
Making Code Generation Favourable

Tero Isännäinen, Siruco, Espoo, Finland (tero.isannainen@siruco.com)

Abstract—Code generation is a method for increasing designer productivity. The generated code can be highly
optimal regarding area, power, performance, and correctness. Code generation is comparable with having an
enormous collection of IP blocks available. The prerequisite for code generation is repeating patterns in the designs.
Code generation becomes favourable when opportunities are identified and the code generator tool design is well
supported. This paper identifies opportunities for code generation and outlines various methods for making code
generator tool development practical.

Keywords—code generation; automation; compiler; register transfer level; domain specific language

I. INTRODUCTION

Engineers work hard in order to avoid hard work. Code generation falls into this category. While code
generation can be understood broadly and applied to generate any type of code, this paper concentrates in
synthesizable RTL code generation.

Code generation means, in the context of RTL design, that RTL is produced automatically using a computer
program based on a description. While the concepts and techniques presented in this paper address primarily RTL
design, they are applicable to other kinds of code generation targets. Code generation for verification purposes is
one example.

Large Language Model (LLM) based code generation is not considered. The current results are modest. After
a significant effort performed on LLM based generator improvements, 64.4% of the generated RTL code
compiles [1]. The designs are small single feature blocks, where as this paper aims for complete, production
ready RTL blocks.

II. THEORY

On high level, code generation is the process of turning the target description into the target, i.e., a
transformation from source (input) to target (output).

The target (output) is, by definition, a program. Programs are written in programming languages. The source
(input) is also a program. However, the source language is not a regular language, but a Domain-Specific
Language (DSL) [2]. Code generators use, in general, their own highly specialized DSLs.

Language processing is divided into several phases (See: Figure 1).

Figure 1. Language transformation.

The first phase is lexical analysis. Lexical analysis means that the program text characters are grouped into
tokens [3]. Tokens are classified into different types: punctuation, keywords, operators, identifiers, etc.

Tokens are organized into a legal structure, defined by the language grammar, in the syntactic analysis phase.
The resulting structure is called an Abstract Syntax Tree (AST) [3]. We’ll use the term parsing to cover both
lexical analysis and syntactic analysis phases.

1

For example, an arithmetic expression (a + 3) * b, would be converted to a sub-tree (See: Figure 2).

Figure 2. Arithmetic expression.

AST is traversed typically in depth-first ordering [3]. When the leaf level is reached, evaluation and other
processing can be performed. Processing continues upwards. In Figure 2, the processing would start from node
“a” and continue towards nodes “3” and “+”. Tree structure has the property, that any precedence and operator
association rules a language might define, are removed and replaced by the explicit semantics of the tree
structure.

Syntactical analysis is followed by the Domain Transformation. This is the main part of code generation. All
essential information about the target is generated. Domain Transformation starts with semantic analysis of the
source AST. Semantic checks are DSL specific. A common semantic check might consist of checking that two
different parameters do not share the same name. Assuming the source AST is valid, the target AST can be
generated. Typically the source description is compact and the implementation needs to elaborate the input data.
The elaborated data is organized to a data structure that supports the generation of the target AST.

When the target AST is completed, the final target can be created. The target AST is traversed from top to
bottom. The leaf level elements are rendered to the format of the target language. Leaf level elements are
numbers and variable references, for example. The next higher level nodes are, for example, arithmetic
expressions, assignments and IF statements. In order to get human readable output, the target renderer keeps track
of the line indentation and folds statements on different lines, in order to produce human readable output. The
phases in Figure 1 are fairly generic and therefore widely applicable for all kinds of code generators.

III. OPPORTUNITIES FOR CODE GENERATION

In general, we want a proper Return On Investment (ROI) when deploying code generation. Code generator is
an investment and there should be a clear path for gaining benefits. Code generator benefits are mostly improved
productivity in implementation and verification. However, in some complex cases the generated target could be
better (in performance, power, area) than the manually created, since the manual effort could be limited by
schedules.

Assuming that code generator pays itself back when target is generated at least 10 times, there are a smaller
number of opportunities. But, if we take the number down to 3, for example, it is clear that the number of code
generation opportunities is significantly more than the 10-to-3 ratio. Proper code generator tool development
infrastructure will ensure substantially more code generation opportunities, because it lowers the payback
threshold.

Code generators produce high quality and bug free RTL, after the generator itself is properly verified. Part of
the verification for the code generator comes for free, since certain classes of programming errors are directly
captured by just compiling the generated code. Any bug fix to a code generator will be visible in all related future
outputs. The verification side benefits might be very significant for generated code. Therefore, design

2

implementation productivity improvements should not be the only consideration when evaluating the feasibility
of code generators. Less RTL bugs means less debugging and design iterations.

The code generation opportunities arise when there is repetition of some pattern. Repetition might occur over
multiple projects, over multiple design units or within a design unit. For example, a well defined memory map
description can be used for RTL code generation and various other targets. This expands to multiple projects,
since most designs have a memory map. Control and Status Register (CSR) modules can be created and they
appear in multiple different design units. Within the CSR modules, the same register types are repeated (read-
only, read-write, etc.).

While many code generators would use their own DSL and the DSL would be created explicitly, there are
also cases where code generator source can be taken (almost) directly from the design documentation. If a design
portion is documented using lists, tables or tree-like structures, the format is easy to parse and code generation
may become feasible. When a design is described as mentioned, there is likely a substantial amount of internal
repetition. Additionally, it is typical that the specification will change multiple times over the course of the
project and each RTL update will benefit from code generation.

IV. CASE ANALYSIS

This chapter includes examples of three independent code generators. They have different characteristics in
how often they can be applied and how difficult they are to create. Also, there are differences in their internal
structure.

The syntax used in the examples is from the Scheme programming language [4]. Scheme belongs to the Lisp
family of languages. In Scheme, data and code have the same syntax (homoiconicity). Scheme is well suited for
language transformations. However, other dynamic languages (Python, Ruby, etc.) could also be used. Appendix
A contains a condensed introduction to Scheme.

A. Parametrized counter

This case is a reduced example. The emphasis is on the ability to show more details of the internal phases than
to present a realistic example.

For the target description, we are bypassing parsing and represent the counter directly as “Source AST”. The
technique is called Embedded DSL (EDSL) [2]. Using EDSL simplifies the implementation of the first working
version significantly. EDSL specializes the host language to an DSL, and parsing occurs directly and
automatically within the host language environment.

Assuming that “Tree Traversal” and “Node Rendering” (see: Figure 1) exist already as libraries, the only
missing component is the code generator specific Domain Transformation. While EDSL allows for semantic
checking of the input and some level of error reporting, the error reporting is more accurate if full parsing is
performed for the input. This can be added (i.e., by implementing proper parsing) to the “final” version of the
code generator, if necessary. The addition is unobtrusive and would not affect the other phases.

We use only one parameter for the counter: count range.

The description above indicates that the design is a counter. The name of the module is basic and the counter
counts 18 steps. Obviously, the counter generator could support any number of parameters: count direction
selection, restart control, early ready-indication, count value output, etc. These would be just added to the list of
parameters.

In order to create the Target AST, the Domain Transformation component needs to include the base AST
template for a counter module. Additionally, it needs to calculate the bit width of the counter variable (5 bits in
this case). Counter variable width and limit are populated to the template.

3

Appendix B contains listings for the counter design. The Target AST format is language independent and it
could be rendered to Verilog, SystemVerilog or VHDL. Verilog is chosen here.

For language independence, the AST abstraction level should be somewhat higher than the direct parsing
result (thinking backwards from Target Verilog to Target AST). Here different types of ports are separated,
especially clock and reset. Variables are collected to a list for attribute lookup. Sequential variables contain their
reset values and all variables contain their bit widths. For example in:

The variable is called count. It is a sequential variable (sync) and it has a reset value of 0. In detail, the
specification defines that the value is 0 (in decimal), type is unsigned, bit width is 5, and the base is 10.

In summary, the Target AST abstracts module level information and the repeated process sub-structures (e.g.,
the reset if-branch). The behavioral statements have one-to-one correspondence to the direct parsing results.

B. Hierarchy module generator

RTL modules can be classified as Functional Modules and Hierarchy Modules. Functional Modules contain
behavioral processes, which define the logic functions. Hierarchy Modules are defined here as pure. Hierarchy
Modules only instantiate other modules and connect signals between the sub-modules.

When Functional Specifications are created for the design, it is fair to assume that most of the signal names
match by default. In particular, it can be assumed that output port names match the names of the corresponding
input port names. Here, the repeated pattern is not a specific design part, but the rule for making connections.

Let’s assume that the names match for 90% of the connections. The rest 10% includes: IP block ports, legacy
blocks, multiple instantiations, generated code, and various other cases.

For new design units, it is possible that a significant amount of ports (close to 100%) have matching names. If
all names match, the only missing information is the module instantiations.

The algorithm for signal connections and sub-module instantiations:

 Hierarchies are generated bottom up.

 The currently generated level instantiates named sub-modules.

 Each output port (also pin) of each sub-module is matched with one or more input ports of other sub-
modules, and appear as wires.

 Unconnected sub-module input and output ports become respective ports of the generated module.

Figure 3 shows a simple hierarchy module example. mod_a and mod_b are the sub-modules and the generated
module is top_a_b. Code generator parses Verilog (or VHDL) of mod_a and mod_b. Note that only port and
parameter information requires parsing. Code samples are listed in Appendix C.

This hierarchy could be described as:

hier is a keyword and the name of the generated Hierarchy Module is top_a_b. The instantiated modules are
mod_a and mod_b, and the instance names are the same as the module names (as a default).

Let’s change the setup and define that mod_b input port a_to_b is called b_i1. Also, we want a specific
instance name for mod_b. With these changes, the hierarchy could be described as:

4

Figure 3. Simple hierarchy.

Now mod_b is instantiated as i_mod_b. Input port b_i1 is mapped as a_to_b for the higher level and output
port a_to_b of mod_a can be matched to it by name.

Overall, this type of hierarchy generator tool should support flexible port name mapping (glob/rexexp pattern
based), output port branching (routing signals in current level as wires and also upwards as ports), and parameter
management. Typically module parameters would be set in the hierarchy definitions, resolved, and numeric port
widths would be used in the higher level modules. The tool should also perform checking on port widths and bit
ordering, and it would be an error to connect signals with the same name, but different bit configuration.

It is estimated that hierarchy modules contain around 20-40% of all the design code lines. For example in [5],
there are 28% of the lines (effective lines) in hierarchy modules. Note that not all hierarchy modules are pure in
this reference.

The content of hierarchy modules change significantly, when new modules are added and existing modules
are updated. Hierarchy Modules require numerous updates during the course of the development. In general, code
generator execution speed is not relevant. The priority is mostly in optimizing the code generator creation and
maintenance effort. However, since every RTL design requires hierarchical modules and they change frequently,
these are valid reasons for optimizing the tool performance.

For example, when creating a very large Hierarchy Module, the tool performance can become an issue
(Appendix C). A benchmark run for a large design indicates significant differences in performance. A test
hierarchy including two sub-modules was investigated. Both modules had 10000 input ports and 10000 output
ports. All outputs of module A were name matched to the inputs of module B. Therefore, module A inputs were
used as inputs for the generated module, and module B outputs where used as outputs.

When the hierarchy module is generated with a dynamic language program (Scheme in the benchmark), the
code generation runs in ~35 s. When the same hierarchy module is generated with a well designed C program, the
code generation runs in ~20 ms. Hence, the C implementation is over 1500 times faster. Both versions consume
approximately half of the runtime parsing the two Verilog modules, and the rest of the time is used for matching
port names and writing out the result.

The high level algorithm is the same for both implementation. For example, both versions use string hashing
for fast name matching. The lower level implementation details are significantly different. Dynamic languages
perform many operations during runtime that compiled languages perform at compile time [6]. Every access to a
primitive data type in dynamic languages include execution of many CPU instructions, which is not needed for
compiled C programs. The C version manages all memory resources carefully, while the Scheme version uses
garbage collection. Garbage collection is generic and runs without guidance from the program. No claims are
made about how fast the Scheme version could be. Both versions have been created using idiomatic practices of
the respective languages.

5

C. Finite Impulse Response filter generator

Finite Impulse Response (FIR) filters include a repeated pattern in their main structure. One of the main
parameters for FIR filters is the order (direct form FIR). The order is defined by the number of delay elements in
the filter (see: Figure 4).

Figure 4. FIR filter in direct form.

When filter order is N, it has N+1 taps (coefficients). FIR performs a running, weighted average of the input
samples. Input sample is scaled and summed with the scaled versions of the previous samples. Sample delays are
represented with D and scaler coefficients are represented with the indexed variable b. The repeated pattern is the
delay-coefficient-sum section.

It is fairly common that FIR filters are designed to be linear phase. A FIR filter is linear phase when
coefficients are symmetrical to the center coefficient (odd count) or to the two center coefficients (even count).

Appendix D contains the FIR description and the resulting RTL code.

The FIR generator parameters:

 iport: name and width of the sample input port.

 oport: name and width of the sample output port.

 sample-period: period of input and output samples in clock cycles.

 coeff-width: bit width for coefficients.

 coeff-float: floating point or integer coefficients.

 coeff-symmetry: none, even, or odd count.

 coeff-list: list of coefficients.

Odd and even coeff-symmetry means that the total coefficient count is odd or even, respectively. With odd
coeff-symmetry, the given coefficients are repeated excluding the last coefficient. With even coeff-symmetry, the
given coefficients are repeated including the last coefficient.

This code generator uses full precision in the internal calculations and saturates the output at overflow. The
code generator optimizes the number of multiplication and addition resources by taking advantage of the sample-
period parameter. For example, in Appendix D the sample-period is 8. The RTL has 8 clock cycles for producing
one output sample. The number of required multiplication and addition units become therefore the ratio of
coefficients (47) to sample period (8). In this case, we have 6 (47 / 8 => 6) multiplication and addition units.

The filter description is a “high level” description. It can be used to parameterize a reference model, which is
then used for verification of the generated RTL. The description contains 14 lines of text and the target RTL (full
version) contains 399 lines. The description is easy to maintain. Experimentation of RTL port bit widths (and the
related calculation precision), for example, involves little effort. The code generator eliminates many classes of
potential errors related to manual RTL creation. For example, it is quite tedious work to update the different bit
widths for variables and intermediate results. The Domain Transformation part of the FIR code generator is 174
lines of code.

The code generator includes the following automation features:

 Calculation of bit ranges for all variables.

6

 Duplication of coefficients (with odd or even symmetry).

 Quantization of floating point coefficients to selected precision.

 Indexing of delayed samples and coefficients.

 Optimization of arithmetic resources.

 State machine for calculation phase control and related calculations.

V. CODE GENERATOR TOOL DEVELOPMENT

Code generators are developed in reverse, from target to source. The target should contain repetition that is
not feasible to manage using other means such as IP blocks or parametrized RTL. The wider the target domain
(variation in outputs), the more parameters are needed in the source DSL. The term parameter should be
understood broadly in this context. The source DSL is descriptive in nature, and therefore the term parameter
suites well for describing the control of the target output.

It is important to start small and get the first prototype code generator working early. The source DSL design
is typically an iterative process, and it is not easy to find the correct set of parameters immediately. We are
balancing between the effort in creating the code generator and how widely it is applicable. When starting small,
less iterations are likely required or at least the overall amount of work is minimized.

Organizations benefit from preexisting libraries for front-end and back-end (See: Figure 1). Front-end
libraries are needed, for example, for parsing documentation originated information sources. The selection of
exact formats, depends on what format is desirable for the manual document updating (i.e., the master source).

Usually one back-end library is enough. If only one code generator implementation language is used and the
target language remains the same, a single library is sufficient. For every code generator tool, the Domain
Transformation component needs to produce target DSL data that is compatible with the back-end library.

The back-end libraries should support hooks (callbacks). While the most interesting design information goes
through the code generation flow, there are sometimes a need for side streams. For example, we might want that a
specific standard comment header exists in each RTL source code file. It does not make sense to capture this
changing and somewhat arbitrary information in the source DSL. Instead, the registered hooks can insert this type
of information to the output.

As a minimum for the first prototype, we need the source DSL with some parameters and the Domain
Transformation. The source DSL can be implemented as an EDSL and therefore no new parsers are needed. If
back-end libraries are available, there is no work involved for the back-end phase.

The first prototype is used in the project and feedback is collected. Based on the project feedback, DSL
parameters can be updated. At this point it is feasible to evaluate the compromise between the target domain
features and the tool complexity. When all code generator features have been matured, the front-end can be
updated to include proper parsing of the source, which improves the tool usability.

In summary, the phases for creating a code generator tool:

1. Identify candidate target for code generation. Typically this relates to a repetitive patterns: internal,
external, or both.

2. Define the number of parameters and parameter value ranges based on the amount of variation in the
output targets. Often the current situation contain excessive and unnecessary variation, which should be
removed. The reduction in variation improves the value proposition of the code generation tool.

3. Identify all targets than can be generated from the same set of input information and identify target
specific information sources. Domain Transformation might require multiple inputs.

7

4. Design the code generator architecture around the information sources.

5. Implement and document the “minimum viable product” with future extensions taken into consideration.
Start with a simple implementation.

6. Deploy the code generator to project use and improve based on the feedback.

VI. CONCLUSIONS

Code generation is the best solution for certain type of repeating design features. Some code generators are
applied across different projects and some should be developed during a live project. For live project
development, it is important that the first results can be delivered quickly. This enables wider application of the
code generators.

The path to first results can be substantially shortened through the use of EDSL techniques and readily
available back-end libraries. A small scale code generator is possible to develop in a few hours.

The initial generator can be improved, when the required feature set has stabilized. New DSL parameters can
be added and existing updated. The usability of the code generator is improved by performing proper parsing of
the source DSL. The tool is able to pin point input errors to the exact character (line and column) and the error
message is clear about the violation, in user level terms.

Design organizations should be code generator aware. Designers should actively look for opportunities for
code generation. Repetition might be implicit and therefore not immediately visible. The repetition could be in
the applied rules and not directly in the design parts themselves.

Version control systems and tool flows should support the existence of generated source code files. In practice
this means that some kind of meta data is maintained about the design files. The flow utilizes this data and
performs the design file transformations automatically.

REFERENCES

[1] Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri, Siddharth Garg, “VeriGen:
A Large Language Model for Verilog Code Generation”, ACM Transactions on Design Automation of Electronic Systems, Jan 2024,
https://doi.org/10.1145/3643681

[2] Domain-specific language. In Wikipedia. Retrieved June 5, 2024, from https://en.wikipedia.org/wiki/Domain-specific_language

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, “Compilers: Principles, Techniques, and Tools (second edition)”,
Pearson Education, Inc, 2006

[4] Alex Shinn, et al. “Revised7 Report of the Algorithmic Language Scheme”, 2021 https://standards.scheme.org/

[5] https://github.com/corundum/corundum/tree/master/fpga/lib/eth/rtl. Retreived June 5, 2024

[6] Dynamic programming language. In Wikipedia. Retrieved June 5, 2024, from
https://en.wikipedia.org/wiki/Dynamic_programming_language

8

VII. APPENDIX A

Scheme is a language from the Lisp family. The language syntax is very simple. Language specification is
only 80 pages [4]. The syntax consists of atoms and lists. Atoms are primitive data types like: numbers, strings,
symbols. Lists contains zero or more elements. A list element is either an atom or another list (sub-list).

Lists are evaluated, by default, as expressions. The first element should be a procedure and the rest of the list
elements are arguments for the procedure. Typically the procedure is referenced through a variable with a
procedure value. However, Scheme has also lambda expressions, which are literal definitions for procedures
(functions).

In addition to the default expression evaluation, Scheme has a few special forms. Special forms mean than the
list expressions are not fully evaluated, as above. The define form is used to create a variable binding: “(define a
10)”. if form evaluates either the TRUE or the FALSE sub-expression depending on the value of the condition.
lambda treats the list elements as code and does not, for example, result to resolving identifier tokens to variable
values. lambda form evaluation is compile time activity and lambda value (the procedure) application is runtime
activity. quote prevents evaluation and passes it’s arguments as literal values.

Almost all expressions result to a usable value in Scheme. In practice this means, that for example if
expressions may appear almost anywhere in the code, also in the argument position of a procedure call.

Scheme is a functional language by nature, but variable value mutation is allowed and can be used when
beneficial. Most Scheme code is based on composing a tree of procedure applications (i.e., function calls) and
each application returns a fresh data value for the higher levels in the tree.

When Scheme code is “read”, it is just parsed and the result is program data (nested lists). Program data can
be easily manipulated. When Scheme code is “loaded”, it is first parsed and then evaluated as program code.
Program data can be evaluated as program code at will. This allows, for example, that a part of the input code is
manipulated before all resulting code is evaluated.

9

;; Comments start with ";" and continue to the end-of-line.
14 ; Number 14.
"hello\n" ; String ending with newline.
#t ; Boolean true.
#f ; Boolean false.
'hello ; Symbol (identifier) "hello".
=> hello
(cons 1 2) ; Pair of values.
=> 1 . 2
'(1 2 foo) ; List (quoted).
=> (1 2 foo)
(list 1 2 'foo) ; List using "list" procedure.
=> (1 2 foo)
'() ; Empty list.
=> ()
(cons 1 ; List using nested pairs.
 (cons 2
 (cons 'foo
 '())))
=> (1 2 foo)
(+ 1 2) ; Expressions are lists with a procedure as the first element.
=> 3
+ ; "+" is a variable with a procedure value.
=> #<procedure +>
(quote +) ; Quoted variable.
=> +
'(+ 1 2) ; Quoted list.
=> (+ 1 2)
(define n 12) ; Variable definition with value 12.
(lambda (a b) (+ a b)) ; Procedure value.
(define my-add ; Variable definition with a procedure value.
 (lambda (a b) (+ a b)))
(define (my-add a b) ; Same as above using compact syntax.
 (+ a b))
(my-add 1 (my-add 2 3)) ; Nested expressions: 1 + (2 + 3).
=> 6
`(1 ,(my-add 2 3)) ; Quasiquoted list with evaluated sub-expression.
=> (1 5)
(if #t "yes" "no") ; (IF <cond-expr> <true-expr> <false-expr>).
=> "yes"
(if (not #t) ; If expression reduces to <false-expr> value.
 4
 (+ 1 2))
=> 3

VIII. APPENDIX B

This appendix contains listings for the “parametrized counter” example.

Counter description:

Target AST:

Target Verilog:

10

(counter basic
 (range 18))

((name "basic")
 (clock "clk")
 (reset "rst")
 (iports "enable")
 (oports "ready")
 (vars ("clk" port (#f unsigned 1 2))
 ("rst" port (#f unsigned 1 2))
 ("enable" port (#f unsigned 1 2))
 ("ready" sync (0 unsigned 1 2))
 ("count" sync (0 unsigned 5 10)))
 (procs (sync ("ready" "count")
 (stmt-ass
 (varref "ready")
 (number (0 unsigned 1 2)))
 (stmt-if
 ((varref "enable")
 (stmt-if
 ((op-eq (varref "count")
 (number (17 unsigned 5 10)))
 (stmt-ass
 (varref "count")
 (number (0 unsigned #f 16)))
 (stmt-ass
 (varref "ready")
 (number (1 unsigned 1 2))))
 (#f
 (stmt-ass
 (varref "count")
 (op-add (varref "count") (number (1 #f #f 10)))))))))))

module basic
 (
 clk,
 rst,
 enable,
 ready
);
 input clk;
 input rst;
 input enable;
 output ready;
 reg ready;
 reg [4:0] count;
 always @(posedge clk or negedge rst) begin

(define (factorial n) ; Define procedure "factorial".
 (define (sub n res) ; Local procedure "sub" as tail-recursive.
 (if (= n 0) ; Terminate recursion when "n" is zero.
 res ; "sub" returns value of "res".
 (sub (- n 1) ; Recurse with tail-optimization, i.e., no stack pushed.
 (* n res)))) ; New call replaces the old stack frame.
 (sub n 1)) ; Result: apply "sub" to initial "n" and to initial result 1.
(factorial 5) ; Apply "factorial" to "5".
=> 120
(let ((n 10)) ; Create local variable "n" with value 10.
 (if (= n 12) ; This is different variable from the outer scope "n".
 "yes"
 "no")) ; Return "no", since inner scope "n" is 10.
=> "no"
(even? 3) ; Predicate procedures end with "?", by convention.
=> #f
(map even? '(1 2 3 4)) ; Map applies (calls) "even?" for each element.
=> (#f #t #f #t) ; Return value is a new list with the same dimensions.
(let lp ((lst ; named-let: implicit, named procedure "lp".
 '(1 2 3 4)) ; "lst" starts as the original list.
 (ret '())) ; Return list starts as empty.
 (if (pair? lst) ; "pair?" returns #t if list is not empty.
 (lp (cdr lst) ; Recurse with list head removed, i.e., with tail/rest.
 (cons (even? ; Add #t/#f to head of return list.
 (car lst)) ; car=head, cdr=tail.
 ret))
 (reverse lst))) ; Return list in correct order.
=> (#f #t #f #t) ; Same result as from "map".

IX. APPENDIX C

This appendix contains listings for the “simple design” and “very large” examples.

Simple Design hierarchy description:

Simple Design Verilog modules:

Simple Design generated hierarchy module Verilog:

Very Large hierarchy description:

11

(hier top_a_b
 mod_a
 mod_b)

module mod_a
 (
 input a_i1,
 input a_i2,
 output a_o1,
 output a_to_b
);
 assign a_o1 = !a_i1;
 assign a_to_b = a_i1 && a_i2;
endmodule

module mod_b
 (
 input a_to_b,
 output b_o1
);
 assign b_o1 = !a_to_b;
endmodule

module top_a_b
 (
 a_i1,
 a_i2,
 a_o1,
 b_o1
);
 input a_i1;
 input a_i2;
 output a_o1;
 output b_o1;
 wire a_to_b;
 mod_a mod_a
 (
 .a_i1(a_i1),
 .a_i2(a_i2),
 .a_o1(a_o1),
 .a_to_b(a_to_b)
);
 mod_b mod_b
 (
 .a_to_b(a_to_b),
 .b_o1(b_o1)
);
endmodule

(hier top_a_b
 mod_a
 mod_b)

 if (!rst) begin
 ready <= 1'b0;
 count <= 5'd0;
 end else begin
 ready <= 1'b0;
 if (enable) begin
 if (count == 5'd17) begin
 count <= 'h0;
 ready <= 1'b1;
 end else begin
 count <= count + 1;
 end
 end
 end
 end
endmodule

Very Large Verilog modules (reduced from 2*40011 lines):

Very Large generated hierarchy module Verilog (reduced from 90024 lines):

12

module mod_a
 (
 clk,
 rst,
 input_port_0,
 input_port_1,
 ...
 input_port_9999,
 signal_port_0,
 signal_port_1,
 ...
 signal_port_9999
);
 input clk;
 input rst;
 input input_port_0;
 input input_port_1;
 ...
 input input_port_9999;

 output signal_port_0;
 output signal_port_1;
 ...
 output signal_port_9999;

endmodule

module mod_b
 (
 clk,
 rst,
 signal_port_0,
 signal_port_1,
 ...
 signal_port_9999,
 output_port_0,
 output_port_1,
 ...
 output_port_9999
);

 input clk;
 input rst;
 input signal_port_0;
 input signal_port_1;
 ...
 input signal_port_9999;

 output output_port_0;
 output output_port_1;
 ...
 output output_port_9999;

endmodule

module top_a_b
 (
 clk,
 rst,
 input_port_0,
 input_port_1,
 ...
 input_port_9999,
 output_port_0,
 output_port_1,
 ...
 output_port_9999
);

 input clk;
 input rst;
 input input_port_0;
 input input_port_1;
 ...
 input input_port_9999;

 output output_port_0;
 output output_port_1;
 ...
 output output_port_9999;

 wire signal_port_0;
 wire signal_port_1;
 ...
 wire signal_port_9999;

 mod_a mod_a
 (

X. APPENDIX D

This appendix contains partial results of the FIR code generator.

Filter description:

Target Verilog (reduced from 399 lines):

13

`(fir fir-tap-47
 (iport x 14)
 (oport y 14)
 (sample-period 8)
 (coeff-width 14)
 (coeff-float #t)
 (coeff-symmetry odd)
 (coeff-list -0.00100343 8.19935e-05 0.00138234 0.000969069
 -0.00149488 -0.00287014 0.000214866 0.00497573
 0.00359393 -0.00512623 -0.00958052 0.00048227
 0.0147818 0.0104958 -0.0138518 -0.0259068
 0.00076921 0.0392412 0.0292861 -0.0389579
 -0.0819605 0.000952093 0.200343 0.373183
))

module fir_tap_47
 (
 clk,
 rst,
 x,
 x_en,
 y,
 y_en
);

 localparam b0 = 14'sh3ff8;
 localparam b1 = 14'sh1;
 ...
 localparam b23 = 14'shbf1;
 input clk;
 input rst;
 input signed [13:0] x;
 input x_en;

 output signed [13:0] y;
 output y_en;

 reg signed [13:0] y;
 reg y_en;
 reg [7:0] x_en_d;
 reg signed [32:0] sw;
 reg signed [32:0] s;
 reg use_alu;
 reg signed [13:0] d0;
 reg signed [13:0] d1;
 ...
 reg signed [13:0] d46;
 reg signed [13:0] mu0_i0;
 reg signed [13:0] mu0_i1;
 reg signed [13:0] mu1_i0;
 reg signed [13:0] mu1_i1;
 ...
 reg signed [13:0] mu5_i0;
 reg signed [13:0] mu5_i1;

 .clk(clk),
 .rst(rst),
 .input_port_0(input_port_0),
 .input_port_1(input_port_1),
 ...
 .input_port_9999(input_port_9999),
 .signal_port_0(signal_port_0),
 .signal_port_1(signal_port_1),
 ...
 .signal_port_9999(signal_port_9999)
);

 mod_b mod_b
 (
 .clk(clk),
 .rst(rst),
 .signal_port_0(signal_port_0),
 .signal_port_1(signal_port_1),
 ...
 .signal_port_9999(signal_port_9999),
 .output_port_0(output_port_0),
 .output_port_1(output_port_1),
 ...
 .output_port_9999(output_port_9999)
);

endmodule

14

 reg signed [26:0] mu0_o;
 reg signed [26:0] mu1_o;
 ...
 reg signed [26:0] mu5_o;

 always @(posedge clk or negedge rst) begin
 if (!rst) begin
 y <= 14'sb0;
 y_en <= 1'b0;
 d0 <= 14'sb0;
 d1 <= 14'sb0;
 ...
 d46 <= 14'sb0;
 x_en_d <= 8'b0;
 s <= 33'sb0;
 end else begin
 y_en <= 1'b0;
 x_en_d <= { x_en_d[6:0], x_en };
 if (x_en) begin
 d0 <= x;
 end
 if (x_en_d[7]) begin
 if (sw > 27'sh3ffffff) begin
 y <= 14'sh1fff;
 end else if (sw < 27'sh4000001) begin
 y <= 14'sh2001;
 end else begin
 y <= sw[26:13];
 end
 y_en <= 1'b1;
 s <= 33'sb0;
 d1 <= d0;
 d2 <= d1;
 ...
 d46 <= d45;
 end else begin
 s <= sw;
 end
 end
 end

 always @* begin
 mu0_o = 'sb0;
 mu1_o = 'sb0;
 ...
 mu5_o = 'sb0;
 sw = s;
 if (use_alu) begin
 mu0_o = mu0_i0 * mu0_i1;
 mu1_o = mu1_i0 * mu1_i1;
 ...
 mu5_o = mu5_i0 * mu5_i1;
 sw = s + mu0_o + mu1_o + mu2_o + mu3_o + mu4_o + mu5_o;
 end
 end

 always @* begin
 use_alu = 1'b0;
 mu0_i0 = 'sb0;
 mu0_i1 = 'sb0;
 mu1_i0 = 'sb0;
 mu1_i1 = 'sb0;
 ...
 mu5_i0 = 'sb0;
 mu5_i1 = 'sb0;
 case (x_en_d)
 8'h1: begin
 use_alu = 1'b1;
 mu0_i0 = d0;
 mu0_i1 = b0;
 mu1_i0 = d8;
 mu1_i1 = b8;
 mu2_i0 = d16;
 mu2_i1 = b16;
 mu3_i0 = d24;
 mu3_i1 = b22;
 mu4_i0 = d32;
 mu4_i1 = b14;
 mu5_i0 = d40;
 mu5_i1 = b6;
 end
 8'h2: begin
 use_alu = 1'b1;
 mu0_i0 = d1;
 mu0_i1 = b1;
 mu1_i0 = d9;
 mu1_i1 = b9;
 mu2_i0 = d17;
 mu2_i1 = b17;
 mu3_i0 = d25;
 mu3_i1 = b21;
 mu4_i0 = d33;
 mu4_i1 = b13;
 mu5_i0 = d41;
 mu5_i1 = b5;
 end

15

 8'h80: begin
 use_alu = 1'b1;
 mu0_i0 = d7;
 mu0_i1 = b7;
 mu1_i0 = d15;
 mu1_i1 = b15;
 mu2_i0 = d23;
 mu2_i1 = b23;
 mu3_i0 = d31;
 mu3_i1 = b15;
 mu4_i0 = d39;
 mu4_i1 = b7;
 mu5_i0 = 'sb0;
 mu5_i1 = 'sb0;
 end
 default: begin
 use_alu = 1'b0;
 end
 endcase
 end

endmodule

	I. Introduction
	II. Theory
	III. Opportunities for code generation
	IV. Case analysis
	A. Parametrized counter
	B. Hierarchy module generator
	C. Finite Impulse Response filter generator

	V. Code generator tool development
	VI. Conclusions
	References

	VII. Appendix A
	VIII. Appendix B
	IX. Appendix C
	X. Appendix D

