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Abstract—In this work, we introduce libtcg1, an easy-to-use library able to lift executable code to an architecture-
independent  Intermediate  Representation  (IR).  Being  based  on  QEMU,  libtcg  inherits  its  wide  and  well  tested  
Instruction Set Architecture (ISA) support. Furthermore, the IR exposed by libtcg is independent of the input ISA  
and explicitly represents how each instruction affects the CPU state. This makes it particularly suitable for building 
general static analysis tools such as register dataflow visualizations or stack boundary identifiers. As a consequence 
effort can then be spent on advanced and sound analyses rather than dealing with the quirks of each supported ISA.

Keywords—static analysis; intermediate representations; QEMU

I.  INTRODUCTION

Lifting,  or  converting a  binary from architecture-specific  executable  code to  an architecture-independent 
Intermediate  Representation  (IR)  has  become  a  crucial  preliminary  step  for  modern  tooling  in  software 
verification and reverse engineering. Everything from binary rewriters (zipr [1]), instrumentation frameworks 
(valgrind [2]), and decompilers (Ghidra, IDA Pro, rev.ng [3, 4, 5]), to full system emulators (QEMU [6]), require  
a solid foundation in the form of an accurate lifter with wide Instruction Set Architecture (ISA) support.

On the other hand, creating such a lifter for modern CISC architectures is a notoriously challenging task, and  
often a significant barrier to entry for the development of new tools. Looking at modern binary rewriters, few 
support more than x86 and ARM (Appendix A), and even mature tools such as valgrind has incomplete x86 
support (no SSE4/AVX) with maintainers expressing concern over supporting multiple architectures2 .

QEMU, in particular, functions both as a dynamic binary translator (user-mode) and full system emulator 
(system-mode) with support for a large set of ISAs and device models [6]. This is accomplished by (1) lifting the 
guest  executable  code  to  its  own  internal  IR  called  Tinycode;  and  (2)  recompiling  Tinycode  to  the  host  
architecture and; (3) executing the compiled code. Compared to other contemporary lifters, QEMUs ISA support 
is rivaled only by projects such as IDA Pro and Ghidra. However, QEMUs lifter is extremely robust, well tested,  
and accurate enough to facilitate booting fully fledged operating systems3,  making it an ideal base for static 
analysis tools to build upon.

II. LIBTCG

A. Design Goals

libtcg is a minimal subset of user-mode QEMU compiled as a shared library, whose goal is to expose an  
architecture-independent  and  accurate  representation  of  the  underlying  ISA,  decoupled  from  the  QEMU 
emulation  engine.  Consequently,  static  analysis  tools  employing  libtcg  can  effectively  handle  multiple 
architectures, allowing developers to focus on the actual analyses rather than modelling the semantics of each 
instruction in the target ISA. In terms of an API, libtcg has 3 goals in mind, users need to be able to: (1) request  
lifting to Tinycode of a given buffer of executable code; (2) manipulate the list of Tinycode instructions lifted by 
libtcg, and; (3) request lifting to Tinycode of different ISAs in the same process.

1 Available at https://github.com/AntonJohansson/libtcg
2 https://valgrind.org/info/platforms.html, accessed 18-04-2024.
3 For a collection of varied bootable disk images, see the QEMU advent calendar:
 https://qemu-advent-calendar.org/2023/
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B. API Design and Implementation

The core API of libtcg implementing design goals (1) and (2), is shown in listing 1. This small set of functions 
is responsible for all interaction with QEMU. Specifically, libtcg_translate_block takes as argument, a user-
provided buffer of executable code at a specified address, and returns a LibTcgTranslationBlock containing the 
lifted Tinycode with access to source/destination operands for each instruction. "translation block" is QEMU 
terminology and refers to a basic block in the input ISA. Hence, multiple calls to  libtcg_translate_block 
might be necessary.

Additionally, flags passed to libtcg_translate_block control different aspects of translation, see listing 2 
for  possible values.  In order,  the presence of  LIBTCG_TRANSLATE_ARM_THUMB indicates that  the input  buffer 
contains ARM Thumb code. Next, LIBTCG_TRANSLATE_OPTIMIZE_TCG tells libtcg to run the Tinycode optimizer 
after lifting each translation block. The optimizer performs constant propagation, liveness analysis on Tinycode 
variables,  and  dead  code  elimination;  resulting  in  simplified  Tinycode.  Lastly, 
LIBTCG_TRANSLATE_HELPER_TO_TCG will be covered in  later section when helper functions are discussed.

C. Multi-Architecture API

Lifting multiple ISAs within the same process (design goal (3)) is further complicated by limitations imposed 
by QEMU. Due to the highly target-dependent  nature of  the QEMU code base,  a  separate libtcg library is 
required  for  each  supported  ISA.  To  facilitate  working  with  multiple  ISAs,  a  dlopen-friendly  API  is  also 
exposed,  wrapping  the  core  API  in  function  pointers.  As  an  example  consider  listing  3  where  libtcg  is 
dynamically loaded for the MicroBlaze architecture.

Managing multiple instances of libtcg is still  cumbersome, especially for longer running processes. As a 
remedy, a libtcg-loader library is provided which handles  dlopen-ing and management of state for multiple 
instances of libtcg, the API is shown in listing 4.
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D. Dealing with Helper Functions

In general, lifters will run into trouble when encountering an instruction which cannot be cleanly modeled in 
its IR. Consider  idiv rcx on x86_64 which performs integer division between  rax and  rcx, and stores the 
quotient to  eax and remainder to  edx.  Exceptions are triggered if  ecx is zero or the quotient overflows. In 
Tinycode,  this  corresponds to  call idivl_EAX rcx,  where  idivl_EAX is  a  regular  C function in  QEMU, 
referred to as a helper.

Helper functions exists to deal with more complicated behavior like system calls, and importantly have free  
reign over the CPU registers and may read or write to any one of them. Unfortunately, this means very few 
assumptions can be made as to the state of registers when a helper call is crossed, further complicating static 
analysis. While QEMU does provide information on whether or not a helper function reads or writes registers, we 
cannot tell which registers are affected. Moreover, helper functions are especially prevalent in QEMU and are  
used to model floating point-, certain vector-, and 128-bit integer operations.

To mitigate the impact of helper functions, the LIBTCG_TRANSLATE_HELPER_TO_TCG flag may be supplied to 
libtcg, which enables the use of automatically generated Tinycode implementations of various helper functions. 
See listing 5 for the Tinycode generated for the idivl_EAX helper. The automatic translation is performed during 
QEMU build time and uses an experimental LLVM-based tool, called helper-to-tcg which is not yet available in 
the  QEMU upstream repository  [7].  While  verbose,  the  generated  Tinycode  more  accurately  describes  the 
behavior  of  the  helper  function.  Notably,  two  paths  through  the  code  result  in  call raise_exception 
corresponding to the previously mentioned overflows, and the modification of rdx, rax is also clearly seen.
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III. LIBTCG-BASED STATIC ANALYSIS TOOLS

Usage of libtcg is demonstrated through a series of simple multi-architecture static analysis tools. In order of 
increasing  complexity,  the  following  analyses  were  implemented:  an  ISA-independent  instruction  printer;  a 
Control Flow Graph (CFG) printer; a register dataflow visualizer, and; a maximum stack boundary indentifier.  
Excluding parsing of ELF headers and printing of results, the core of each analysis was implemented in 50, 140,  
540, and 650 lines of C code, respectively. Each tool operates on a buffer of executable code, provided either as 
an ELF section, a function name, a region from a file specified with offset and size, or lastly as raw bytes from 
stdin4. All example programs that follow were compiled without optimization.

In general,   disassembly of an ISA with variable length encoding, such as ARM+Thumb, is notoriously 
complex. Therefore, libtcg does not aim to solve the problem of correctly identifying the location and architecture 
of the code to lift, but instead focuses on making analyses easy to implement, given a buffer of code.

A. ISA-Independent Instruction Printer

With the goal of producing Tinycode equivalent to the executable code in the input buffer, the buffer was 
linearly scanned, lifting instructions to Tinycode one translation block at a time. Next, each translation block was 
serialized to stdout in order of translation. As an example, see the basic 32-bit ARM code in listing 6 and its 
corresponding Tinycode in listing 7.

One drawback of the approach to code region identification taken in this analysis, is the inability to deal with  
ARM code  that  switches  from 32-bit  to  Thumb mode,  or  vice  versa.  These  regions  will  not  be  correctly 
indentified through a linear scan.  Instead,   control  flow directed lifting would be needed where each lifted  
translation block would be scanned for possible branches to find new code regions.

B. Control Flow Graph Printer

Building on the instruction printer, the input buffer is again lifted to a list of translation blocks. Next, to  
produce a CFG, all direct jumps to code that has already been lifted are turned into edges, splitting blocks in the 
process if the destination address is in the middle of translation block. Finally, the CFG is serialized to the DOT 
language for visualization with Graphviz [8]. Listing 8 shows a simple Hexagon program for computing the sum 
of the natural  numbers from 0 to 10,  and Figure 1 shows the produced CFG, clearly reproducing the loop 
structure.

Note that the choice not to handle indirect jumps means that jump tables and function calls in the input  
architecture are not correctly identified. Similarly, direct jumps to code that has not been lifted are not handled in 
the CFG. Again, this is the problem of code region identification, and not an inherent limitation of libtcg.

4 Source code availabe at: https://github.com/AntonJohansson/libtcg-examples
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C. Register Dataflow Visualization

Implemented as a backward dataflow analysis (see Ref. [9]) over the CFG recovered by the previous analysis, the 
goal is to construct a tree of all possible instructions which may affect the value of a given Tinycode operand. 
Whenever an instruction that writes to the given operand is found, the operands of that instruction are added to a  
list  of  new values to search for;  values that  are found are removed from the list.  This list  gets  propagated 
backwards through the CFG and across stack loads and stores until a fixed point is reached. Stack loads and 
stores were identified by running the same analysis on the pointer operand of the memory operations, and the 
resulting tree was folded to an offset from the stack register, if possible. All connected stack loads and stores 
could then identified on the CFG.

As an example, consider listing 9 containing a simple C program to sum the natural numbers from 0 to n, and 
Figure 2 with the resulting visualization. The program was compiled for 64-bit RISCV, and the analysis starts 
from the  x15/a5 operand to the  mov_i64 x14/a4, x15/a5 instruction (see instruction marked with borders). 
Identified source instructions are colored based on the destination operand with the exception of stores which are 
colored based on the pointer operand. Inspecting the figure, it becomes clear that x15/a5 in the body of the loop 
corresponds to the value of sum that is loaded from the stack. The operand being analyzed also depends on the 
instructions that follow it, which loads the loop induction variable i and performs the addition sum + i before 
storing the result to the stack again.
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In terms of limitations, the analysis will not be able to explore sources from non-stack loads, or from stack 
loads where the pointer operand cannot be reduced to an offset from the original stack pointer, such as stack 
addresses that depend on a runtime value. Additionally, sources which are not available on the CFG will be  
missed, including helper calls and indirect jumps. Therefore a conservative approach is taken where all indirect  
jumps and calls to helpers that affect the cpu state are assumed to be sources of the operand.
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D. Maximum Stack Size Calculator

A forward dataflow analysis (see Ref. [9]) over the CFG was created with the goal of making a conservative  
estimate of the maximum stack offset that has been read or written for each instruction in the program.  Iterating 
over the CFG, stack loads and stores were identified in the same manner as the previous analysis, hence the same 
limitations apply. Next, whenever a stack operation was detected, that offset would be propagated to subsequent  
instructions, taking the maximum along the way if a new stack offset was found. The final stack offset detected  
for each translation block was propagated forward through the CFG and used as a starting point for following 
translation blocks. This process was carried out until fixed point.

See listing 10 for a simple C program consisting of an if statement along with stack reads and writes. Figure 3  
shows the CFG produced by the analysis, when ran on the C program compiled for x86_64, with the maximum 
stack read and write offsets annotated in the margin. Examining the figure, the program starts by pushing rbp and 
the argument rdi to the stack, followed by loading the initial array values from constant addresses and storing 
them on the stack, resulting in a maximum written stack offset of 40. Note that array values are stored as 64-bit 
integers. Finally, the function argument is read from offset 16, and each branch reads from offsets 28 and 36, 
respectively.

IV. TESTING

The ISA-independent instruction printer was tested against a set of 749 QEMU v8.2.1 user-mode test binaries 
spread across 16 architectures5 and produces Tinycode for 716/748 (96%) of the binaries. All of the 32 failures 
are due 32-bit ARM programs switching between Thumb and normal code, which is not supported when lifting 
with a linear scan as discussed previously. As for the more complicated analyses, they were manually tested and 
verified against simpler binaries for x86, ARM, Hexagon, and RISCV.

V. FUTURE WORK

As it currently stands, libtcg is split into a "core" API consisting of a shared library per ISA, and an optional 
common "multi-architecture" API. This is a consequence of the highly coupled nature of the QEMU codebase, 
and results in increased code duplication and a larger maintainence burden. As a solution, we are currently 
involved in  an  upstream effort  to  modularize  QEMU by factoring out  as  much target-independent  code as 
possible into separate libraries6. libtcg would then depend only on the target frontends. In addition to simplifying 
libtcg, this is a crucial step towards emulating heterogeneous systems consisting of multiple cores of different 
architectures. Heterogeneous emulation is especially important in modeling a complete system on a chip, similar 
to what Xilinx accomplished with their ARM/MicroBlaze QEMU fork [10].

Lastly, despite usage of helper-to-tcg to automatically translate helper functions, many of them cannot be 
expressed  directly  in  Tinycode.  Thankfully,  most  helper  functions  are  well  structured  with  bounded  loops, 
making them susceptible to static analysis techniques.  Therefore,  all  registers accessed by a helper function 
should be statically identifiable, and can be exposed to libtcg for usage in analyses.

VI. CONCLUSION

To summarize, we have introduced libtcg, an accurate and easy-to-use lifter based on QEMU with wide ISA 
support. This allows developers to focus on creating the actual analyses, rather than modelling ISAs. On top of 
libtcg, four static analyses were implemented for demonstration purposes, and tested on 16 architectures with 
widely different characteristics. All without writing a single line of architecture specific code. The analyses range 
in complexity from dumping an ISA-independent representation to stdout, to finding the maximum stack offset 
accessed at any given point in the program. Lastly, different avenues for mitigating the limitations inherited by 
QEMU were discussed, including efforts towards heterogeneous emulation and accurate tracking of registers 
modified by helper functions.

5 Tested architectures: x86, SPARC, SH4, s390x, RISCV, PPC, Nios2, MIPS, MicroBlaze, m68k, LoongArch, 
HPPA, Hexagon, CRIS, Alpha, ARM

6 Roadmap: https://wiki.qemu.org/Dynamic_machine_and_heterogeneous_emulation_roadmap
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APPENDICES

A.  Architecture support among modern lifters and binary rewriters
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