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Abstract—This paper describes an algorithm to extract the design behaviour of SoC interconnect modules by using 

formal traces in a fully automated flow. The main purpose of this flow is to unveil undocumented and unintended 

design behaviour which might harm security relevant aspects of the SoC. We rely on an abstract internal model of the 

SoC interconnect. Thus, no specification of the design behaviour is needed to run the abstraction flow. The results can 

be checked against the project specifications and requirements. By means of an example design of an AHB interconnect 

the algorithm gets demonstrated. 
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I.  INTRODUCTION 

As supplier of modern System-on-Chip (SoC) designs for radio and audio processing in the automotive 

domain, we deal with a variety of interconnect modules to implement the communication infrastructure between 

integrated hardware intellectual property (IP) blocks. The verification of interconnect modules is one of the crucial 

tasks in the SoC development cycle due to the high degree of freedom for possible communication channels in 

SoC interconnect IPs between managers and subordinates like depicted in Figure 1. The nature of interconnect 

modules is generic and they are configured based on project specific system requirements. These requirements 

include the number of managers and subordinates, the protocol interface type, access rights, error handling, 

performance and the underlying memory map. Interconnect modules are also highly security relevant to protect 

sensitive assets from unauthorized access [1]. We noticed that the total number of managers and subordinates per 

interconnect module increased over the years which results in a higher complexity of the underlying memory map 

and the associated verification effort. Typical interface types are industry standard protocols like AMBA AXI or 

AHB. Besides the growing complexity of the design itself, we identified the following challenges during the 

verification of interconnects: 

• The provided documentation is outdated, e.g. not all memory map addresses are documented properly. 

• Design engineers are not available to support verification efforts due to other priorities. 

• Design architects created unintended design behaviour due to wrong interpretation of requirements. 

• Design bugs or misconfiguration gets detected late in the project cycle as important verification tasks 

are executed on SoC level verification rather than on module level. 

• In case the interconnect modules are third party IPs, the shipped verification suite is not sufficient to 

cover all project specific aspects especially when dealing with security relevant aspects [1]. 

• Aggressive time-to-market schedule makes it impossible to verify 100% of the design within the 

project schedule. 

To overcome these issues we developed an algorithm to extract the interconnect design behaviour based 

on formal cover traces. Following the trend of an emerging usage of formal verification as methodology [2] and 

as part of our strategy to strengthen the usage of formal property verification (FPV) built on [3], we take advantage 

of the FPV ability to specify the destination rather than the full stimuli to get the Design-under-Test (DUT) into 

an expected target state. The mathematical exploration of the entire space of all reachable DUT states provides 

either a trace of how to reach the destination or vice versa proves the absence of a possible stimuli to get the DUT 

into the expected state [4]. The main focus of the presented algorithm is to unveil undocumented and unintended 

design behaviour which might harm security relevant aspects of the SoC. The DUT is intendedly handled as 

blackbox and besides a testbench toplevel and connected assertion-based verification IPs (ABVIPs), no further 
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information is required. We are able to extract access rights, detailed subordinate accessibility information and a 

memory map by running a fully automated flow. The resulting memory map gets exhaustively verified by using 

FPV to ensure the validity of the extracted memory windows. All properties used for assumptions, covers and 

assertions are implemented by using System Verilog Assertions (SVA). As underlying formal tool we rely on  

Jasper FPV [5] and all scripting is done in Python. 

 
Figure 1: SoC interconnect architecture with mapped addresses 

II. PROPOSED ALGORITHM 

The proposed algorithm to extract the interconnect design behaviour is shown in Figure 2 and includes 

seven steps, divided in a low complexity part including basic checks and a more complex part for the memory 

map extraction and exhaustive verification. Prerequisites are the DUT and a testbench toplevel with connected 

ABVIPs for all standard protocol interfaces. ABVIPs include ready-to-use assumptions, cover properties and 

assertions to avoid any additional effort for standard protocols. Based on an abstract model, SVAs are generated 

to determine which read /write paths are useable in the IP core. Then, the memory mapping is probed with further 

assertions. The underlying formal proof ensures the exact extraction. All steps will be described in the next 

subsections. 
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Figure 2: Design behaviour extraction flow using FPV 
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Step 1: Generation of initial data structures and assumptions 

In the first step a script parses the testbench toplevel including the DUT interface and identifies how 

many manager and subordinate ports are available at the DUT module boundary. Based on the extracted numbers, 

a script generates a SystemVerilog package which contains initial matrix structures including default assumptions 

that all managers can access all subordinates. This step is extended with the generation of protocol specific data 

structures, e.g. to store the PSEL, HREADY or TRANS characteristics for AMBA AHB [6]. In addition we 

generate an SVA module to apply data tagging on the write and read data ports of the extracted managers and 

subordinates to ensure unique data patterns. Data tagging is a widely applied FPV technique to use known data 

patterns on certain signals by using SVA assumptions. Figure 3 shows an example of how to tag the write data 

port of manager 0 with a unique value. This value can be detected for arrival in all of the subordinates. 

// Assumption for Manager 0 

// - No other manager is allowed to use wdata[3:0] = 4'h1. 

// - Data [31:4] can be randomly used by formal tool 

assume_manager_0_wdata : assume property (DUT.ahb_manager_wdata[0][3:0] == 4'h1); 

 

// Cover property for Port 0, Subordinate 0 

// Trace reachable   -> Manager 0 can     access Port 0, Subordinate 0 

// Trace unreachable -> Manager 0 can NOT access Port 0, Subordinate 0  

cover_wdata_manager_0_to_subordinate_0 : cover property ( 

  @(posedge clk) disable iff (!rstn) 

    DUT.ahb_subordinate_psel[0][0] && DUT.ahb_subordinate_write[0] == AHB_WRITE 

    ##1 DUT.ahb_subordinate_wdata[0][3:0] == 4'h1 

); 
Figure 3: Data tagging assumption and cover property example for AHB write data of manager 0 to subordinate 0 

Step 2: First proof - Basic checks 

The formal tool gets started for the first time to run a proof on basic checks like accessibility and protocol 

specific cover properties. This proof is based on the initial data structures in combination with unique patterns on 

write and read data ports of managers and subordinates. Previously implemented SVA cover properties are applied 

to each identified communication path by using a generate loop with respect to the extracted design constraints. 

Target of the first proof is to show the evidence or absence of formal traces to get data through the interconnect 

or to check e.g. if the AHB PSEL signal can be asserted, de-asserted and toggled. The cover property in Figure 3 

checks whether the unique data from manager 0 can be observed in any of the subordinates. 

Step 3: Analyze traces and extract results 

In this step all covered and uncovered traces are analyzed by a Python logfile parser which checks the 

proof report of the formal tool. Based on these results the initial data structures get updated with the extracted 

behaviour from the traces of the first proof. All results are stored in a new SystemVerilog package, which can be 

picked up by the next processing step. Whenever a trace is available, it implies that a design behaviour is possible 

and the formal tools provides at least one evidence which input stimuli are required to reach the defined target 

state. 

Step 4: Second proof - Memory map extraction 

This second proof is again fully based on formal cover traces. With the help of dedicated cover properties 

and the already extracted design behaviour, it is possible to detect every start and end address of the interconnect 

memory map. We even support the extraction of multiple address windows per subordinate. Figure 4 shows how 

such a cover property looks like to extract a single address window. The principle to extract the start address is 

based on the assumption that there must be an address ADDR_START where the interconnect forwards a 

transaction from manager M to subordinate S, but when address ADDR_START-1 is used the transaction does 

not get forwarded. The same argument applies to the end of an address windows with ADDR_END and 
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ADDR_END+1 to extract for the end address of an address window. Whenever the formal tool is capable to 

generate such a trace, it contains information about the start and end address, which can be post-processed in the 

next step. 

cover_address_map_single_window : cover property ( 

  @(posedge clk) disable iff (!rstn) 

  // Cycle 0 

  // - Transaction from manager m to subordinate s allowed. 

  // - Formal tool can use any address. 

  `AHB_WRITE_ADDR_PHASE_ALLOWED(m, s) 

  ##1 

  // Cycle 1 

  // - Address is decremented by 1 

  // - Data of previous transaction gets routed through correctly. 

  // - Transaction from manager n to subordinate s restricted. 

  DUT.ahb_manager_addr[m] == $past(DUT.ahb_manager_addr[m]) - 1 && 

  `AHB_WRITE_DATA_PHASE(m, s) && 

  `AHB_WRITE_ADDR_PHASE_RESTRICTED(m, s) 

  ##1 

  // Cycle 2 (Just set back address to initial address) 

  DUT.ahb_manager_addr[m] == $past(DUT.ahb_manager_addr[m]) + 1 

  ##1 

  // Cycle 3 

  // - Transaction from manager m to subordinate s allowed. 

  // - Address is higher as previous address 

  `AHB_WRITE_ADDR_PHASE_ALLOWED(m, s) && 

  DUT.ahb_manager_addr[m] > $past(DUT.ahb_manager_addr[m]) 

  ##1 

  // Cycle 4 

  // - Data of previous transaction gets routed through correctly. 

  // - Transaction by manager m to subordinate p/s restricted. 

  // - Address is incremented by 1 

  DUT.ahb_manager_addr[m] == $past(DUT.ahb_manager_addr[m]) + 1 

  `AHB_WRITE_DATA_PHASE(m, s) && 

  `WR_TRANSACTION_RESTRICTED(m, s) 

); 
Figure 4: Cover property example to extract a single address window  

Step 5: Analyze memory map traces and extract memory map 

All covered and uncovered traces of the memory map extraction proof are analyzed and post-processed 

in this step to detect if there is a single address window or multiple address windows available to access a certain 

subordinate. This is implemented by executing tool specific TCL commands to analyze formal traces. 

Step 6: Third proof - Verify memory map 

The extracted memory map gets fully verified with the help of already existing properties to verify all 

kinds of AHB transactions. For every address within the extracted ranges we check that read and write access is 

going through the interconnect according to the protocol specification. Based on the numbers of possible 

communication paths this step might take several hours to complete. We check e.g. that protocol specific signals 

like the AHB burst size get always routed through the interconnect to a subordinate whenever a valid address is 

used to initiate the AHB transaction. 

Step 7: Report creation 
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The report creation is based on all previously collected data and writes out a single text based report 

which can be used by design and verification engineers to compare it against the interconnect specifications. A 

lightweight filter mechanism is used to detect bogus results by combining all extracted checks. 

III. EXEMPLARY DESIGN UNDER TEST 

The exemplary DUT is an AHB interconnect with a total number of 10 AHB managers and 11 AHB 

ports. Every port can handle up to two AHB subordinates. Figure 5 shows the DUT as part of the testbench 

toplevel. All interfaces are connected to AHB ABVIPs. Four SVA modules are instantiated to implement 

assumptions, cover properties and assertions. Splitting the basic checks, the memory map extraction and memory 

map verification allows to start separate proofs in the used FPV tool. 
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Figure 5: FPV testbench toplevel including DUT, ABVIPs and SVA modules 

IV. RESULTS 

A. Control Menu 

The entire flow gets controlled by a Python script and can be started using a console menu depicted in 

Figure 6 either by executing it step by step for debugging or all steps at once. An additional option 0 got added 

to reset everything into the initial state. 

 
Figure 6: Console menu to start the design behaviour extraction using FPV 
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B. Number of Properties 

The total number of properties which gets used during the entire flow is shown in Table 1. The 21 

assertions in the global assumption module are used to ensure that no other data tags are used, which might be 

introduced from somewhere inside the DUT. This ensures that the data originating at a specific manager or 

subordinate is unique. In addition the ABVIPs include almost 700 assumptions and 2000 cover properties to ensure 

that all transactions are compliant with the AHB standard. All numbers will dynamically change with respect to 

the DUT under consideration. 

  
Table 1: Number of properties per SVA module 

Module Assumptions Cover Properties Assertions 

Global Assumptions (Data Tagging) 32 - 21 

Basic Checks - 594 - 

Memory Map Extraction - 200 - 

Memory Map Verification 14 20 330 

 AHB ABVIP Managers 390 820 10 

AHB ABVIP Subordinates 286 1056 - 

Total 722 2690 361 

 

C. Runtime 

The total runtime of the flow for the DUT without re-using any cached data is around 3 hours like shown 

in Table 2. The basic checks are converging after just 3 minutes, as just low complexity cover properties are used. 

The memory map extraction takes around 15 minutes and the exhaustive memory map verification runs for 2:45 

hours. The runtime of the third proof is highly related to the number of extracted address windows. 

 
Table 2: Runtime of all proofs 

Proof # Runtime [h:mm] 

Proof 1: Basic Checks 0:03 

Proof 2: Memory Map Extraction 0:15 

Proof 3: Memory Map Verification 2:45 

Total 3:03 

 

D. Extracted Access Rights 

Initially the access rights are assumed to be read/write (RW) for all possible connections and they will 

be refined based on the results of the first formal proof. Figure 7 shows the initial assumption matrix which got 

generated for all possible connections. Figure 8 shows the updated matrix after the first proof got analyzed. Port 

P5, P7, P8 and P9 are not accessible at all. The only ports where the second subordinate is fully accessible are P0 

and P6. Based on the automatically extracted information, that – due to underlying formal proofs – is fully correct, 

a designer can compactly assess whether this behaviour is intended or not. There is no manual effort required to 

gather these information. 

 
Figure 7: Initially assumed access rights (RW=read/write) 
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Figure 8: Extracted access rights (RW=read/write, WO=write only, NA = not accessible) 

E. Extracted protocol specific behaviour 

As mentioned in the previous chapters we have implemented cover properties for protocol specific 

signals to gain more insights why certain communication paths are not accessible. Therefore, we selected three 

important AHB signals which are crucial to establish a communication between manager and subordinate: PSEL, 

HREADY and TRANS. Figure 9 exemplary shows the TRANS and HREADY behaviour by comparing the initial 

assumption with the extracted behaviour. Ports P7, P8 and P9 are not accessible because the HREADY signal gets 

stuck at 0, whereas P5 is not accessible due to a stuck at idle of the TRANS signal. 

 

 
Figure 9: Extracted AHB TRANS / HREADY behaviour (initial assumption left, extracted results right) 

F. Memory Map Extraction 

The memory map extraction gets executed only for connections where the basic checks ensure that the 

access is possible to optimize the runtime. Figure 10 shows the extracted memory map for all ports and 

subordinates. For most of the subordinates there exists just a single address window, only for port P0 and 

subordinate S1 there are two address windows. After passing this over to the design team of the interconnect IP 

we got the feedback that several unexpected issues are unveiled in the results which are not intended caused by 

wrong settings: 

 

• The first address window of port P0, subordinate S0 with the address 32’h0000_0000 to 32’h0000_01FF 

is not expected and is a potential security risk, as it might expose registers / data which shall be not 

reachable. 

• Port 5 is expected to be reachable, but a bug in the AHB TRANS logic prevents the access. 



 

8 

 

G. Memory Map Verification 

The final memory map verification is based on assertions and checks that all extracted communication 

paths and address windows can be used to initiate a valid AHB write and read transaction. The final report contains 

a single line per check, for instance that the AHB write access to all subordinates of port P0 is possible. One design 

bug got discovered by these checks as the extracted address from any manager to port P0 subordinate S1 is not 

expected to have two address windows. 

 

 
Figure 10: Extracted memory map for all ports and subordinates (NO_ADDR is equal to 32’hFFFF_FFFF) 

H. Limitations 

The proposed approach is currently limited to AHB interfaces. Adapting it to additional standard protocol 

interfaces like AXI is under development. The number of possible address windows per subordinate is currently 

limited to 2, but can be scaled with a drawback of a runtime penalty. The total runtime might get critical for a 

higher number of managers, subordinates or accessible address windows as the time for formal proofs increases 

exponentially. For more complex designs a well-defined abstraction and black boxing strategy must be in place 

to deal with a possible state space explosion. 

V. SUMMARY 

In this paper we presented a fully automized flow to extract the design behaviour of an AHB interconnect 

by taking advantage of formal traces. The flow only requires the DUT and testbench toplevel as inputs. No 

specifications are needed. In seven steps we extracted the basic connectivity matrix, protocol specific behaviour 

and a full memory map. In a final step the resulting memory maps gets exhaustively verified to validate the 

extracted results. For the given example, it takes around 3 hours to execute the flow and multiple design bugs got 

unveiled. The flow can easily be re-started for new design releases. Based on the results we plan to strengthen the 

usage of FPV for design behaviour extraction on more complex designs. 
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