

1

Synthesis Strategy for Standard Cell Library

Validation

H. Shin†, S. Do, J. Lee

Foundry Division, Samsung Electronics,

Hwaseong-si, Republic of Korea (hy22.shin@samsung.com†)

Abstract— In semiconductor design, synthesis can be considered a blessing. It not only reduces design time but also

greatly helps in improving circuit performance and productivity. Most EDA tool company have conducted extensive

research to develop more efficient synthesis algorithm, and most of these are focused at improving semiconductor

performance, which is commonly referred to as Power, Performance and Area (PPA). However, from the perspective

of a foundry engineer who design libraries, this algorithm can be disadvantageous in terms of coverage when they want

to see if the developed library actually has no problems in synthesis flow. An efficient synthesis algorithm utilizes the

optimal standard cells for the best solution, resulting in many unused standard cells in the library. Through this study,

we introduce a synthesis strategy that focuses on the utilization of standard cells. Our strategy is to enforce the synthesis

tool so that as many types of standard cells as possible can be used in the synthesis flow, and we have confirmed that

the usage rate of standard cells can be increased through various designs. Furthermore, we introduce that the standard
cell usage information obtained from the synthesis results can be used for library optimization.

Keywords—standard cell; synthesis; library validation

I. INTRODUCTION

Semiconductor standard cells are the basic building blocks of semiconductor chips, referring to pre-designed

functional blocks. They have a predetermined size and functionality that can be reused by designers when

designing semiconductor chips. Standard cells come in various types, including logic gates, memory cells, and

arithmetic operation cells. These standard cells are provided in the form of libraries, and designers can select and

use the necessary standard cells. Using standard cells to design semiconductor chips can improve design efficiency

and chip performance. In the synthesis process, the design is composed of the optimal combination of standard

cells. However, not all standard cells in the library are used because they use synthesis algorithms for PPA, and

there are many standard cells that are not used in actual designs. It is difficult for library designers to predict in

advance whether there will be problems when using standard cells in semiconductor chips. Therefore, through

this study, we have successfully increased the utilization rate by finding a way to force unused standard cells to

be used in the synthesis process. The following basic and essential standard cells were targeted for research:

Combinational cells, Sequential cells, Multi-bit cells, Clock-Gating cells and Synchronizer cells.

 Combinational cells: AND, OR, NOR, NAND

 Sequential cells: Latch, Scan flip-flop(FF)

 Multi-bit cells: Multi-bit flip-flop (MBFF)

 Clock-Gating cells: ICG

 Synchronizer cells: SDFFY

Table I shows the number of test cells targeted by our synthesis strategy and the “don't care list”, which is a

type of cell excluded from the target of our synthesis strategy.

Table I. Synthesis Strategy Test Cells and don’t care cells

 Total number

of cell

Don’t care list # The number of Test cell

Finishing Delay cell DFF SDFFY ICG MBFF Combinational & Sequential

154 24 6 9 9 3 14 103

2

II. RELATED WORK

The integrity of standard cell libraries is already guaranteed from the perspective of chip designers, so it is not

an active research area. However, there are some papers that deal with the verification of standard cell libraries,

as follows:

The first paper [1] introduces a verification method for power management standard cells that are not covered

in synthesis. The importance of low power design increases, so standard cells required for these designs are also

used. Therefore, verifying low power libraries has become more important and different methods were required

than before. They use power-intent strategy described in UPF and multi-voltage design platform including all

cells to verify. The UPF commands specify the functional model and a list of implementation targets for cells. If

the cell described through the command was used differently from what we intended, we could check it through

the design verification tools and finally find that there was a problem with the library. It was also possible to check

the consistency between each view through Verilog simulation using the same scenario.

The second paper [2] introduces a verification method for the physical view of standard cells. It presents a

comprehensive standard cell abutment verification tool to generate test cases for quality assessment, ensuring that

standard cells can be placed without causing design rule check (DRC) violations during placement, Vt swap, and

engineering change orders (ECO). If a DRC violation is due to routing, it can be resolved by re-routing, but if it

is due to cell abutment, fixes may involve inserting space or redesigning cells. The tool efficiently checks for safe

abutment of standard cells while eliminating redundant cases, resulting in a significant reduction in the test area

to cover all boundaries and maintaining 100% coverage of all standard cell abutment topologies.

These papers focused on verifying specific standard cells or the physical view, so research on different views

or basic standard cells is necessary. We will cover the content that is not covered in the two papers introduced

above.

III. SYNTHESIS STRATEGY

To implement a chip, considering power, timing, and area constraints, the Register Transfer Level (RTL) needs

to be converted into a gate-level netlist. This process is called synthesis. Customers utilize our standard cell library

during synthesis. We validate the standard cell library to ensure that customers encounter no issues when using it.

By using our synthesis strategy of pre-conducting synthesis using the OR1200 design for developed standard cells,

we can ensure that our standard cell library is flawless. The figure below, Figure 1, represents our synthesis

strategy in a flow chart. By analyzing the synthesized design, we generate a "don't use" list for the next run. This

process will be explained in detail in A. Don’t Use Policy. The overall flow is repeated until we achieve coverage.

This process will be explained in detail in B. Multiple Run. This flow is used to cover all the cells we target as

described in the Introduction. The following subsections contain descriptions of the individual steps in this flow.

Check
Coverage

100%

No

Read DB

Synthesis

Update used
Cell list

Total used
Cell list

Set

don t use

PASSYes

Can update

don t_use list

Yes

EndNo

Make

don t_use list

Figure 1. Synthesis strategy flow

3

A. Don’t use Policy

The dont_use attribute is used to exclude objects from the target library during optimization when set to true.

In other words, the standard cells with the dont_use attribute set to true are not used in the gate level netlist. Using

the attributes of the dont_use attribute, below, we introduce the cell types that are targeted for verification in our

synthesis strategy.

i. Latch Cell

In Design For Testability (DFT), latch cell is used as a lockup latch to match the clock skew between

registers and prevent hold time violation. In our synthesis strategy, we perform multiple synthesis runs

because not all cells are used in a single synthesis for latch or flip-flop. We will introduce this in detail in

Section B. Multiple Run. In Figure 2, we explain the flow of using a latch cell as a lockup latch in the

synthesis strategy and the corresponding TCL commands.

Setting not to replace latch with a sequential cell : set_scan_element false [get_lib_cells [list LATNQ* LATQ*]]

Insert a lockup latch between the clock domain boundaries of the
scan chain : set_scan_configuration -add_lockup true -test_mode all_dft

ii. Flip-Flop Cell

In the DFT of the synthesis, a Scan D Flip-Flop (FF) is used to configure the scan chain. The Scan DFF

consists of a DFF and a Mux.

iii. Integrated clock gating Cell

Clock gating cells are used for low power consumption in clock gating methodologies, and the synthesis

tool can determine where the cell can be used to provide a significant power savings for clock gating. In

DFT, the clock-gating cell and its pin are designated and used with it. In Figure 3, we describe the flow for
setting up a clock-gating cell related to dft_drc and insert_dft in the synthesis strategy and compiling it

using the gate_clock option.

iv. Synchronizer Flip-Flop Cell

A synchronizer cell is used to transmit data from one clock domain to another asynchronous clock domain.

We use two flows that can verify whether the synchronizer flip-flop cell is used well for the scan path:

Using RTL with a synchronous reset pin (CASE 1), using RTL with an asynchronous reset pin (CASE 2).

First compile : compile_ultra -gate_clock -scan

Configuration related to clock-gating cell for dft_drc and insert_dft :
set_dft_configuration -connect_clock_gating enable

set_dft_clock_gating_pin [get_cells * -hier –filter "@ref_name =~ PREICG*"] \
-control_signal ScanEnable -pin_name SE

Compile after insert dft : compile_ultra -gate_clock -scan -incremental

Out

b)

Out

CLK0

CLK1

Signal1

Signal0

sync FF

D QR

sync FF

D QR

CLK0

CLK1

CLK

Signal1

Signal0

sync FF

D QR

sync FF

D QR

FF

D Q

a)

Figure 4. a) Synchronous reset design (CASE 1), b) asynchronous reset design (CASE 2)

Figure 2. Lockup latch setup

Figure 3. Clock-gating cell setup in DFT flow

4

 Figure 4-a) is the synchronizer design using a synchronous reset with a DFF. If the reset is described in

the Core Test Language (CTL) as an asynchronous pin, the scan chain is not tied due to mismatch between

the RTL (synchronized reset pin) and the CTL (asynchronous reset pin). In conclusion, we can verify

whether the reset is well described in the CTL. Figure 4-b) is the synchronizer design using an asynchronous

reset. If the CTL recognizes the reset as an asynchronous pin, the scan is properly tied only if the CTL's

Active State is properly described. In conclusion, we can verify whether the synchronizer cell is used well

in the scan chain of the synthesis and whether the CTL's ActiveState is well described at the same time.

Through both cases, we can verify both the CTL and the Liberty. Figure 5 shows an example of declaring

the ActiveState of a reset type pin in CTL.

v. Multi-bit Flip-Flop

In the synthesis process, single-bit FF is replaced with multi-bit FF (MBFF) for advantageous in terms

of PPA. To perform synthesis using a MBFF cell, we use two methods of synthesis strategy: RTL inference

Flow [3], Register mapping Flow [4].

a) RTL inference Flow

In RTL inference flow, the option for banking has been set to non_timing_driven. As a result, the tool uses

MBFF cells whenever it can. Figure 6 illustrates the explanation and command for the "RTL inference

flow of MBFF".

Read RTL : set hdlin_infer_multibit default_all

Set the options for banking : set_multibit_options -mode non_timing_driven

Perform RTL banking during first compile : compile_ultra -gate_clock -scan

b) Register mapping flow

In register mapping flow, to replace single-bit registers with multi-bit registers in a multi-bit component,

we use the identify_register_banks command with the multibit_components_only option. Figure 7 illustrates

the explanation and command for the "Register mapping flow of MBFF".

In the synthesis process, we can check if the MBFF properly replaces the single-bit FF in a report file

from report_multibit_banking. Additionally, if there is a mismatch in pin consistency between single-bit

FF and MBFF, and the value of the nextstate_type attribute of the scan-related pin of the MBFF is

incorrectly described, the design compiler will not use the MBFF and the following error will occur, which

can also be verified from the perspective of library consistency.

Error: The bank's pin is not consistent with candidate register cells' pin. (PSYN-1204)

Figure 5. CTL description of SDFFY cell with reset type pin

Figure 6. RTL inference flow of MBFF cells

5

Read RTL : set hdlin_infer_multibit default_all

Disable multibit mapping : set_multibit_options -mode none
compile_ultra -gate_clock -scan

Perform multibit banking in the same multibit components :
 identify_register_banks -multibit_components_only -output_file create_reg.tcl

source create_reg.tcl

Set DFT constraints : insert_dft

Compile : compile_ultra -gate_clock -scan -incremental

Figure 7. Register mapping flow of MBFF cells

B. Multiple Run

We perform synthesis multiple runs to increase the utilization of standard cells in synthesis. In particular, we

check the number of latch or flip-flops used in one synthesis execution and determine the number of synthesis

executions accordingly.

 The number of latch or flip-flop types in a library / The number of latch or flip-flops used in one synthesis

run = The number of synthesis runs

Since the cells used in previous synthesis have already been verified, the dont_use attribute is set to true and

in the next synthesis, only cells that are not used in the previous synthesis are verified.

C. Cells must include from the synthesis strategy scope

To synthesize a design correctly, all logic must be implemented using standard cells from the library. However,

if there are many cells set to dont_use, synthesis may become impossible. To prevent this, a universal gate has

been excluded from the dont_use condition. The universal gate is a gate that can create all logic gates with just

one type of gate, and there are NAND and NOR. Among them, we have taken measures to use NOR2 as a universal

gate and always use it without being included in the dont_use list.

D. Cells excluded from the synthesis strategy scope

1) Physical Cell

Physical cells such as ANTENNA, FILLCAP Cell are used for P&R, not synthesis, so they are excluded

from the target of our strategy.

2) Power management cell

To verify that power management cells are used in synthesis, a verification strategy using UPF is required.

They will be verified in the verification method of II. RELATED WORK.

IV. EXPERIMENTAL RESULT

Through the synthesis strategy proposed in this study, we were able to increase effectively the utilization rate

of standard cells to 100% using a small OR1200 design. The utilization rate was compiled based on the available

standard cells among the standard cells that can be used in synthesis, and the standard cells used in the backend

design stage or DFM stage were excluded from the parameter. Figure 8 represents the directory structure for the

synthetic strategy. The environment for the experiment is divided into DB_DIR and RUN_DIR. The DB_DIR

contains databases for synthesis, and for the OR1200 design, a design with SRAM removed is used to view only

the Standard Cell. In the case of RUN_DIR, it is a directory where the actual synthesis is performed, and there are

four run paths to view combinational & sequential cells, multi-bit FF, and synchronizer cells.

6

TOP_ENV

DB_DIR

Std. Cell
Library

Tech Library

Methodology
Testcase RTL

Based on OR1200

RUN_DIR

COMB & SEQ MBIT_MAPPING

SYNC MBIT_BANKING

Figure 8. Experimental environment (directory structure)

A. Combinational cells, Sequential cells and Multi-bit cells

The results of our synthesis strategy case are as follows. In order to ensure that all cells are used in the synthesis,

we perform multiple synthesis runs. The number of synthesis runs is determined by dividing the number of latches

by the number of latches used in a single synthesis. In this synthesis strategy, a single synthesis uses one latch or

two latches. The number of latches used in the test library is 14, and since it uses 1.5 latches per synthesis, the

number of synthesis iterations is set to nine.

Each time a synthesis is performed, the cells that have already been used in the synthesis are set to dont_use

attribute as true and excluded from the synthesis target in the next synthesis. This forces as many different types

of standard cells to be used in the synthesis as possible. Table II shows the number of cells used, the coverage of

the synthesis strategy, and the usage status of latch in each synthesis run. Through nine iterations of synthesis, we

achieved a 100% utilization rate of Samsung Foundry's standard cells in the OR1200 design.

Table II. Utilization information of standard cells through multiple synthesis runs

Figure 9 represents a chart of standard cell utilization and the number of cells used with multiple synthesis.

After performing the fourth synthesis, more than 90% of the total cells are used, and latches not used in previous

synthesis are used in subsequent synthesis.

 Initial Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8

Used cell 70 18 5 2 1 2 2 2 1

Utilization rate of cells 67.9% 85.4% 90.2% 92.2% 93.2% 95.1% 97.0% 99.0% 100%

Total Used cell 70 88 93 95 96 98 100 102 103

Don’t use(LAT) +Q/QN +SPQ
+RPQN/

RQ
+SQN +SPRQ

+NQ/

NQN

+NRPQN

/NRQ

+NSPQ/

NSQN
+NSPRQ

Figure 9. Chart of combination & Sequential cell utilization and the number of cell used

7

In Table III, the synthesis results for the MBFF register mapping flow are shown, including the number of

all of multibit test cells and used cells, as well as the corresponding synthesis strategy coverage. After achieving

a 100% utilization rate of standard cells with three synthesis runs, the results of subsequent runs were omitted.

Table III. Utilization information of MBFF cells through multiple synthesis runs

B. Clock-Gating Cells

In our synthesis strategy, we check if a clock-gating cell is properly used according to its function using the

following command in Figure 10. When the clock-gating cell is used in clock gating logic, we can check the

information: ICG cells are used only as clock-gating.

C. Synchronizer Cells

We use all nine types of synchronizer cells in our synthesis strategy by changing the values of the cell_value

and sync_depth parameters in the SEC_AP_GENERIC_SYNCHRONIZER module. Figure 11 describes the

synthesis strategy for synchronizer cells, including its RTL and corresponding parameters.

In the design compiler, we can check the SDFFY cells in the scan chain. In the case 1, we confirmed that there

are no corresponding SDFFY cells by checking the message: "[PASS]: sync cells are NOT used in scan chain”.

In addition, in the case 2, we confirmed that all SDFFY cells are used in the scan chain by checking message:

"[PASS]: all of sync cells in liberty are used in scan chain". The detailed explanation of case 1 and case 2 can be

found in III. SYNTHESIS STRATEGY. In Figure 12, we describe the TCL command to verify the SDFFY cell used

in the scan chain of the design compiler and check the results for both cases.

 Initial Run1 Run2

MBFF used cell 9 11 14

Utilization rate of cells 64.20% 78.50% 100%

Total used cell 9 2 3

Figure 10. clock-gating cell checking command

Figure 11. RTL for synchronizer cells and description

8

 In Figure 13, we show a report on the results of performing synthesis using our synthesis strategy. By checking

the coverage and log of this report, we can confirm that the utilization rate of standard cells in our synthesis

strategy has reached 100%.

V. CONCLUSION

The ultimate goal of developing high-quality libraries is to support customers in successfully designing high-

performance chips by effectively utilizing the library in the synthesis process from a development methodology

perspective. Therefore, we have developed a synthesis strategy focused on standard cell utilization that can be

checked by synthesis tools for each cell type. Samsung Foundry verifies that each cell is used correctly in the

synthesis flow within the design before distributing the library to customers through the synthesis strategy

presented in this paper. This allows us to verify the integrity of all types of standard cells, including combinatorial

and sequential cells. Ultimately, we can provide customers with high-quality libraries.

REFERENCES

[1] J. Lee, H. Bak, S. Do, T. Yoo, Gowrishankar Srinivasan, Vishw Mitra Singh Bhadouria, “Low-Power Validation Framework for Standard

Cell Library Including Front-End and Back-End Implementation,” DVCON Europe 2023 Oct. 2023

[2] J. -Y. Chueh and C. Tung, "Efficient standard cell abutment checker," 2013 IEEE 20th International Conference on Electronics, Circuits,

and Systems (ICECS), Abu Dhabi, United Arab Emirates, 2013, pp. 847-850, doi: 10.1109/ICECS.2013.6815547.

[3] Solvnet, RTL Bus Inference Flow (synopsys.com)

[4] Solvnet, Placement-Aware Multibit Register Banking in Design Compiler Graphical (synopsys.com)

Figure 12. Command for checking synchronizer cells of scan chain and reporting

Figure 13. Standard cell coverage report using our validation process

https://spdocs.synopsys.com/dow_retrieve/qsc-v/dg/dcolh/V-2023.12/dcolh/mban/multibit_register_synthesis_physical_implementation/rtl_bus_inference_flow.html#XYuEaJoRL
https://spdocs.synopsys.com/dow_retrieve/qsc-v/dg/dcolh/V-2023.12/dcolh/mban/multibit_register_synthesis_physical_implementation/placement_aware_multibit_register_banking_dc.html

