
libtcg
Accurate lifting of executable code using QEMU

Anton Johansson, rev.ng Labs S.r.l., Malmö, Sweden (anjo@rev.ng)

Alessandro Di Federico, rev.ng Labs S.r.l., Milan, Italy (ale@rev.ng)

Abstract—In this work, we introduce libtcg1, an easy-to-use library able to lift executable code to an architecture-
independent Intermediate Representation (IR). Being based on QEMU, libtcg inherits its wide and well tested
Instruction Set Architecture (ISA) support. Furthermore, the IR exposed by libtcg is independent of the input ISA
and explicitly represents how each instruction affects the CPU state. This makes it particularly suitable for building
general static analysis tools such as register dataflow visualizations or stack boundary identifiers. As a consequence
effort can then be spent on advanced and sound analyses rather than dealing with the quirks of each supported ISA.

Keywords—static analysis; intermediate representations; QEMU

I. INTRODUCTION

Lifting, or converting a binary from architecture-specific executable code to an architecture-independent
Intermediate Representation (IR) has become a crucial preliminary step for modern tooling in software
verification and reverse engineering. Everything from binary rewriters (zipr [1]), instrumentation frameworks
(valgrind [2]), and decompilers (Ghidra, IDA Pro, rev.ng [3, 4, 5]), to full system emulators (QEMU [6]), require
a solid foundation in the form of an accurate lifter with wide Instruction Set Architecture (ISA) support.

On the other hand, creating such a lifter for modern CISC architectures is a notoriously challenging task, and
often a significant barrier to entry for the development of new tools. Looking at modern binary rewriters, few
support more than x86 and ARM (Appendix A), and even mature tools such as valgrind has incomplete x86
support (no SSE4/AVX) with maintainers expressing concern over supporting multiple architectures2 .

QEMU, in particular, functions both as a dynamic binary translator (user-mode) and full system emulator
(system-mode) with support for a large set of ISAs and device models [6]. This is accomplished by (1) lifting the
guest executable code to its own internal IR called Tinycode; and (2) recompiling Tinycode to the host
architecture and; (3) executing the compiled code. Compared to other contemporary lifters, QEMUs ISA support
is rivaled only by projects such as IDA Pro and Ghidra. However, QEMUs lifter is extremely robust, well tested,
and accurate enough to facilitate booting fully fledged operating systems3, making it an ideal base for static
analysis tools to build upon.

II. LIBTCG

A. Design Goals

libtcg is a minimal subset of user-mode QEMU compiled as a shared library, whose goal is to expose an
architecture-independent and accurate representation of the underlying ISA, decoupled from the QEMU
emulation engine. Consequently, static analysis tools employing libtcg can effectively handle multiple
architectures, allowing developers to focus on the actual analyses rather than modelling the semantics of each
instruction in the target ISA. In terms of an API, libtcg has 3 goals in mind, users need to be able to: (1) request
lifting to Tinycode of a given buffer of executable code; (2) manipulate the list of Tinycode instructions lifted by
libtcg, and; (3) request lifting to Tinycode of different ISAs in the same process.

1 Available at https://github.com/AntonJohansson/libtcg
2 https://valgrind.org/info/platforms.html, accessed 18-04-2024.
3 For a collection of varied bootable disk images, see the QEMU advent calendar:
 https://qemu-advent-calendar.org/2023/

1

https://qemu-advent-calendar.org/2023/
https://valgrind.org/info/platforms.html
https://github.com/AntonJohansson/libtcg

B. API Design and Implementation

The core API of libtcg implementing design goals (1) and (2), is shown in listing 1. This small set of functions
is responsible for all interaction with QEMU. Specifically, libtcg_translate_block takes as argument, a user-
provided buffer of executable code at a specified address, and returns a LibTcgTranslationBlock containing the
lifted Tinycode with access to source/destination operands for each instruction. "translation block" is QEMU
terminology and refers to a basic block in the input ISA. Hence, multiple calls to libtcg_translate_block
might be necessary.

Additionally, flags passed to libtcg_translate_block control different aspects of translation, see listing 2
for possible values. In order, the presence of LIBTCG_TRANSLATE_ARM_THUMB indicates that the input buffer
contains ARM Thumb code. Next, LIBTCG_TRANSLATE_OPTIMIZE_TCG tells libtcg to run the Tinycode optimizer
after lifting each translation block. The optimizer performs constant propagation, liveness analysis on Tinycode
variables, and dead code elimination; resulting in simplified Tinycode. Lastly,
LIBTCG_TRANSLATE_HELPER_TO_TCG will be covered in later section when helper functions are discussed.

C. Multi-Architecture API

Lifting multiple ISAs within the same process (design goal (3)) is further complicated by limitations imposed
by QEMU. Due to the highly target-dependent nature of the QEMU code base, a separate libtcg library is
required for each supported ISA. To facilitate working with multiple ISAs, a dlopen-friendly API is also
exposed, wrapping the core API in function pointers. As an example consider listing 3 where libtcg is
dynamically loaded for the MicroBlaze architecture.

Managing multiple instances of libtcg is still cumbersome, especially for longer running processes. As a
remedy, a libtcg-loader library is provided which handles dlopen-ing and management of state for multiple
instances of libtcg, the API is shown in listing 4.

2

D. Dealing with Helper Functions

In general, lifters will run into trouble when encountering an instruction which cannot be cleanly modeled in
its IR. Consider idiv rcx on x86_64 which performs integer division between rax and rcx, and stores the
quotient to eax and remainder to edx. Exceptions are triggered if ecx is zero or the quotient overflows. In
Tinycode, this corresponds to call idivl_EAX rcx, where idivl_EAX is a regular C function in QEMU,
referred to as a helper.

Helper functions exists to deal with more complicated behavior like system calls, and importantly have free
reign over the CPU registers and may read or write to any one of them. Unfortunately, this means very few
assumptions can be made as to the state of registers when a helper call is crossed, further complicating static
analysis. While QEMU does provide information on whether or not a helper function reads or writes registers, we
cannot tell which registers are affected. Moreover, helper functions are especially prevalent in QEMU and are
used to model floating point-, certain vector-, and 128-bit integer operations.

To mitigate the impact of helper functions, the LIBTCG_TRANSLATE_HELPER_TO_TCG flag may be supplied to
libtcg, which enables the use of automatically generated Tinycode implementations of various helper functions.
See listing 5 for the Tinycode generated for the idivl_EAX helper. The automatic translation is performed during
QEMU build time and uses an experimental LLVM-based tool, called helper-to-tcg which is not yet available in
the QEMU upstream repository [7]. While verbose, the generated Tinycode more accurately describes the
behavior of the helper function. Notably, two paths through the code result in call raise_exception
corresponding to the previously mentioned overflows, and the modification of rdx, rax is also clearly seen.

3

III. LIBTCG-BASED STATIC ANALYSIS TOOLS

Usage of libtcg is demonstrated through a series of simple multi-architecture static analysis tools. In order of
increasing complexity, the following analyses were implemented: an ISA-independent instruction printer; a
Control Flow Graph (CFG) printer; a register dataflow visualizer, and; a maximum stack boundary indentifier.
Excluding parsing of ELF headers and printing of results, the core of each analysis was implemented in 50, 140,
540, and 650 lines of C code, respectively. Each tool operates on a buffer of executable code, provided either as
an ELF section, a function name, a region from a file specified with offset and size, or lastly as raw bytes from
stdin4. All example programs that follow were compiled without optimization.

In general, disassembly of an ISA with variable length encoding, such as ARM+Thumb, is notoriously
complex. Therefore, libtcg does not aim to solve the problem of correctly identifying the location and architecture
of the code to lift, but instead focuses on making analyses easy to implement, given a buffer of code.

A. ISA-Independent Instruction Printer

With the goal of producing Tinycode equivalent to the executable code in the input buffer, the buffer was
linearly scanned, lifting instructions to Tinycode one translation block at a time. Next, each translation block was
serialized to stdout in order of translation. As an example, see the basic 32-bit ARM code in listing 6 and its
corresponding Tinycode in listing 7.

One drawback of the approach to code region identification taken in this analysis, is the inability to deal with
ARM code that switches from 32-bit to Thumb mode, or vice versa. These regions will not be correctly
indentified through a linear scan. Instead, control flow directed lifting would be needed where each lifted
translation block would be scanned for possible branches to find new code regions.

B. Control Flow Graph Printer

Building on the instruction printer, the input buffer is again lifted to a list of translation blocks. Next, to
produce a CFG, all direct jumps to code that has already been lifted are turned into edges, splitting blocks in the
process if the destination address is in the middle of translation block. Finally, the CFG is serialized to the DOT
language for visualization with Graphviz [8]. Listing 8 shows a simple Hexagon program for computing the sum
of the natural numbers from 0 to 10, and Figure 1 shows the produced CFG, clearly reproducing the loop
structure.

Note that the choice not to handle indirect jumps means that jump tables and function calls in the input
architecture are not correctly identified. Similarly, direct jumps to code that has not been lifted are not handled in
the CFG. Again, this is the problem of code region identification, and not an inherent limitation of libtcg.

4 Source code availabe at: https://github.com/AntonJohansson/libtcg-examples

4

https://github.com/AntonJohansson/libtcg-examples

C. Register Dataflow Visualization

Implemented as a backward dataflow analysis (see Ref. [9]) over the CFG recovered by the previous analysis, the
goal is to construct a tree of all possible instructions which may affect the value of a given Tinycode operand.
Whenever an instruction that writes to the given operand is found, the operands of that instruction are added to a
list of new values to search for; values that are found are removed from the list. This list gets propagated
backwards through the CFG and across stack loads and stores until a fixed point is reached. Stack loads and
stores were identified by running the same analysis on the pointer operand of the memory operations, and the
resulting tree was folded to an offset from the stack register, if possible. All connected stack loads and stores
could then identified on the CFG.

As an example, consider listing 9 containing a simple C program to sum the natural numbers from 0 to n, and
Figure 2 with the resulting visualization. The program was compiled for 64-bit RISCV, and the analysis starts
from the x15/a5 operand to the mov_i64 x14/a4, x15/a5 instruction (see instruction marked with borders).
Identified source instructions are colored based on the destination operand with the exception of stores which are
colored based on the pointer operand. Inspecting the figure, it becomes clear that x15/a5 in the body of the loop
corresponds to the value of sum that is loaded from the stack. The operand being analyzed also depends on the
instructions that follow it, which loads the loop induction variable i and performs the addition sum + i before
storing the result to the stack again.

5

In terms of limitations, the analysis will not be able to explore sources from non-stack loads, or from stack
loads where the pointer operand cannot be reduced to an offset from the original stack pointer, such as stack
addresses that depend on a runtime value. Additionally, sources which are not available on the CFG will be
missed, including helper calls and indirect jumps. Therefore a conservative approach is taken where all indirect
jumps and calls to helpers that affect the cpu state are assumed to be sources of the operand.

6

D. Maximum Stack Size Calculator

A forward dataflow analysis (see Ref. [9]) over the CFG was created with the goal of making a conservative
estimate of the maximum stack offset that has been read or written for each instruction in the program. Iterating
over the CFG, stack loads and stores were identified in the same manner as the previous analysis, hence the same
limitations apply. Next, whenever a stack operation was detected, that offset would be propagated to subsequent
instructions, taking the maximum along the way if a new stack offset was found. The final stack offset detected
for each translation block was propagated forward through the CFG and used as a starting point for following
translation blocks. This process was carried out until fixed point.

See listing 10 for a simple C program consisting of an if statement along with stack reads and writes. Figure 3
shows the CFG produced by the analysis, when ran on the C program compiled for x86_64, with the maximum
stack read and write offsets annotated in the margin. Examining the figure, the program starts by pushing rbp and
the argument rdi to the stack, followed by loading the initial array values from constant addresses and storing
them on the stack, resulting in a maximum written stack offset of 40. Note that array values are stored as 64-bit
integers. Finally, the function argument is read from offset 16, and each branch reads from offsets 28 and 36,
respectively.

IV. TESTING

The ISA-independent instruction printer was tested against a set of 749 QEMU v8.2.1 user-mode test binaries
spread across 16 architectures5 and produces Tinycode for 716/748 (96%) of the binaries. All of the 32 failures
are due 32-bit ARM programs switching between Thumb and normal code, which is not supported when lifting
with a linear scan as discussed previously. As for the more complicated analyses, they were manually tested and
verified against simpler binaries for x86, ARM, Hexagon, and RISCV.

V. FUTURE WORK

As it currently stands, libtcg is split into a "core" API consisting of a shared library per ISA, and an optional
common "multi-architecture" API. This is a consequence of the highly coupled nature of the QEMU codebase,
and results in increased code duplication and a larger maintainence burden. As a solution, we are currently
involved in an upstream effort to modularize QEMU by factoring out as much target-independent code as
possible into separate libraries6. libtcg would then depend only on the target frontends. In addition to simplifying
libtcg, this is a crucial step towards emulating heterogeneous systems consisting of multiple cores of different
architectures. Heterogeneous emulation is especially important in modeling a complete system on a chip, similar
to what Xilinx accomplished with their ARM/MicroBlaze QEMU fork [10].

Lastly, despite usage of helper-to-tcg to automatically translate helper functions, many of them cannot be
expressed directly in Tinycode. Thankfully, most helper functions are well structured with bounded loops,
making them susceptible to static analysis techniques. Therefore, all registers accessed by a helper function
should be statically identifiable, and can be exposed to libtcg for usage in analyses.

VI. CONCLUSION

To summarize, we have introduced libtcg, an accurate and easy-to-use lifter based on QEMU with wide ISA
support. This allows developers to focus on creating the actual analyses, rather than modelling ISAs. On top of
libtcg, four static analyses were implemented for demonstration purposes, and tested on 16 architectures with
widely different characteristics. All without writing a single line of architecture specific code. The analyses range
in complexity from dumping an ISA-independent representation to stdout, to finding the maximum stack offset
accessed at any given point in the program. Lastly, different avenues for mitigating the limitations inherited by
QEMU were discussed, including efforts towards heterogeneous emulation and accurate tracking of registers
modified by helper functions.

5 Tested architectures: x86, SPARC, SH4, s390x, RISCV, PPC, Nios2, MIPS, MicroBlaze, m68k, LoongArch,
HPPA, Hexagon, CRIS, Alpha, ARM

6 Roadmap: https://wiki.qemu.org/Dynamic_machine_and_heterogeneous_emulation_roadmap

7

https://wiki.qemu.org/Dynamic_machine_and_heterogeneous_emulation_roadmap

APPENDICES

A. Architecture support among modern lifters and binary rewriters

REFERENCES

[1] W. H. Hawkins, J. D. Hiser, M. Co, A. Nguyen-Tuong, and J. W. Davidson, “Zipr: Efficient static binary rewriting for security,” in
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 559–566, 2017.

[2] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary instrumentation,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’07, (New York, NY, USA), p. 89–100,
Association for Computing Machinery, 2007.

[3] National Security Agency (NSA), “Ghidra.” Available at https://ghidra-sre.org/.

[4] Hex-Rays, “IDA Pro.” Available at https://www.hex-rays.com/products/ida.

[5] A. Di Federico, P. Fezzardi, and G. Agosta, “rev.ng: A multi-architecture framework for reverse engineering and vulnerability
discovery,” in 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–5, 2018.

[6] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, (USA), p. 41, USENIX Association, 2005.

[7] A. Johansson and A. Di Federico, “Automatic promotion of helper functions to tcg using llvm,” Presented at KVM forum 2023.
Available at https://github.com/revng/qemu-upstream/tree/feature/helper-to-tcg.

[8] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, Graphviz and Dynagraph — Static and Dynamic Graph
Drawing Tools, pp. 127–148. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[9] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Berlin, Heidelberg: Springer-Verlag, 1999.

[10] Xilinx, “Xilinx qemu.” Available at https://github.com/Xilinx/qemu.

[11] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without control flow recovery,” in Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2020, (New York, NY, USA), p. 151–163,
Association for Computing Machinery, 2020.

[12] A. Flores-Montoya and E. Schulte, “Datalog disassembly,” in 29th USENIX Security Symposium (USENIX Security 20), pp. 1075–
1092, USENIX Association, Aug. 2020.

[13] S. B. Yadavalli and A. Smith, “Raising binaries to llvm ir with mctoll (wip paper),” in Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2019, (New York,
NY, USA), p. 213–218, Association for Computing Machinery, 2019.

[14] CEA IT Security, “miasm.” Available at https://github.com/cea-sec/miasm, accessed 18-04-2024.

[15] A. Engelke, Optimizing Performance Using Dynamic Code Generation. PhD thesis, Technical University of Munich, 2021.

[16] Trail of Bits, “remill.” Available at https://github.com/lifting-bits/remill, accessed 18-04-2024.

[17] “reopt.” Available at https://github.com/GaloisInc/reopt, accessed 18-04-2024.

[18] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically instrumenting cots binaries for fuzzing and sanitization,” in 2020
IEEE Symposium on Security and Privacy (SP), pp. 1497–1511, 2020.

8

https://github.com/GaloisInc/reopt
https://github.com/lifting-bits/remill
https://github.com/cea-sec/miasm
https://github.com/Xilinx/qemu
https://github.com/revng/qemu-upstream/tree/feature/helper-to-tcg
https://www.hex-rays.com/products/ida
https://ghidra-sre.org/

	I. Introduction
	II. libtcg
	A. Design Goals
	B. API Design and Implementation
	C. Multi-Architecture API
	D. Dealing with Helper Functions

	III. libtcg-based Static Analysis Tools
	A. ISA-Independent Instruction Printer
	B. Control Flow Graph Printer
	C. Register Dataflow Visualization
	D. Maximum Stack Size Calculator

	IV. Testing
	V. Future Work
	VI. Conclusion
	Appendices
	A. Architecture support among modern lifters and binary rewriters
	References

