exposed the design bugs

which are hidden behind long running test. This is a generic and easy solution for timeout detection, which can

be reused with any environment.

Furthermore, the approach outlined in this paper is scalable and portable to different testbenches. We are

already tracking all threads through proposed approach.

V. REFERENCE

[1] “IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language,” IEEE Std 1800-2023

(Revision of IEEE Std 1800-2017), vol., no., pp.1-1354, 2024.
[2] Universal Verification Methodology (UVM) 1.2 Class Reference

