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Abstract—Code generation is a method for increasing designer productivity. The generated code can be highly 
optimal  regarding  area,  power,  performance,  and  correctness.  Code  generation  is  comparable  with  having  an 
enormous collection of IP blocks available. The prerequisite for code generation is repeating patterns in the designs. 
Code generation becomes favourable when opportunities are identified and the code generator tool design is well 
supported. This paper identifies opportunities for code generation and outlines various methods for making code 
generator tool development practical.
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I.  INTRODUCTION

Engineers work hard in order to avoid hard work.  Code generation falls  into this  category.  While code 
generation can be understood broadly and applied to  generate  any type of  code,  this  paper  concentrates  in 
synthesizable RTL code generation.

Code generation means, in the context of RTL design, that RTL is produced automatically using a computer  
program based on a description. While the concepts and techniques presented in this paper address primarily RTL 
design, they are applicable to other kinds of code generation targets. Code generation for verification purposes is  
one example.

Large Language Model (LLM) based code generation is not considered. The current results are modest. After 
a  significant  effort  performed  on  LLM based  generator  improvements,  64.4% of  the  generated  RTL code 
compiles  [1]. The designs are small single feature blocks, where as this paper aims for complete, production 
ready RTL blocks.

II.  THEORY

On  high  level,  code  generation  is  the  process  of  turning  the  target  description  into  the  target,  i.e.,  a 
transformation from source (input) to target (output).

The target (output) is, by definition, a program. Programs are written in programming languages. The source 
(input)  is  also  a  program.  However,  the  source  language is  not  a  regular  language,  but  a  Domain-Specific  
Language (DSL) [2]. Code generators use, in general, their own highly specialized DSLs.

Language processing is divided into several phases (See: Figure 1).

Figure 1. Language transformation.

The first phase is lexical analysis. Lexical analysis means that the program text characters are grouped into 
tokens [3]. Tokens are classified into different types: punctuation, keywords, operators, identifiers, etc.

Tokens are organized into a legal structure, defined by the language grammar, in the syntactic analysis phase. 
The resulting structure is called an Abstract Syntax Tree (AST)  [3]. We’ll use the term parsing to cover both 
lexical analysis and syntactic analysis phases.
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For example, an arithmetic expression (a + 3) * b, would be converted to a sub-tree (See: Figure 2).

Figure 2. Arithmetic expression.

AST is traversed typically in depth-first ordering  [3]. When the leaf level is reached, evaluation and other 
processing can be performed. Processing continues upwards. In Figure 2, the processing would start from node 
“a” and continue towards nodes “3” and “+”. Tree structure has the property, that any precedence and operator  
association  rules  a  language  might  define,  are  removed  and  replaced  by  the  explicit  semantics  of  the  tree 
structure.

Syntactical analysis is followed by the Domain Transformation. This is the main part of code generation. All 
essential information about the target is generated. Domain Transformation starts with semantic analysis of the 
source AST. Semantic checks are DSL specific. A common semantic check might consist of checking that two 
different parameters do not share the same name. Assuming the source AST is valid, the target AST can be 
generated. Typically the source description is compact and the implementation needs to elaborate the input data. 
The elaborated data is organized to a data structure that supports the generation of the target AST.

When the target AST is completed, the final target can be created. The target AST is traversed from top to  
bottom. The leaf  level  elements  are  rendered to  the format  of  the target  language.  Leaf  level  elements  are  
numbers  and  variable  references,  for  example.  The  next  higher  level  nodes  are,  for  example,  arithmetic 
expressions, assignments and IF statements. In order to get human readable output, the target renderer keeps track 
of the line indentation and folds statements on different lines, in order to produce human readable output. The  
phases in Figure 1 are fairly generic and therefore widely applicable for all kinds of code generators.

III.  OPPORTUNITIES FOR CODE GENERATION

In general, we want a proper Return On Investment (ROI) when deploying code generation. Code generator is 
an investment and there should be a clear path for gaining benefits. Code generator benefits are mostly improved 
productivity in implementation and verification. However, in some complex cases the generated target could be 
better (in performance, power, area) than the manually created, since the manual effort could be limited by 
schedules.

Assuming that code generator pays itself back when target is generated at least 10 times, there are a smaller  
number of opportunities. But, if we take the number down to 3, for example, it is clear that the number of code 
generation opportunities is significantly more than the 10-to-3 ratio. Proper code generator tool development 
infrastructure  will  ensure  substantially  more  code  generation  opportunities,  because  it  lowers  the  payback 
threshold.

Code generators produce high quality and bug free RTL, after the generator itself is properly verified. Part of 
the verification for the code generator comes for free, since certain classes of programming errors are directly 
captured by just compiling the generated code. Any bug fix to a code generator will be visible in all related future 
outputs.  The  verification  side  benefits  might  be  very  significant  for  generated  code.  Therefore,  design 
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implementation productivity improvements should not be the only consideration when evaluating the feasibility 
of code generators. Less RTL bugs means less debugging and design iterations.

The code generation opportunities arise when there is repetition of some pattern. Repetition might occur over 
multiple projects, over multiple design units or within a design unit. For example, a well defined memory map  
description can be used for RTL code generation and various other targets. This expands to multiple projects,  
since most designs have a memory map. Control and Status Register (CSR) modules can be created and they 
appear in multiple different design units. Within the CSR modules, the same register types are repeated (read-
only, read-write, etc.).

While many code generators would use their own DSL and the DSL would be created explicitly, there are 
also cases where code generator source can be taken (almost) directly from the design documentation. If a design 
portion is documented using lists, tables or tree-like structures, the format is easy to parse and code generation 
may become feasible. When a design is described as mentioned, there is likely a substantial amount of internal 
repetition. Additionally, it  is typical that the specification will  change multiple times over the course of the 
project and each RTL update will benefit from code generation.

IV.  CASE ANALYSIS

This chapter includes examples of three independent code generators. They have different characteristics in 
how often they can be applied and how difficult they are to create. Also, there are differences in their internal  
structure.

The syntax used in the examples is from the Scheme programming language [4]. Scheme belongs to the Lisp 
family of languages. In Scheme, data and code have the same syntax (homoiconicity). Scheme is well suited for  
language transformations. However, other dynamic languages (Python, Ruby, etc.) could also be used.  Appendix
A contains a condensed introduction to Scheme.

A. Parametrized counter

This case is a reduced example. The emphasis is on the ability to show more details of the internal phases than 
to present a realistic example.

For the target description, we are bypassing parsing and represent the counter directly as “Source AST”. The 
technique is called Embedded DSL (EDSL) [2]. Using EDSL simplifies the implementation of the first working 
version  significantly.  EDSL  specializes  the  host  language  to  an  DSL,  and  parsing  occurs  directly  and 
automatically within the host language environment.

Assuming that “Tree Traversal” and “Node Rendering” (see: Figure  1) exist already as libraries, the only 
missing component is the code generator specific Domain Transformation. While EDSL allows for semantic  
checking of the input and some level of error reporting, the error reporting is more accurate if full parsing is  
performed for the input. This can be added (i.e., by implementing proper parsing) to the “final” version of the  
code generator, if necessary. The addition is unobtrusive and would not affect the other phases.

We use only one parameter for the counter: count range.

The description above indicates that the design is a counter. The name of the module is basic and the counter 
counts  18 steps.  Obviously,  the counter  generator could support  any number of  parameters:  count  direction 
selection, restart control, early ready-indication, count value output, etc. These would be just added to the list of 
parameters.

In order to create the Target AST, the Domain Transformation component needs to include the base AST 
template for a counter module. Additionally, it needs to calculate the bit width of the counter variable (5 bits in  
this case). Counter variable width and limit are populated to the template.
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Appendix B contains listings for the counter design. The Target AST format is language independent and it  
could be rendered to Verilog, SystemVerilog or VHDL. Verilog is chosen here.

For language independence, the AST abstraction level should be somewhat higher than the direct parsing 
result (thinking backwards from Target Verilog to Target AST). Here different types of ports are separated, 
especially clock and reset. Variables are collected to a list for attribute lookup. Sequential variables contain their 
reset values and all variables contain their bit widths. For example in:

The variable is called  count. It is a sequential variable (sync) and it has a reset value of  0. In detail, the 
specification defines that the value is 0 (in decimal), type is unsigned, bit width is 5, and the base is 10.

In summary, the Target AST abstracts module level information and the repeated process sub-structures (e.g., 
the reset if-branch). The behavioral statements have one-to-one correspondence to the direct parsing results.

B. Hierarchy module generator

RTL modules can be classified as Functional Modules and Hierarchy Modules. Functional Modules contain 
behavioral processes, which define the logic functions. Hierarchy Modules are defined here as pure. Hierarchy 
Modules only instantiate other modules and connect signals between the sub-modules.

When Functional Specifications are created for the design, it is fair to assume that most of the signal names 
match by default. In particular, it can be assumed that output port names match the names of the corresponding  
input port names. Here, the repeated pattern is not a specific design part, but the rule for making connections.

Let’s assume that the names match for 90% of the connections. The rest 10% includes: IP block ports, legacy  
blocks, multiple instantiations, generated code, and various other cases.

For new design units, it is possible that a significant amount of ports (close to 100%) have matching names. If 
all names match, the only missing information is the module instantiations.

The algorithm for signal connections and sub-module instantiations:

 Hierarchies are generated bottom up.

 The currently generated level instantiates named sub-modules.

 Each output port (also pin) of each sub-module is matched with one or more input ports of other sub-
modules, and appear as wires.

 Unconnected sub-module input and output ports become respective ports of the generated module.

Figure 3 shows a simple hierarchy module example. mod_a and mod_b are the sub-modules and the generated 
module is  top_a_b. Code generator parses Verilog (or VHDL) of  mod_a and  mod_b. Note that only port and 
parameter information requires parsing. Code samples are listed in Appendix C.

This hierarchy could be described as:

hier is a keyword and the name of the generated Hierarchy Module is top_a_b. The instantiated modules are 
mod_a and mod_b, and the instance names are the same as the module names (as a default).

Let’s change the setup and define that  mod_b input port  a_to_b is called  b_i1. Also, we want a specific 
instance name for mod_b. With these changes, the hierarchy could be described as:
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Figure 3. Simple hierarchy.

Now mod_b is instantiated as i_mod_b. Input port b_i1 is mapped as a_to_b for the higher level and output 
port a_to_b of mod_a can be matched to it by name.

Overall, this type of hierarchy generator tool should support flexible port name mapping (glob/rexexp pattern 
based), output port branching (routing signals in current level as wires and also upwards as ports), and parameter  
management. Typically module parameters would be set in the hierarchy definitions, resolved, and numeric port 
widths would be used in the higher level modules. The tool should also perform checking on port widths and bit 
ordering, and it would be an error to connect signals with the same name, but different bit configuration.

It is estimated that hierarchy modules contain around 20-40% of all the design code lines. For example in [5], 
there are 28% of the lines (effective lines) in hierarchy modules. Note that not all hierarchy modules are pure in 
this reference.

The content of hierarchy modules change significantly, when new modules are added and existing modules 
are updated. Hierarchy Modules require numerous updates during the course of the development. In general, code 
generator execution speed is not relevant. The priority is mostly in optimizing the code generator creation and 
maintenance effort. However, since every RTL design requires hierarchical modules and they change frequently, 
these are valid reasons for optimizing the tool performance.

For  example,  when creating a  very large Hierarchy Module,  the tool  performance can become an issue 
(Appendix C).  A benchmark run for  a  large design indicates  significant  differences in  performance.  A test 
hierarchy including two sub-modules was investigated. Both modules had 10000 input ports and 10000 output 
ports. All outputs of module A were name matched to the inputs of module B. Therefore, module A inputs were 
used as inputs for the generated module, and module B outputs where used as outputs.

When the hierarchy module is generated with a dynamic language program (Scheme in the benchmark), the 
code generation runs in ~35 s. When the same hierarchy module is generated with a well designed C program, the 
code generation runs in ~20 ms. Hence, the C implementation is over 1500 times faster. Both versions consume 
approximately half of the runtime parsing the two Verilog modules, and the rest of the time is used for matching  
port names and writing out the result.

The high level algorithm is the same for both implementation. For example, both versions use string hashing  
for fast name matching. The lower level implementation details are significantly different. Dynamic languages 
perform many operations during runtime that compiled languages perform at compile time [6]. Every access to a 
primitive data type in dynamic languages include execution of many CPU instructions, which is not needed for  
compiled C programs. The C version manages all memory resources carefully, while the Scheme version uses  
garbage collection. Garbage collection is generic and runs without guidance from the program. No claims are  
made about how fast the Scheme version could be. Both versions have been created using idiomatic practices of 
the respective languages.
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C. Finite Impulse Response filter generator

Finite Impulse Response (FIR) filters include a repeated pattern in their main structure. One of the main 
parameters for FIR filters is the order (direct form FIR). The order is defined by the number of delay elements in 
the filter (see: Figure 4).

Figure 4. FIR filter in direct form.

When filter order is N, it has N+1 taps (coefficients). FIR performs a running, weighted average of the input 
samples. Input sample is scaled and summed with the scaled versions of the previous samples. Sample delays are 
represented with D and scaler coefficients are represented with the indexed variable b. The repeated pattern is the 
delay-coefficient-sum section.

It  is  fairly  common that  FIR filters  are  designed to  be  linear  phase.  A FIR filter  is  linear  phase  when 
coefficients are symmetrical to the center coefficient (odd count) or to the two center coefficients (even count).

Appendix D contains the FIR description and the resulting RTL code.

The FIR generator parameters:

 iport: name and width of the sample input port.

 oport: name and width of the sample output port.

 sample-period: period of input and output samples in clock cycles.

 coeff-width: bit width for coefficients.

 coeff-float: floating point or integer coefficients.

 coeff-symmetry: none, even, or odd count.

 coeff-list: list of coefficients.

Odd and even coeff-symmetry means that the total coefficient count is odd or even, respectively. With odd 
coeff-symmetry, the given coefficients are repeated excluding the last coefficient. With even coeff-symmetry, the 
given coefficients are repeated including the last coefficient.

This code generator uses full precision in the internal calculations and saturates the output at overflow. The 
code generator optimizes the number of multiplication and addition resources by taking advantage of the sample-
period parameter. For example, in Appendix D the sample-period is 8. The RTL has 8 clock cycles for producing 
one output  sample.  The number of  required multiplication and addition units  become therefore the ratio  of 
coefficients (47) to sample period (8). In this case, we have 6 (47 / 8 => 6) multiplication and addition units.

The filter description is a “high level” description. It can be used to parameterize a reference model, which is 
then used for verification of the generated RTL. The description contains 14 lines of text and the target RTL (full  
version) contains 399 lines. The description is easy to maintain. Experimentation of RTL port bit widths (and the 
related calculation precision), for example, involves little effort. The code generator eliminates many classes of 
potential errors related to manual RTL creation. For example, it is quite tedious work to update the different bit  
widths for variables and intermediate results. The Domain Transformation part of the FIR code generator is 174  
lines of code.

The code generator includes the following automation features:

 Calculation of bit ranges for all variables.
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 Duplication of coefficients (with odd or even symmetry).

 Quantization of floating point coefficients to selected precision.

 Indexing of delayed samples and coefficients.

 Optimization of arithmetic resources.

 State machine for calculation phase control and related calculations.

V.  CODE GENERATOR TOOL DEVELOPMENT

Code generators are developed in reverse, from target to source. The target should contain repetition that is  
not feasible to manage using other means such as IP blocks or parametrized RTL. The wider the target domain  
(variation  in  outputs),  the  more  parameters  are  needed in  the  source  DSL.  The  term  parameter should  be 
understood broadly in this context. The source DSL is descriptive in nature, and therefore the term parameter 
suites well for describing the control of the target output.

It is important to start small and get the first prototype code generator working early. The source DSL design 
is typically an iterative process, and it is not easy to find the correct set of parameters immediately. We are  
balancing between the effort in creating the code generator and how widely it is applicable. When starting small, 
less iterations are likely required or at least the overall amount of work is minimized.

Organizations  benefit  from  preexisting  libraries  for  front-end  and  back-end  (See:  Figure  1).  Front-end 
libraries are needed, for example, for parsing documentation originated information sources. The selection of 
exact formats, depends on what format is desirable for the manual document updating (i.e., the master source).

Usually one back-end library is enough. If only one code generator implementation language is used and the  
target  language remains the same,  a  single  library is  sufficient.  For  every code generator  tool,  the Domain 
Transformation component needs to produce target DSL data that is compatible with the back-end library.

The back-end libraries should support hooks (callbacks). While the most interesting design information goes 
through the code generation flow, there are sometimes a need for side streams. For example, we might want that a 
specific standard comment header exists in each RTL source code file. It does not make sense to capture this  
changing and somewhat arbitrary information in the source DSL. Instead, the registered hooks can insert this type 
of information to the output.

As a minimum for the first  prototype,  we need the source DSL with some parameters and the Domain 
Transformation. The source DSL can be implemented as an EDSL and therefore no new parsers are needed. If 
back-end libraries are available, there is no work involved for the back-end phase.

The first prototype is used in the project and feedback is collected. Based on the project feedback, DSL 
parameters can be updated. At this point it is feasible to evaluate the compromise between the target domain 
features and the tool complexity. When all code generator features have been matured, the front-end can be 
updated to include proper parsing of the source, which improves the tool usability.

In summary, the phases for creating a code generator tool:

1. Identify candidate target for code generation. Typically this relates to a repetitive patterns: internal, 
external, or both.

2. Define the number of parameters and parameter value ranges based on the amount of variation in the 
output targets. Often the current situation contain excessive and unnecessary variation, which should be 
removed. The reduction in variation improves the value proposition of the code generation tool.

3. Identify all targets than can be generated from the same set of input information and identify target 
specific information sources. Domain Transformation might require multiple inputs.
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4. Design the code generator architecture around the information sources.

5. Implement and document the “minimum viable product” with future extensions taken into consideration. 
Start with a simple implementation.

6. Deploy the code generator to project use and improve based on the feedback.

VI.  CONCLUSIONS

Code generation is the best solution for certain type of repeating design features. Some code generators are 
applied  across  different  projects  and  some  should  be  developed  during  a  live  project.  For  live  project  
development, it is important that the first results can be delivered quickly. This enables wider application of the 
code generators.

The path to first  results can be substantially shortened through the use of EDSL techniques and readily 
available back-end libraries. A small scale code generator is possible to develop in a few hours.

The initial generator can be improved, when the required feature set has stabilized. New DSL parameters can 
be added and existing updated. The usability of the code generator is improved by performing proper parsing of 
the source DSL. The tool is able to pin point input errors to the exact character (line and column) and the error  
message is clear about the violation, in user level terms.

Design organizations should be code generator aware. Designers should actively look for opportunities for  
code generation. Repetition might be implicit and therefore not immediately visible. The repetition could be in 
the applied rules and not directly in the design parts themselves.

Version control systems and tool flows should support the existence of generated source code files. In practice 
this means that some kind of meta data is maintained about the design files. The flow utilizes this data and  
performs the design file transformations automatically.
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VII. APPENDIX A

Scheme is a language from the Lisp family. The language syntax is very simple. Language specification is  
only 80 pages [4]. The syntax consists of atoms and lists. Atoms are primitive data types like: numbers, strings,  
symbols. Lists contains zero or more elements. A list element is either an atom or another list (sub-list).

Lists are evaluated, by default, as expressions. The first element should be a procedure and the rest of the list  
elements  are  arguments  for  the  procedure.  Typically  the  procedure  is  referenced through a  variable  with  a 
procedure value. However, Scheme has also lambda expressions, which are literal definitions for procedures 
(functions).

In addition to the default expression evaluation, Scheme has a few special forms. Special forms mean than the 
list expressions are not fully evaluated, as above. The define form is used to create a variable binding: “(define a 
10)”. if form evaluates either the TRUE or the FALSE sub-expression depending on the value of the condition. 
lambda treats the list elements as code and does not, for example, result to resolving identifier tokens to variable  
values. lambda form evaluation is compile time activity and lambda value (the procedure) application is runtime 
activity. quote prevents evaluation and passes it’s arguments as literal values.

Almost  all  expressions  result  to  a  usable  value  in  Scheme.  In  practice  this  means,  that  for  example  if 
expressions may appear almost anywhere in the code, also in the argument position of a procedure call.

Scheme is a  functional language by nature, but variable value mutation is allowed and can be used when 
beneficial. Most Scheme code is based on composing a tree of procedure applications (i.e., function calls) and 
each application returns a fresh data value for the higher levels in the tree.

When Scheme code is “read”, it is just parsed and the result is program data (nested lists). Program data can 
be easily manipulated. When Scheme code is “loaded”, it is first parsed and then evaluated as program code. 
Program data can be evaluated as program code at will. This allows, for example, that a part of the input code is  
manipulated before all resulting code is evaluated.
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;; Comments start with ";" and continue to the end-of-line.
14                           ; Number 14.
"hello\n"                    ; String ending with newline.
#t                           ; Boolean true.
#f                           ; Boolean false.
'hello                       ; Symbol (identifier) "hello".
=> hello
(cons 1 2)                   ; Pair of values.
=> 1 . 2
'(1 2 foo)                   ; List (quoted).
=> (1 2 foo)
(list 1 2 'foo)              ; List using "list" procedure.
=> (1 2 foo)
'()                          ; Empty list.
=> ()
(cons 1                      ; List using nested pairs.
      (cons 2
            (cons 'foo
                  '())))
=> (1 2 foo)
(+ 1 2)                      ; Expressions are lists with a procedure as the first element.
=> 3
+                            ; "+" is a variable with a procedure value.
=> #<procedure +>
(quote +)                    ; Quoted variable.
=> +
'(+ 1 2)                     ; Quoted list.
=> (+ 1 2)
(define n 12)                ; Variable definition with value 12.
(lambda (a b) (+ a b))       ; Procedure value.
(define my-add               ; Variable definition with a procedure value.
  (lambda (a b) (+ a b)))
(define (my-add a b)         ; Same as above using compact syntax.
  (+ a b))
(my-add 1 (my-add 2 3))      ; Nested expressions: 1 + (2 + 3).
=> 6
`(1 ,(my-add 2 3))           ; Quasiquoted list with evaluated sub-expression.
=> (1 5)
(if #t "yes" "no")           ; (IF <cond-expr> <true-expr> <false-expr>).
=> "yes"
(if (not #t)                 ; If expression reduces to <false-expr> value.
    4
    (+ 1 2))
=> 3



VIII. APPENDIX B

This appendix contains listings for the “parametrized counter” example.

Counter description:

Target AST:

Target Verilog:
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(counter basic
         (range 18))

((name "basic")
 (clock "clk")
 (reset "rst")
 (iports "enable")
 (oports "ready")
 (vars ("clk" port (#f unsigned 1 2))
       ("rst" port (#f unsigned 1 2))
       ("enable" port (#f unsigned 1 2))
       ("ready" sync (0 unsigned 1 2))
       ("count" sync (0 unsigned 5 10)))
 (procs (sync ("ready" "count")
              (stmt-ass
                (varref "ready")
                (number (0 unsigned 1 2)))
              (stmt-if
                ((varref "enable")
                 (stmt-if
                   ((op-eq (varref "count")
                           (number (17 unsigned 5 10)))
                    (stmt-ass
                      (varref "count")
                      (number (0 unsigned #f 16)))
                    (stmt-ass
                      (varref "ready")
                      (number (1 unsigned 1 2))))
                   (#f
                    (stmt-ass
                      (varref "count")
                      (op-add (varref "count") (number (1 #f #f 10)))))))))))

module basic
  (
   clk,
   rst,
   enable,
   ready
   );
   input  clk;
   input  rst;
   input  enable;
   output ready;
   reg    ready;
   reg    [4:0] count;
   always @( posedge clk or negedge rst ) begin

(define (factorial n)        ; Define procedure "factorial".
  (define (sub n res)        ; Local procedure "sub" as tail-recursive.
    (if (= n 0)              ; Terminate recursion when "n" is zero.
        res                  ; "sub" returns value of "res".
        (sub (- n 1)         ; Recurse with tail-optimization, i.e., no stack pushed.
             (* n res))))    ;   New call replaces the old stack frame.
  (sub n 1))                 ; Result: apply "sub" to initial "n" and to initial result 1.
(factorial 5)                ; Apply "factorial" to "5".
=> 120
(let ((n 10))                ; Create local variable "n" with value 10.
  (if (= n 12)               ; This is different variable from the outer scope "n".
      "yes"
      "no"))                 ; Return "no", since inner scope "n" is 10.
=> "no"
(even? 3)                    ; Predicate procedures end with "?", by convention.
=> #f
(map even? '(1 2 3 4))       ; Map applies (calls) "even?" for each element.
=> (#f #t #f #t)             ; Return value is a new list with the same dimensions.
(let lp ((lst                ; named-let: implicit, named procedure "lp".
          '(1 2 3 4))        ; "lst" starts as the original list.
         (ret '()))          ; Return list starts as empty.
  (if (pair? lst)            ; "pair?" returns #t if list is not empty.
      (lp (cdr lst)          ; Recurse with list head removed, i.e., with tail/rest.
          (cons (even?       ; Add #t/#f to head of return list.
                 (car lst))  ; car=head, cdr=tail.
                ret))
      (reverse lst)))        ; Return list in correct order.
=> (#f #t #f #t)             ; Same result as from "map".



IX. APPENDIX C

This appendix contains listings for the “simple design” and “very large” examples.

Simple Design hierarchy description:

Simple Design Verilog modules:

Simple Design generated hierarchy module Verilog:

Very Large hierarchy description:
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(hier top_a_b
      mod_a
      mod_b)

module mod_a
  (
   input  a_i1,
   input  a_i2,
   output a_o1,
   output a_to_b
   );
   assign a_o1 = !a_i1;
   assign a_to_b = a_i1 && a_i2;
endmodule

module mod_b
  (
   input  a_to_b,
   output b_o1
   );
   assign b_o1 = !a_to_b;
endmodule

module top_a_b
  (
   a_i1,
   a_i2,
   a_o1,
   b_o1
   );
   input  a_i1;
   input  a_i2;
   output a_o1;
   output b_o1;
   wire   a_to_b;
   mod_a mod_a
     (
      .a_i1( a_i1 ),
      .a_i2( a_i2 ),
      .a_o1( a_o1 ),
      .a_to_b( a_to_b )
      );
   mod_b mod_b
     (
      .a_to_b( a_to_b ),
      .b_o1( b_o1 )
      );
endmodule

(hier top_a_b
      mod_a
      mod_b)

      if ( !rst ) begin
         ready <= 1'b0;
         count <= 5'd0;
      end else begin
         ready <= 1'b0;
         if ( enable ) begin
            if ( count == 5'd17 ) begin
               count <= 'h0;
               ready <= 1'b1;
            end else begin
               count <= count + 1;
            end
         end
      end
   end
endmodule



Very Large Verilog modules (reduced from 2*40011 lines):

Very Large generated hierarchy module Verilog (reduced from 90024 lines):
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module mod_a
 (
 clk,
 rst,
 input_port_0,
 input_port_1,
 ...
 input_port_9999,
 signal_port_0,
 signal_port_1,
 ...
 signal_port_9999
 );
 input  clk;
 input  rst;
 input  input_port_0;
 input  input_port_1;
 ...
 input  input_port_9999;

 output signal_port_0;
 output signal_port_1;
 ...
 output signal_port_9999;

endmodule

module mod_b
  (
   clk,
   rst,
   signal_port_0,
   signal_port_1,
   ...
   signal_port_9999,
   output_port_0,
   output_port_1,
   ...
   output_port_9999
   );

   input  clk;
   input  rst;
   input  signal_port_0;
   input  signal_port_1;
   ...
   input  signal_port_9999;

   output output_port_0;
   output output_port_1;
   ...
   output output_port_9999;

endmodule

module top_a_b
  (
   clk,
   rst,
   input_port_0,
   input_port_1,
   ...
   input_port_9999,
   output_port_0,
   output_port_1,
   ...
   output_port_9999
   );

   input  clk;
   input  rst;
   input  input_port_0;
   input  input_port_1;
   ...
   input  input_port_9999;

   output output_port_0;
   output output_port_1;
   ...
   output output_port_9999;

   wire   signal_port_0;
   wire   signal_port_1;
   ...
   wire   signal_port_9999;

   mod_a mod_a
     (



X. APPENDIX D

This appendix contains partial results of the FIR code generator.

Filter description:

Target Verilog (reduced from 399 lines):

13

`(fir fir-tap-47
      (iport x 14)
      (oport y 14)
      (sample-period 8)
      (coeff-width 14)
      (coeff-float #t)
      (coeff-symmetry odd)
      (coeff-list -0.00100343   8.19935e-05   0.00138234   0.000969069
                  -0.00149488   -0.00287014   0.000214866  0.00497573
                  0.00359393    -0.00512623   -0.00958052  0.00048227
                  0.0147818     0.0104958     -0.0138518   -0.0259068
                  0.00076921    0.0392412     0.0292861    -0.0389579
                  -0.0819605    0.000952093   0.200343     0.373183
                  ))

module fir_tap_47
  (
   clk,
   rst,
   x,
   x_en,
   y,
   y_en
   );

   localparam b0 = 14'sh3ff8;
   localparam b1 = 14'sh1;
   ...
   localparam b23 = 14'shbf1;
   input  clk;
   input  rst;
   input  signed [13:0] x;
   input  x_en;

   output signed [13:0] y;
   output y_en;

   reg    signed [13:0] y;
   reg    y_en;
   reg    [7:0] x_en_d;
   reg    signed [32:0] sw;
   reg    signed [32:0] s;
   reg    use_alu;
   reg    signed [13:0] d0;
   reg    signed [13:0] d1;
   ...
   reg    signed [13:0] d46;
   reg    signed [13:0] mu0_i0;
   reg    signed [13:0] mu0_i1;
   reg    signed [13:0] mu1_i0;
   reg    signed [13:0] mu1_i1;
   ...
   reg    signed [13:0] mu5_i0;
   reg    signed [13:0] mu5_i1;

      .clk( clk ),
      .rst( rst ),
      .input_port_0( input_port_0 ),
      .input_port_1( input_port_1 ),
      ...
      .input_port_9999( input_port_9999 ),
      .signal_port_0( signal_port_0 ),
      .signal_port_1( signal_port_1 ),
      ...
      .signal_port_9999( signal_port_9999 )
      );

   mod_b mod_b
     (
      .clk( clk ),
      .rst( rst ),
      .signal_port_0( signal_port_0 ),
      .signal_port_1( signal_port_1 ),
      ...
      .signal_port_9999( signal_port_9999 ),
      .output_port_0( output_port_0 ),
      .output_port_1( output_port_1 ),
      ...
      .output_port_9999( output_port_9999 )
      );

endmodule
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   reg    signed [26:0] mu0_o;
   reg    signed [26:0] mu1_o;
   ...
   reg    signed [26:0] mu5_o;

   always @( posedge clk or negedge rst ) begin
      if ( !rst ) begin
         y <= 14'sb0;
         y_en <= 1'b0;
         d0 <= 14'sb0;
         d1 <= 14'sb0;
         ...
         d46 <= 14'sb0;
         x_en_d <= 8'b0;
         s <= 33'sb0;
      end else begin
         y_en <= 1'b0;
         x_en_d <= { x_en_d[6:0], x_en };
         if ( x_en ) begin
            d0 <= x;
         end
         if ( x_en_d[7] ) begin
            if ( sw > 27'sh3ffffff ) begin
               y <= 14'sh1fff;
            end else if ( sw < 27'sh4000001 ) begin
               y <= 14'sh2001;
            end else begin
               y <= sw[26:13];
            end
            y_en <= 1'b1;
            s <= 33'sb0;
            d1 <= d0;
            d2 <= d1;
            ...
            d46 <= d45;
         end else begin
            s <= sw;
         end
      end
   end

   always @* begin
      mu0_o = 'sb0;
      mu1_o = 'sb0;
      ...
      mu5_o = 'sb0;
      sw = s;
      if ( use_alu ) begin
         mu0_o = mu0_i0 * mu0_i1;
         mu1_o = mu1_i0 * mu1_i1;
         ...
         mu5_o = mu5_i0 * mu5_i1;
         sw = s + mu0_o + mu1_o + mu2_o + mu3_o + mu4_o + mu5_o;
      end
   end

   always @* begin
      use_alu = 1'b0;
      mu0_i0 = 'sb0;
      mu0_i1 = 'sb0;
      mu1_i0 = 'sb0;
      mu1_i1 = 'sb0;
      ...
      mu5_i0 = 'sb0;
      mu5_i1 = 'sb0;
      case ( x_en_d )
        8'h1: begin
           use_alu = 1'b1;
           mu0_i0 = d0;
           mu0_i1 = b0;
           mu1_i0 = d8;
           mu1_i1 = b8;
           mu2_i0 = d16;
           mu2_i1 = b16;
           mu3_i0 = d24;
           mu3_i1 = b22;
           mu4_i0 = d32;
           mu4_i1 = b14;
           mu5_i0 = d40;
           mu5_i1 = b6;
        end
        8'h2: begin
           use_alu = 1'b1;
           mu0_i0 = d1;
           mu0_i1 = b1;
           mu1_i0 = d9;
           mu1_i1 = b9;
           mu2_i0 = d17;
           mu2_i1 = b17;
           mu3_i0 = d25;
           mu3_i1 = b21;
           mu4_i0 = d33;
           mu4_i1 = b13;
           mu5_i0 = d41;
           mu5_i1 = b5;
        end
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        8'h80: begin
           use_alu = 1'b1;
           mu0_i0 = d7;
           mu0_i1 = b7;
           mu1_i0 = d15;
           mu1_i1 = b15;
           mu2_i0 = d23;
           mu2_i1 = b23;
           mu3_i0 = d31;
           mu3_i1 = b15;
           mu4_i0 = d39;
           mu4_i1 = b7;
           mu5_i0 = 'sb0;
           mu5_i1 = 'sb0;
        end
        default: begin
           use_alu = 1'b0;
        end
      endcase
   end

endmodule


	I. Introduction
	II. Theory
	III. Opportunities for code generation
	IV. Case analysis
	A. Parametrized counter
	B. Hierarchy module generator
	C. Finite Impulse Response filter generator

	V. Code generator tool development
	VI. Conclusions
	References

	VII. Appendix A
	VIII. Appendix B
	IX. Appendix C
	X. Appendix D

