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Abstract—This paper shows how we adopt formal property verification to accelerate post-silicon debugging. By 

using cover properties to re-create bugs rather than a traditional simulation based testbench, we take advantage of the 

full state space exploration of formal tools. The used flow is based on seven steps, which can be also applied by beginners 

and new adopters of formal verification, as just a subset of skills is required to set up the environment. For many bugs 

a single cover property is sufficient to re-create and debug them. The implemented setup can be also used to prove the 

absence of the bug after a design fix or to test a workaround. By means of an example, we showcase that we were able 

to re-create a hard to find corner case deadlock in one of our designs. The bug escaped the UVM based pre-silicon 

verification and got initially observed by the post-silicon validation team. After the implementation of a cover property 

with respect to the provided information, the formal tool consumed just a few minutes of execution time to provide the 

formal trace of the observed deadlock. 
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I.  INTRODUCTION 

As supplier of modern System-on-Chip (SoC) designs for radio and audio processing in the automotive 

domain, we are faced with an increasing design complexity on one side and an aggressive time-to-market schedule 

on the other side while keeping the product quality high. It happens more frequently that pre-silicon verification 

teams are not able to complete the full-fledged verification anymore within the project schedule and furthermore 

they need to take well thought decisions to prioritize their efforts. Undetected corner case design deadlocks are a 

nightmare for design and verification engineers, as they can seriously harm the product usability at customers end 

and may lead to a loss of trust. To catch these type of bugs in the pre-silicon verification phase we require highly 

experienced engineers and precisely written test specifications in combination with a well selected verification 

methodology. Still there is a chance that critical deadlocks escape the pre-silicon verification and are still present 

in silicon. To mitigate this risk in multi-spin projects, post-silicon validation is heavily used to run long term tests 

which are not feasible to be executed at that extend in a simulation based environment. As soon as the post-silicon 

validation team is able to bring the design into an unexpected state, the corresponding test case can be handed 

over to the pre-silicon verification team which tries to re-create the issue in their environment. Many engineers 

still tend to use a traditional simulation based testbench to re-create the bug, even though the power of formal 

verification is known to verification engineers. For corner case bugs, which occur after hours on silicon it might 

create a huge effort in terms of correct constraint randomization and a high number of executed test runs to 

eventually run into the faulty behaviour. Using formal to accelerate the debugging of post-silicon issues [1] and 

as part of our initiative to push formal verification as methodology [2] by providing a hybrid verification 

environment we started using Formal Property Verification (FPV) to tackle post-silicon bugs in a manner which 

is suitable even for beginners as most of the work relies on assumptions and cover properties rather than complex 

assertions. In an example we show that we were able to catch a rare corner case deadlock in one of our designs, 

which took up to 20 hours to appear on silicon. By using just a single cover property we unveiled this bug within 

just 73 seconds. The only additional effort which was required to set up the formal testbench was adding Assertion-

based Verification IPs (ABVIPs) and some easy to implement fairness assumptions. All assumptions and cover 

properties are implemented by using System Verilog Assertions (SVA). As formal FPV tool we use Cadence 

Jasper FPV [3]. 
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II. FORMAL BASED POST SILICON DEBUGGING FLOW 

Using formal property verification for post-silicon debugging is known as “reactive FPV” [4] and it takes 

advantage of the ability to explore the entire space of all reachable design under test (DUT) states. Instead of 

implementing the stimuli, it is possible to describe the target state. The formal tool is capable to generate an 

evidence, namely a formal trace, of how to reach this state. The main effort of this approach is to implement the 

observed faulty behaviour as SVA sequence with respect to all reported boundary constraints. Our process to re-

create a bug follows the “UNEARTH” guide [5] which consists of seven phases: 

 

1. Understand the problem 

a. The post-silicon validation team needs to deliver all kind of information, which is known about 

the faulty test, like the test implementation, initial analysis results, SoC/IP documentation and 

all known register settings. 

2. Nail down the formal property 

a. Implement a single cover property which includes all provided constraints. 

3. Environment build for FPV 

a. Either re-use an existing FPV testbench or create a new testbench toplevel module and 

instantiate the corresponding module(s) as DUT. Instantiate ABVIPs for standard protocol 

interfaces like AMBA AHB, APB or AXI and configure and connect them properly. ABVIPs 

ensure valid stimuli according to the protocol specifications.  

b. Custom interfaces, which are not following a standard protocol, must be modeled manually by 

adding custom SVA assumptions. 

4. Assess the reachability 

a. Several iterations may be required to get the FPV environment in the right mode based on the 

initial trace e.g., when the tool used some automated blackboxing or other optimizations. 

5. Regulate the environment assumptions 

a. Recommendation is to start with an underconstrained environment and slightly add assumptions 

based on the feedback of initial runs. 

6. Tap the details from sample simulation waveform 

a. If required the FPV tool can be initialized based on a pre-recorded simulation wave to get the 

DUT already in a “warm” state 

7. Harness the full power of FPV 

a. Once the bug got discovered the existing cover can be used to prove the absence of the bug after 

the RTL got fixed. 

All seven steps are not strictly sequential, some of them might go in parallel or it is required to go back 

and forth. Just as in the regular FPV flow, it will need several iterations to get everything right. The flow can be 

used for any kind of functional bugs, for instance to debug deadlocks, livelocks, or any other kind of unexpected 

design behaviour. 

III. SHOWCASING THE APPROACH 

In the following section, we showcase how we applied the post-silicon bug hunting flow to re-create and 

debug a rare corner case deadlock which escaped the pre-silicon verification. As mentioned in the previous 

section, the steps of the UNEARTH approach are not mandatorily sequential, e.g. we prefer to set up the FPV 

testbench before implementing the property to have all hierarchical paths already in place. 

A. Understanding the Problem 

During the post-silicon validation phase of a signal processing SoC the validation team reported that one 

of their tests fails randomly after a runtime of 10 to 20 hours on silicon. In the corresponding test case they are 

exhaustively testing a multi-channel data arbiter which is part of a larger signal processing module. The test case 

selects two random channels of the arbiter and configures them with randomized settings. After configuration, the 

corresponding input data processing gets enabled to ensure input data to the arbiter channels. The arbiter collects 

the data in a FIFO and writes them into a target memory address by using an AXI manager. For every IP 

configuration eventually some output data is expected at the target memory address. In the mentioned test case, 

the DUT suddenly stops sending data. The following constraints are provided: 
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1. The suspicious module, the multi-channel data arbiter got already identified by the post-silicon 

validation team. The arbiter got verified by using a constrained-random UVM testbench and the 

verification activities passed already the sign-off. 

2. The arbiter has 7 channels in total. Two random channels are enabled sequentially. The bug got 

observed with different configurations, e.g. channel 0 and 1, or channel 1 and 3. There seems to be no 

relation to any specific channel selection. 

3. All control registers are known and valid. 

4. Continuous data input is ensured on all configured input channels of the arbiter. 

5. The data output interface of the arbiter is using the AXI protocol. The connected subordinate is ready to 

accept data on both AXI channels for address and data. The AWREADY and WREADY flags are 

asserted. 

B. Environment Build for FPV 

The second step after collecting all information about the unexpected behaviour is the setup of the FPV 

testbench. The multi-channel arbiter gets instantiated as DUT and all inputs and outputs are connected properly. 

The arbiter has an APB control interface to access internal registers, multiple custom data input interfaces and an 

AXI interface to write out data into a memory. Figure 1 shows the DUT with connected ABVIPs for the APB and 

AXI interface and additional fairness constraints on the input data ports to ensure a continuous input data flow. 

Without adding fairness constraints the formal tool could create a deadlock just by not sending any input data. 

The ABVIPs add assumptions to guarantee protocol compliant behaviour on the APB and AXI interface.  
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Figure 1: Design Under Test with attached ABVIPs and fairness constraints 

 

C. Nailing down the property 

Based on the post-silicon validation finding the SVA cover property can be implemented. To enable the 

maximum readability of these SVA properties, we take advantage of the SystemVerilog ‘let’ construct to create 

alias variables to avoid long and unreadable properties. Figure 2 shows the implemented auxiliary code for one 

channel of the arbiter. This gets duplicated for other channels as well. The configuration registers can be accessed 

directly via cross references into the DUT, as we don’t care how the registers are getting configured, we just want 

to ensure correct internal values in our formal trace. Two additional variables per channel are implemented to 

ensure the expected settings and to check whether they remain stable. 
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// Helpers to access internal DUT signals 

let ch0_mode = DUT.<path_to_mode_control_register>; 

let ch0_packet_size = DUT.<path_to_size_control_register>; 

let ch0_axi_burst_len = DUT.<path_to_burst_len_control_register>; 

let ch0_axi_target_addr = DUT.<path_to_target_addr_control_register>; 

 

// Validation settings 

parameter CH_PACKET_SIZE       = 24'd300; 

parameter CH_AXI_BURST_LEN     = 8'h03; 

parameter CH_AXI_TARGET_ADDR_0 = 32'hAFFE_0000; 

 

// Arbiter Mode per Channel (Enabled / Disabled / Debug Mode) 

parameter CH_DEBUG    = 2'b10; 

parameter CH_ENABLED  = 2'b01; 

parameter CH_DISABLED = 2'b00; 

 

// Helper to ensure validation settings 

let ch0_cfg_matches =  

  (ch0_packet_size == CH_PACKET_SIZE) && 

  (ch0_axi_burst_len == CH_AXI_BURST_LEN) && 

  (ch0_axi_target_addr == CH_AXI_TARGET_ADDR_0); 

 

// Helpers to ensure stable settings (mode excluded intendedly) 

let ch0_control_regs_stable =  

  $stable(ch0_packet_size) &&  

  $stable(ch0_axi_burst_len) && 

  $stable(ch0_axi_target_addr); 

 
Figure 2: Auxiliary code to prepare the property implementation for channel 0   

Based on the prepared auxiliary code the cover property shown in Figure 3 got implemented. Out of the 

seven possible channels we selected only the first two to be activated. The property is splitted into three phases 

to ensure proper configuration with respect to the post-silicon validation findings and eventually ends in the 

deadlock situation: 

• Phase 1 

o In the first phase we want to ensure that the two selected channels are disabled and the 

configuration matches. This ensures that the correct settings are used when a channels gets 

enabled, as the IP samples the control registers in the cycle where the channel gets enabled. 

• Phase 2 

o In this phase the formal tool gets the freedom to do whatever is needed to reach phase 3. We 

have no knowledge about the number of cycles which are required to reach the next phase, 

therefore we keep it open ended. The formal tool is configured to find the shortest possible 

path to reach the target state. The only constraint is a stable configuration of channel 0 and 1. 

• Phase 3 

o In the third phase, we want to see that the first two of total seven channels are activated and 

the remaining channels are inactive. In parallel, there shall be no AXI traffic even when the 

subordinate signals are ready. It is important to understand that we don’t expect both channels 

to be started at the same time. The described scenario shall hold true for a configurable 

number of clock cycles, the DELAY. We started with a DELAY value of 50, but after initial 

tool runs we figured out that 50 cycles are too less due to internal FIFOs, which are still able 

to buffer data. Therefore, we added a generate loop to create multiple versions of the property 

with different delay cycles to sort out valid behaviour from a true deadlock. 
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parameter MAX_DELAY = 500; // Started with 100 

 

generate 

  for (genvar DELAY=50; DELAY < MAX_DELAY; DELAY=DELAY+50) begin 

    show_me_the_deadlock : cover property ( 

      @(posedge axi_clk) disable iff (!axi_rst_an) 

      // Phase 1: Config must match once when channels are disabled. 

      //          Register settings are sampled when channels gets enabled. 

      ( 

        ch0_mode == CH_DISABLED && ch0_cfg_matches && 

        ch1_mode == CH_DISABLED && ch1_cfg_matches 

      ) 

      ##1 

      // Phase 2: Control regs must be stable, we don’t care what else happens 

      ( 

        ch0_control_regs_stable && 

        ch1_control_regs_stable 

      ) [*1:$] 

      ##1 

      // Phase 3: Two of seven channels are enabled, configuration remains stable. 

      //          No traffic on AXI, subordinate is ready. 

      ( 

        ch0_mode == CH_ENABLED  && ch0_control_regs_stable && 

        ch1_mode == CH_ENABLED  && ch1_control_regs_stable && 

        ch2_mode == CH_DISABLED && 

        ch3_mode == CH_DISABLED && 

        ch4_mode == CH_DISABLED && 

        ch5_mode == CH_DISABLED && 

        ch6_mode == CH_DISABLED && 

        !axi_m_awvalid && !axi_m_wvalid && 

         axi_m_awready &&  axi_m_wready 

      ) [*DELAY] 

    ); 

  end 

endgenerate 
Figure 3: Single cover property to describe the expected target state 

D. Regulate the environment assumptions 

To ensure continuous input data on the custom data interface, Figure 4 shows the implemented fairness 

assumptions for channel 0. These constraints are replicated for the remaining six channels. The assumptions are 

designed in a way that the data rate can be dynamically chosen by the formal tool, but always stays  inside a 

lower and upper bound. The lower bound guarantees that the deadlock cannot be caused by missing input data, 

and the upper bound guarantees not to violate the specifications of the IP. 

parameter SHIFT_REG_SIZE = 12; 

parameter MIN_VALID_CNT  = 1; // Min datarate: 1 of 12 cycles valid 

parameter MAX_VALID_CNT  = 4; // Max datarate: 4 of 12 cycles valid 

 

bit [SHIFT_REG_SIZE-1:0] valid_0_reg; 

 

always @(posedge sample_clk) begin // channel 0 

  valid_0_reg[0] <= DUT.p_data_valid0; 

  valid_0_reg[SHIFT_REG_SIZE-1:1] <= valid_0_reg[SHIFT_REG_SIZE-2:0]; 

end 
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assume_data_valid_0 : assume property ( 

  @(posedge sample_clk) 

  $countones(valid_0_reg) >= MIN_VALID_CNT && $countones(valid_0_reg) <= MAX_VALID_CNT 

); 
Figure 4: Fairness constraints for custom data input valid signal of channel 0 

E. Proof Results 

Table 1 shows all the generated property variants and their corresponding runtime. In total nine variants 

of the property with different delay cycles got generated. It takes the formal tool 4 seconds to generate the first 

cover trace and 203 seconds to generate the longest trace. Up to a delay count of 200 cycles, the internal FIFOs 

are still able to buffer data, which is a valid behaviour and does not reflect the deadlock. The first trace which re-

produces the deadlock starts at 250 delay cycles and 73 seconds tool runtime. Figure 6 shows an exemplary trace 

of the deadlock. It can be observed that channel 1 gets activated first, and some cycles later, the second channel 

0. After ~150 and ~240 cycles both FIFOs are full and no data gets written via the AXI interface. A thorough RTL 

review pointed us to a lately introduced arbiter optimization for the single channel mode. The design engineer had 

not expected that this optimization is also active during the start-up of multiple channels. The formal tool hits 

exactly one critical cycle, where enabling of the second channel corrupts the arbiter logic. Fortunately, a 

workaround in the control flow can be used to avoid this corner case. This workaround got tested with additional 

assumptions and the formal tool was not able to generate traces anymore with delay cycles of 250 or more.  

 
Table 1: Runtime of generated properties  

Generated Property # Delay in Cycles Proof Runtime in Seconds Deadlock found 

1 50 4 No (Internal FIFOs still able to buffer) 

2 100 44 No (Internal FIFOs still able to buffer) 

3 150 48 No (Internal FIFOs still able to buffer) 

4 200 57 No (Internal FIFOs still able to buffer) 

5 250 73 Yes 

6 300 96 Yes 

7 350 126 Yes 

8 400 162 Yes 

9 450 203 Yes 

 

 
Figure 5: Tool runtime to generate a trace for different delay cycles 

I. LIMITATIONS 

The UNEARTH approach to re-create post-silicon bugs using FPV requires a good understanding of how 

formal traces for cover properties are being derived. As every – additional - cycle can dramatically increase the 

runtime to generate the trace, it requires a thorough understanding how to describe the shortest path to the faulty 

behaviour. Figure 5 shows the non-linear tool runtime to generate a formal trace over linear increasing delay 

cycles. 
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Figure 6: Formal trace of the deadlock with full FIFOs and no AXI traffic 

II. SUMMARY 

In this paper we demonstrated that FPV is highly suitable to analyze and debug post-silicon issues. By 

following the seven steps of the UNEARTH approach, bugs can be re-created in a structured way. We were able 

to catch a rare corner case deadlock in a multi-channel data arbiter which escaped the pre-silicon verification. A 

single cover property is sufficient to generate the formal trace of the deadlock. It took the formal tool just 73 

seconds to re-create the deadlock. Based on this trace, we were able to identify the buggy RTL and successfully 

tested a workaround to avoid the deadlock in the final silicon. This greatly shows how powerfully formal can be 

used to re-create, analyze and fix deadlocks and other kinds of functional bugs. 

III. REFERENCES 

 

[1]  J. Kasak, "Accelerating Post-Silicon Debug with Formal Verification," in JUG, 2018.  

[2]  Jan Hahlbeck, Steffen Löbel, Chandana G. P., "Towards a Hybrid Verification Environment for Signal 

Processing SoCs," in DVCon Europe, 2023.  

[3]  Cadence, "Jasper FPV App," [Online]. Available: https://www.cadence.com/en_US/home/tools/system-

design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-

verification-app.html. [Accessed June 2024]. 

[4]  Erik Seligman, Tom Schubert, M.V. Achutha Kiran Kumar, Formal Verification: An Essential Toolkit for 

Modern VLSI Design, Morgan Kaufmann, 2023.  

[5]  A. G. A. K. V. M. B. S. S. S. K. S. G. N. Anshul Jain, Never too late with formal: Stepwise guide for 

applying formal verification, DVCon, 2022.  

[6]  H. Foster, "Functional Verification Study," Wilson Research Group, 2022. 

 

 


