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Abstract— The MIPI CSE v2.0 specification is a complex and multi-configurable specification offering a multitude 

of configurations to accommodate diverse security requirements for a broad spectrum of camera devices at varying 

cost points. This presents a challenge for controllers, especially those designed to interface with numerous camera 

devices in the field, as they need to support an extensive range of configurations while ensuring seamless 

interoperability with different camera types.  

In collaboration, NVIDIA and Synopsys have generated a comprehensive set of test vectors. These vectors serve as 

a valuable resource for both controllers and camera sensors, expediting the development process of CSE v2.0. 

Leveraging Synopsys’ VIP enhances the confidence in the implementation of these devices. The test vectors cover a 

spectrum of security variant configurations supported by CSE v2.0, contributing to a robust and well-tested 

implementation.  

I. INTRODUCTION 

 The automotive industry is undergoing a significant transformation to address rising requirements 

encompassing bit rates, frame resolution as well as functional safety and security. To safeguard image sensor data 

from security threats, MIPI Alliance has introduced a security framework designed for camera connectivity known 

as MIPI Camera Service Extension v2.0 (MIPI CSE 2.0), which is a collaboration between the MIPI Security and 

MIPI Camera working groups. This new framework successfully aligns with specific automotive standards, 

including ISO26262 for safety and ISO21434 for security compliance. In addition, this MIPI security framework 

can be implemented wherever CSI-2 is supported. 

 

 The MIPI CSE v2.0 standard is a complex specification that facilitates multi-configurable camera support 

for diverse security configurations. Addressing the breadth of these configurations is challenging yet essential to 

guarantee seamless interoperability among different devices. 

 

 This paper explains the collaborative effort undertaken by NVIDIA and Synopsys to create and validate 

a suite of security test vectors. These vectors significantly enhance confidence in the reliability and accuracy of 

the dataset used for the authentication and encryption algorithms integral to the MIPI CSE v2.0 specification. 

 

II. MIPI CSE OVERVIEW AND VERIFICATION CHALLENGES 

A. What is MIPI CSE? 

The automotive industry has traditionally relied on camera applications and/or SerDes protocols to implement 

its own security measures for facilitating secure communication between camera sensors and controllers. To 

address the growing risks and threats related to data manipulation and privacy concerns, the MIPI Alliance has 

introduced a novel security framework known as MIPI CSE v2.0, integrated within the MIPI Automotive SerDes 

Solutions (MASS). This innovative framework adds CSE Security Service Extensions atop the existing Camera 

Serial Interface 2 (CSI-2) protocol. When security is enabled, the source pixel data is encrypted (optionally) and 

authenticated based on the Security Variants (SV) configuration negotiated earlier. On the sink (at the receiving 

end), this security configuration is validated and decrypted (if encrypted) before further processing by the 

application layer. This flow is captured in Figure 1 below. 
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                                                                  Figure 1: MIPI CSE 2.0 Framework 

 

The CSE v2.0 security framework offers flexibility, allowing vendors to selectively implement security 

configurations. For instance, vendors that do not plan to support encryption are not required to include the AES-

CTR algorithm. However, if a vendor decides to support a specific security profile, they must implement the 

corresponding security configurations within that profile. A camera and controller vendor can choose to support 

only a subset of these security profiles. 

 

In this paper, we will focus on the security algorithms supporting different security profiles and present a 

methodology for validating these algorithms using test vectors. 
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B. MIPI CSE Security Configuration 

 

To process the Data Service Protocol (DSP) Service Extension Packet (SEP) and Frame-Based Service 

Extension Data (FSED) packets, the MIPI CSE v2.0 security service extensions offer support for authentication 

and encryption cryptographic algorithms. The designated algorithms include: 

 

•  NIST SP800-38D AES-GMAC Authentication Algorithm 

•  NIST SP800-38B AES-CMAC Authentication Algorithm 

•  NIST SP800-38A AES-CTR Encryption Algorithm 

 

These cryptographic algorithms operate in tandem with diverse security configurations outlined in the 

MIPI CSE v2.0 framework. These configurations encompass:  

 

•  Various security levels using distinct SV types as detailed in Table 1 

•  Placement and parsing of security configurations and protection of the DSP data for SEP and FSED packets 

•  Defining the cryptographic algorithm type and key size 

 

Each SV type within the MIPI CSE v2.0 framework provides different levels of security protection for 

the frame. For example, SV-1 ensures comprehensive frame integrity protection with data encryption, representing 

the highest level of security. However, SV-3 and SV-4 provide partial frame integrity protection, offering a lower 

level of security.  Both the source and sink entities negotiate to determine the SV type used for protection. 

Additionally, if necessary, negotiations also extend to the parameters associated with the selected SV type. An 

example includes the negotiation of configuration settings such as Start/Keep/Skip/Stop parameters, used for SV-

3 Line Stride Pattern (L-SP) and SV-4 Pixel Block Stride Pattern (PB-SP) configurations. This negotiation process 

ensures alignment in security measures between the transmitting and receiving ends of the communication.  

 

Security Variant (SV) Description 

SV-1 Full Integrity, Encryption 

SV-2 Full Integrity, No Encryption 

SV-3 Line Stride Pattern, No Encryption  

SV-3a First Line Stride Pattern, No Encryption 

SV-4 Pixel Stride Pattern, No Encryption 

SV-VD Vendor Defined 

SV-5 No Integrity, No Encryption 

Table 1: CSE v2.0 Security Variants 

 

The support for SV types varies based on factors such as the DSP type (SEP vs. FSED), Tag Mode, and 

Frame Partition (FP) type. This support can be categorized as mandatory, optional, or not available depending on 

the specific combination of these parameters.  Furthermore, the utilization of AES-GMAC may occur with or 

without AES-CTR encryption, and AES-CMAC can also be employed. It's noteworthy that the key and MAC size 

remain independent of this configuration. This diverse range of support configurations is collectively called the 

CSE Security Landscape. The specific support scenarios for different Tag Modes are thoroughly detailed in the 

MIPI CSE v2.0 specification, providing a comprehensive reference for understanding the security landscape 

associated with various DSP types and configurations. 

 

The parsing of security configurations varies for each DSP type. In the case of SEP, the security services 

are encapsulated within ePH3/ePF1 while for FSED, the security services are encompassed within the FSED 

Security Field (FSF). Authentication algorithms play a crucial role in safeguarding the integrity of both the header 

and payload information in each packet. In contrast, encryption is dedicated to preserving the confidentiality of 

the payload information alone. 

 

With AES-GMAC and AES-CTR, it’s important to note the construction of the initial value (IV) will be 

carried out using the header information.   

 

Due to factors like cost considerations, different vendors of CSE devices may opt to implement only a 

subset of configurations and therefore, the specification defines a mandatory minimum configuration for various 

profiles. These are known as the CSE Security Profiles and describe the minimum DSP type support based on the 
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SV type for selected Security Tag Modes. In addition, the specification identifies the minimum supported 

algorithm must use AES-128-GMAC with a 16 Byte MAC size.  

 

C. Verification of MIPI CSE Security Configuration 

 

The CSE Security Landscape for DSP type and Security Tag Mode describes a variety of security 

configurations that can be supported. The CSE Security Profile provides a subset of configurations for CSE device 

vendors to use if they want to support a subset of the security configurations. That said, within these CSE Security 

Profiles, there are still a variety of security parameters that need to be verified.  

 

In either case, verifying these security configurations will be a challenge. To overcome this, NVIDIA and 

Synopsys generated a set of security test vectors. These vectors are intended to be used by the Controller and 

Camera sensors to help accelerate the development of these CSE v2.0 devices by providing higher confidence in 

the implementation, thereby reducing the interoperability risk. 

 

III. VERIFICATION IP (VIP) EASE OF USE 

As protocol complexity continues to grow and evolve, the infrastructure needed for their verification must also 

become more sophisticated. The use of third-party Verification IP has become widespread, but the ease of 

adoption varies across the different vendor tools. These IPs come in various forms, differing in methodologies 

and implementation languages. Therefore, from a user perspective, it is beneficial to invest effort into developing 

an efficient strategy for adopting third-party Verification IPs. Any Verification IP, which adheres to System 

Verilog and UVM methodology can be used to verify the Security test vectors. But the effectiveness of this 

approach will depend on the nature of the security tests and the capabilities of the VIP. Using VIPs that are tailored 

for these security protocols will ensure that the test vectors align well with the protocol requirements and can 

cover various security scenarios comprehensively. Security-related IPs, such as those handling cryptographic 

protocols or secure communication standards (e.g., AES), often have specialized VIPs designed for verifying the 

security specific algorithms. Security testing often involves custom or proprietary test vectors that are designed to 

probe for specific vulnerabilities or compliance with security standards. Features like transaction-level modeling, 

protocol checking, and error injection are important for thorough security testing. UVM provides a flexible 

framework for creating testbenches and generating test vectors. By leveraging UVM's capabilities, the user can 

develop sophisticated test scenarios that include security-specific case. UVM's constrained random generation 

and functional coverage can help in exploring a wide range of potential security issues. In the current scenario, 

we had chosen Synopsys VIP, which uses UVM methodology with System Verilog concepts to establish a 

structured approach for verifying the security test vectors. The configurability in the VIP infrastructure is crucial 

for verification of CSE algorithms. To verify the test vectors, Synopsys VIP provides configuration classes for 

both Transmitter and Receiver agents with different configuration variables for the user to program values to the 

test vectors. Synopsys VIP helps generate appropriate stimulus to exercise all verification requirements and 

monitor the responses and ensure they are correct. Synopsys VIP can be used with any IP for verifying the 

underlying protocol of MIPI CSE. 

 

IV. VALIDATION USING TEST VECTORS 

Two sets of validation vectors are in the appendix of the CSE v2.0 specification. Each set represents a specific 

security configuration for SEP and FSED and both are part of the CSE Security Profile described in the 

specification. 

 

A. SEP Tag Mode 1a SV-1 

This configuration targeting SEP Tag Mode 1a using Security Variant 1 (SV-1) includes full AES-128-GMAC 

integrity and AES-128-CTR encryption.  The vector information includes: 

 

a)  Frame configuration including the settings for Frame, CSE_TX_CONFIG, CSE_SEP_CONFIG, 

CSE_SA_CONFIG, CSE_CTRL_CONFIG, CSE_AFC_FC_STATE, etc. 

b)  Example of the encryption flow for Line 0 of the FP-3 Middle Block 
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c)  A detailed description of the payload input byte and ordering of the CSI-2 packet. In addition, the intermediate 

values including ePHs, UVs and GMAC data blocks 

d)  A corresponding detailed description of the payload output byte and ordering of the CSI-2 packet 

 

B. FSED Tag Mode 2a FSED_CTRL_SYNC 

This configuration targeting FSED Tag Mode 2a uses AES-128-GMAC for authentication of the 

FSED_CTRL_SYNC which is transmitted after FP-1 and before FP2. Note, the FSED_CTRL_SYNC message is 

on every FSED and applies to all supported FSED SV types. From a test vector perspective, the information is 

provided with the following exceptions:  

 

•  Provides example of the authentication flow of the FSED CTRL_SYNC 

•  A detailed description of the input/output payload based on the FSED message 

 

C. Using Synopsys VIP to Generate the NVIDIA/Synopsys Vectors for AES Processing 

Synopsys VIP can be used to generate the AES-GMAC and AES-CTR vectors used in both SEP and FSED 

test vectors. Each test requires: 

 

•  Input configuration data 

•  Input data 

•  Expected output data (golden reference) 

 

For AES-GMAC, the expected output data is the MAC tag. Whereas for AES-CTR, it’s encrypted data. In 

both cases, it provides the correctness of the output for each test. 

 

The last vector included in this section is AES-CMAC. It is not part of the vectors provided in the CSE v2.0 

specification but it is supported as one of the authentication algorithms camera vendors can choose to use. Note, 

AES-CMAC is not included as one of the primary profile supports in CSE Security Profile. 

 

Configuration Data 

 

Base configuration for the AES-GMAC, AES-CTR and AES-CMAC tests 

 

// To set user defined value of frame number set below configuration to 0 

cfg.xmtr_cfg.csi2_cfg.frame_number_override_en = 0; 

cfg.rcvr_cfg.csi2_cfg.frame_number_override_en = cfg.xmtr_cfg.csi2_cfg.frame_number_override_en; 

// To set user defined value of additional_frame_number set below configuration to 0 

cfg.xmtr_cfg.csi2_cfg.additional_frame_number_override_en = 0; 

cfg.rcvr_cfg.csi2_cfg.additional_frame_number_override_en = 

cfg.xmtr_cfg.csi2_cfg.additional_frame_number_override_en; 

// Configuration to set Additional frame number 

cfg.xmtr_cfg.csi2_cfg.additional_frame_number_using_cfg = 'h425241; 

cfg.rcvr_cfg.csi2_cfg.additional_frame_number_using_cfg = 

cfg.xmtr_cfg.csi2_cfg.additional_frame_number_using_cfg; 

// Configuration to set source_id value 

cfg.xmtr_cfg.csi2_cfg.source_id = 'h39; 

cfg.rcvr_cfg.csi2_cfg.source_id = cfg.xmtr_cfg.csi2_cfg.source_id; 

// Key was configured from the testcase using below configuration 

cfg.xmtr_cfg.csi2_cfg.traffic_key_block.push_back(temp[127:0]); 

cfg.xmtr_cfg.csi2_cfg.traffic_key_block.push_back(temp[255:128]); 

cfg.rcvr_cfg.csi2_cfg.traffic_key_block = cfg.xmtr_cfg.csi2_cfg.traffic_key_block; 

 

V. AES-GMAC AUTHENTICATION 

AES-GMAC authentication algorithm is used to authenticate the frame data. AES-GMAC algorithm 

authenticates this data by generating an authentication tag using the Initial Value (IV), 128 bit or 256 bit Key and 
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Additional Authenticated Data (AAD). Note, the AAD includes SEP and FSED header data and payload. The VIP 

configuration below shows configuring the key, IV and input data (AAD) to use with the AES-GMAC algorithm. 

 

// Configuration to select GMAC Mac algorithm 0 select AES GMAC 128bit and 2 select AES GMAC 256 bit 

 

cfg.xmtr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4] = 0; // AES GMAC 128 bit 

cfg.rcvr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4] =  

cfg.xmtr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4]; 

 

A. Example Test Vectors Shared by NVIDIA 

 

GMAC_KEY = 6cb150ab3150513fe5fd79097e3cb628 

GMAC_IV = 3906400000425241564f0000 

GMAC_AAD = 0230000602000000000039504f560 

GMAC_TAG = 7e7a7cc2f1cd5b7bb9291cdd2efcc934 

 

B. Sequence Code 

 

`uvm_do_with(req,{ 

req.transmission_mode == svt_mipi_csi2_packet::HS_MODE; 

req.data_type == svt_mipi_csi2_packet::SEP; 

req.ephen == 'h2; 

req.epfen == 2'b10; 

req.extended_data_type == FS; 

req.payload_descriptor == 'h0; 

req.evc == 'h6; 

get_response(rsp);  // wait for transaction to complete 

}); 

 

 

C. Expected/Obtained Results 

NVIDIA test vectors Synopsys VIP Output Description 

 

 

GMAC_KEY = 

6cb150ab3150513fe5fd79097e3cb628 

 

GMAC_IV = 

3906400000425241564f0000 

 

GMAC_AAD = 

0230000602000000000039504f560 

 

GMAC_TAG = 

7e7a7cc2f1cd5b7bb9291cdd2efcc934 

 

K = 6cb150ab3150513fe5fd79097e3cb628  

 

A [1]= 0230000602000000000039504f560000  

 

IV = 3906400000425241564f0000  

 

H = 15fc728510897853805116738bab3ea1  

 

Y [0] = 3906400000425241564f000000000001  

 

E(K,Y[0] = 

fc2c2160a756fa19f00d8d97629596b1  

 

X[1] = 752131e95de30362ff7282abb7dac71d  

 

GHASH(H,A,C) = 

82565da2569ba1624924914a4c695f85  

 

T = 7e7a7cc2f1cd5b7bb9291cdd2efcc934  

 

• In this example the vectors 

are generated and validated 

for SEP FS Packet 

• AES GMAC algorithm with 

128-bit Key and user defined 

FC and AFC values are being 

transmitted 

• SNPS Output Mac Tag has 

been compared with NVIDIA 

expected results and thus 

verified the vectors 

Table 2: Simulation results with NVIDIA test vectors for AES GMAC 
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VI. AES-CTR ENCRYPTION 

AES-CTR encryption requires configuring the IV, 128 bit or 256 bit key along with providing the input data. 

The input data is plain-text on the camera sensor and cipher-text on the controller.  The Synopsys VIP 

configuration example below demonstrates how to configure the key, IV and input data for the AES-CTR.  

 

// Configuration to select Mac algorithm 1 select AES CTR 128bit and 3 select AES GMAC 256 bit 

cfg.xmtr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4] = 1; // AES CTR 128 bit Encryption 

cfg.rcvr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4] = 

cfg.xmtr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4]; 

A. Example Test vectors shared by NVIDIA 

CTR_KEY = 735d549a41277e18bc922c59200fbab8 

CTR_IV = 3906400000425241564f000100000000 

CTR PLAINTEXT = 000102030405060708090a0b0c0d0e0f 1011121314151617 

CTR CYPHERTEXT = 8ee92bd463d9ce2f075f352d7b7b7ca3 ad00c3a7749171df 

B. Sequence code 

 

`uvm_do_with(req,{ 

 req.transmission_mode == svt_mipi_csi2_packet::HS_MODE; 

               req.data_type == svt_mipi_csi2_packet::SEP; 

 req.ephen == 'h2; 

 req.epfen == 2'b10; 

 req.extended_data_type == 'h2a; 

 req.payload_descriptor == 'h0; 

 req.evc == 'h6; 

 req.payload_length == 'h18; 

 req.extended_payload[0] == 'h00; 

 req.extended_payload[1] == 'h01; 

 req.extended_payload[2] == 'h02; 

 req.extended_payload[3] == 'h03; 

 req.extended_payload[4] == 'h04; 

 req.extended_payload[5] == 'h05; 

 req.extended_payload[6] == 'h06; 

 req.extended_payload[7] == 'h07; 

 req.extended_payload[8] == 'h08; 

 req.extended_payload[9] == 'h09; 

 req.extended_payload[10] == 'h0a;  

 req.extended_payload[11] == 'h0b; 

 req.extended_payload[12] == 'h0c; 

 req.extended_payload[13] == 'h0d; 

 req.extended_payload[14] == 'h0e; 

 req.extended_payload[15] == 'h0f; 

 req.extended_payload[16] == 'h10; 

 req.extended_payload[17] == 'h11; 

 req.extended_payload[18] == 'h12; 

 req.extended_payload[19] == 'h13; 

 req.extended_payload[20] == 'h14; 

 req.extended_payload[21] == 'h15; 

 req.extended_payload[22] == 'h16; 

 req.extended_payload[23] == 'h17; 

/** wait for transaction to complete */ 

      get_response(rsp); 

}); 
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C. Expected/Obtained Results 

 

NVIDIA test vectors Synopsys VIP Output Description 

 

 

CTR_KEY = 

735d549a41277e18bc922c59200fbab8 

 

CTR_IV = 

3906400000425241564f000100000000 

 

CTR PLAINTEXT = 

000102030405060708090a0b0c0d0e0f 

1011121314151617 

               

CTR CYPHERTEXT = 

8ee92bd463d9ce2f075f352d7b7b7ca3 

ad00c3a7749171df 

 

K = 735d549a41277e18bc922c59200fbab8  

 

P[1] = 000102030405060708090a0b0c0d0e0f  

P[2] = 10111213141516170000000000000000  

 

IV  = 3906400000425241564f0001  

 

Y[0]  = 3906400000425241564f000100000000  

 

E(K,Y[0] = 8ee829d767dcc8280f563f26777672ac  

E(K,Y[1] = bd11d1b4608467c8b59ca02d93c721bc  

E(K,Y[2] = b7183b6e8eb6b4798a06c0ba2bc228b6  

 

C[1]  = 8ee92bd463d9ce2f075f352d7b7b7ca3  

C[2]  = ad00c3a7749171df0000000000000000 

 

• In this example the 

vectors are generated 

and validated for SEP 

FS Packet 

Table 3: Simulation results with NVIDIA Test vectors for AES-CTR 

 

VII. AES-CMAC AUTHENTICATION  

AES-CMAC authentication algorithm is used to verify the integrity of the frame data by generating an 

authentication tag using 128 bit or 256 bit Key and passing in the input data (message). Unlike the AES-GMAC 

configuration, which requires an IV input, the AES-CMAC VIP configuration only includes the key and input 

data. 

 

// Configuration to select Mac algorithm 8 select AES CMAC 128bit and 9 select AES CMAC 256 bit 

cfg.xmtr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4] = 8; // AES CMAC 128 bit 

cfg.rcvr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4] = 

cfg.xmtr_cfg.csi2_cfg.cse_i_sec_sa_config_register[1][7:4]; 

 

A. Example Test Vectors Shared by NVIDIA 

 

CMAC_KEY = 6cb150ab3150513fe5fd79097e3cb628 

INPUT DATA = 0230000602000000000039504f56415242 

MSG LENGTH = ‘h11 

CMAC_TAG = 1f1fa7ad70118b2adc56e8f05a613de0 

B. Sequence code 

`uvm_do_with(req,{ 

 req.transmission_mode == svt_mipi_csi2_packet::HS_MODE; 

              req.data_type == svt_mipi_csi2_packet::SEP; 

              req.ephen == 'h2; 

              req.epfen == 2'b10; 

              req.extended_data_type == FS; 

              req.payload_descriptor == 'h0; 

              req.evc == 'h6; 

/** wait for transaction to complete */ 

      get_response(rsp); 

}); 
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C. Expected/Obtained Results 

 

NVIDIA test vectors Synopsys VIP Output Description 

 

 

CMAC_KEY = 

6cb150ab3150513fe5fd79097e3cb628 

 

INPUT DATA = 

0230000602000000000039504f56415242 

 

MSG LENGTH = ‘h11 

               

CMAC_TAG = 

1f1fa7ad70118b2adc56e8f05a613de0 

 

 

K = 6cb150ab3150513fe5fd79097e3cb628  

 

L = 15fc728510897853805116738bab3ea1  

 

K1 = 2bf8e50a2112f0a700a22ce717567d42  

K2 = 57f1ca144225e14e014459ce2eacfa84  

 

Msg Data[0] = 

0230000602000000000039504f564152  

 

Padded Msg = 

42800000000000000000000000000000  

 

Msg Length = 00000011  

 

T  = 1f1fa7ad70118b2adc56e8f05a613de0  

 

 

• In this example the vectors 

are generated and validated 

for SEP FS Packet 

Table 4: Simulation results with NVIDIA Test vectors for AES-CMAC 

 

VIII. CONCLUSION 

Advancements in the automotive industry are transforming the future of transportation by incorporating both 

functional safety and security features. MIPI CSE v2.0 plays a pivotal role in enabling automotive stakeholders 

to integrate cutting-edge security measures such as tamper detection and camera packet confidentiality. This 

integration contributes to the creation of a more comprehensive and secure automotive system. Validating these 

features with test vectors becomes imperative for confirming the correctness of the transmitted packets.   

 

The use of Synopsys MIPI CSI VIP proves instrumental in streamlining the validation process of test vectors, 

with results showcased at the MIPI Working Group meeting. MIPI CSE Synopsys VIP testbench architecture 

helped in verifying these test vectors, allowing to present the validation results before the MIPI Org meeting. 

Leveraging Synopsys MIPI CSI2 v4.0 VIP emerged as an asset in the validation process. This success facilitated 

the proposal to include the test vectors as part of the annexure in the specification during the Working Group 

meeting. 
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