

1

Automated Design Behaviour Extraction of SoC

Interconnects Using Formal Property Verification

Jan Hahlbeck, NXP Semiconductors Germany GmbH (jan.hahlbeck@nxp.com)

Chandana G. P., NXP Semiconductors Germany GmbH (chandana.guddenahallipalaksha@nxp.com)

Görschwin Fey, Hamburg University of Technology (goerschwin.fey@tuhh.de)

Abstract—This paper describes an algorithm to extract the design behaviour of SoC interconnect modules by using

formal traces in a fully automated flow. The main purpose of this flow is to unveil undocumented and unintended

design behaviour which might harm security relevant aspects of the SoC. We rely on an abstract internal model of the

SoC interconnect. Thus, no specification of the design behaviour is needed to run the abstraction flow. The results can

be checked against the project specifications and requirements. By means of an example design of an AHB interconnect

the algorithm gets demonstrated.

Keywords—Formal Verification, Behaviour Extraction, Interconnect Verification, SoC Security

I. INTRODUCTION

As supplier of modern System-on-Chip (SoC) designs for radio and audio processing in the automotive

domain, we deal with a variety of interconnect modules to implement the communication infrastructure between

integrated hardware intellectual property (IP) blocks. The verification of interconnect modules is one of the crucial

tasks in the SoC development cycle due to the high degree of freedom for possible communication channels in

SoC interconnect IPs between managers and subordinates like depicted in Figure 1. The nature of interconnect

modules is generic and they are configured based on project specific system requirements. These requirements

include the number of managers and subordinates, the protocol interface type, access rights, error handling,

performance and the underlying memory map. Interconnect modules are also highly security relevant to protect

sensitive assets from unauthorized access [1]. We noticed that the total number of managers and subordinates per

interconnect module increased over the years which results in a higher complexity of the underlying memory map

and the associated verification effort. Typical interface types are industry standard protocols like AMBA AXI or

AHB. Besides the growing complexity of the design itself, we identified the following challenges during the

verification of interconnects:

• The provided documentation is outdated, e.g. not all memory map addresses are documented properly.

• Design engineers are not available to support verification efforts due to other priorities.

• Design architects created unintended design behaviour due to wrong interpretation of requirements.

• Design bugs or misconfiguration gets detected late in the project cycle as important verification tasks

are executed on SoC level verification rather than on module level.

• In case the interconnect modules are third party IPs, the shipped verification suite is not sufficient to

cover all project specific aspects especially when dealing with security relevant aspects [1].

• Aggressive time-to-market schedule makes it impossible to verify 100% of the design within the

project schedule.

To overcome these issues we developed an algorithm to extract the interconnect design behaviour based

on formal cover traces. Following the trend of an emerging usage of formal verification as methodology [2] and

as part of our strategy to strengthen the usage of formal property verification (FPV) built on [3], we take advantage

of the FPV ability to specify the destination rather than the full stimuli to get the Design-under-Test (DUT) into

an expected target state. The mathematical exploration of the entire space of all reachable DUT states provides

either a trace of how to reach the destination or vice versa proves the absence of a possible stimuli to get the DUT

into the expected state [4]. The main focus of the presented algorithm is to unveil undocumented and unintended

design behaviour which might harm security relevant aspects of the SoC. The DUT is intendedly handled as

blackbox and besides a testbench toplevel and connected assertion-based verification IPs (ABVIPs), no further

mailto:jan.hahlbeck@nxp.com
mailto:chandana.guddenahallipalaksha@nxp.com
mailto:goerschwin.fey@tuhh.de

2

information is required. We are able to extract access rights, detailed subordinate accessibility information and a

memory map by running a fully automated flow. The resulting memory map gets exhaustively verified by using

FPV to ensure the validity of the extracted memory windows. All properties used for assumptions, covers and

assertions are implemented by using System Verilog Assertions (SVA). As underlying formal tool we rely on

Jasper FPV [5] and all scripting is done in Python.

Figure 1: SoC interconnect architecture with mapped addresses

II. PROPOSED ALGORITHM

The proposed algorithm to extract the interconnect design behaviour is shown in Figure 2 and includes

seven steps, divided in a low complexity part including basic checks and a more complex part for the memory

map extraction and exhaustive verification. Prerequisites are the DUT and a testbench toplevel with connected

ABVIPs for all standard protocol interfaces. ABVIPs include ready-to-use assumptions, cover properties and

assertions to avoid any additional effort for standard protocols. Based on an abstract model, SVAs are generated

to determine which read /write paths are useable in the IP core. Then, the memory mapping is probed with further

assertions. The underlying formal proof ensures the exact extraction. All steps will be described in the next

subsections.

High ComplexityLow Complexity

Generate Initial

Datastructures

Proof #1

Basic checks

Analyze traces

and extract results

Start

Proof #2

Memory map

extraction

Result

SV Package

End

Analyze traces and

extract memory ranges

Memory Map

SV Package

DUT +

Testbench

Proof #3

Verify Memory Map

Report

Basic SVA

Properties

Extraction SVA

Properties

Report Generation

Protocol SVA

Properties

Initial SV package +

SVA assumptions

Figure 2: Design behaviour extraction flow using FPV

3

Step 1: Generation of initial data structures and assumptions

In the first step a script parses the testbench toplevel including the DUT interface and identifies how

many manager and subordinate ports are available at the DUT module boundary. Based on the extracted numbers,

a script generates a SystemVerilog package which contains initial matrix structures including default assumptions

that all managers can access all subordinates. This step is extended with the generation of protocol specific data

structures, e.g. to store the PSEL, HREADY or TRANS characteristics for AMBA AHB [6]. In addition we

generate an SVA module to apply data tagging on the write and read data ports of the extracted managers and

subordinates to ensure unique data patterns. Data tagging is a widely applied FPV technique to use known data

patterns on certain signals by using SVA assumptions. Figure 3 shows an example of how to tag the write data

port of manager 0 with a unique value. This value can be detected for arrival in all of the subordinates.

// Assumption for Manager 0

// - No other manager is allowed to use wdata[3:0] = 4'h1.

// - Data [31:4] can be randomly used by formal tool

assume_manager_0_wdata : assume property (DUT.ahb_manager_wdata[0][3:0] == 4'h1);

// Cover property for Port 0, Subordinate 0

// Trace reachable -> Manager 0 can access Port 0, Subordinate 0

// Trace unreachable -> Manager 0 can NOT access Port 0, Subordinate 0

cover_wdata_manager_0_to_subordinate_0 : cover property (

 @(posedge clk) disable iff (!rstn)

 DUT.ahb_subordinate_psel[0][0] && DUT.ahb_subordinate_write[0] == AHB_WRITE

 ##1 DUT.ahb_subordinate_wdata[0][3:0] == 4'h1

);
Figure 3: Data tagging assumption and cover property example for AHB write data of manager 0 to subordinate 0

Step 2: First proof - Basic checks

The formal tool gets started for the first time to run a proof on basic checks like accessibility and protocol

specific cover properties. This proof is based on the initial data structures in combination with unique patterns on

write and read data ports of managers and subordinates. Previously implemented SVA cover properties are applied

to each identified communication path by using a generate loop with respect to the extracted design constraints.

Target of the first proof is to show the evidence or absence of formal traces to get data through the interconnect

or to check e.g. if the AHB PSEL signal can be asserted, de-asserted and toggled. The cover property in Figure 3

checks whether the unique data from manager 0 can be observed in any of the subordinates.

Step 3: Analyze traces and extract results

In this step all covered and uncovered traces are analyzed by a Python logfile parser which checks the

proof report of the formal tool. Based on these results the initial data structures get updated with the extracted

behaviour from the traces of the first proof. All results are stored in a new SystemVerilog package, which can be

picked up by the next processing step. Whenever a trace is available, it implies that a design behaviour is possible

and the formal tools provides at least one evidence which input stimuli are required to reach the defined target

state.

Step 4: Second proof - Memory map extraction

This second proof is again fully based on formal cover traces. With the help of dedicated cover properties

and the already extracted design behaviour, it is possible to detect every start and end address of the interconnect

memory map. We even support the extraction of multiple address windows per subordinate. Figure 4 shows how

such a cover property looks like to extract a single address window. The principle to extract the start address is

based on the assumption that there must be an address ADDR_START where the interconnect forwards a

transaction from manager M to subordinate S, but when address ADDR_START-1 is used the transaction does

not get forwarded. The same argument applies to the end of an address windows with ADDR_END and

4

ADDR_END+1 to extract for the end address of an address window. Whenever the formal tool is capable to

generate such a trace, it contains information about the start and end address, which can be post-processed in the

next step.

cover_address_map_single_window : cover property (

 @(posedge clk) disable iff (!rstn)

 // Cycle 0

 // - Transaction from manager m to subordinate s allowed.

 // - Formal tool can use any address.

 `AHB_WRITE_ADDR_PHASE_ALLOWED(m, s)

 ##1

 // Cycle 1

 // - Address is decremented by 1

 // - Data of previous transaction gets routed through correctly.

 // - Transaction from manager n to subordinate s restricted.

 DUT.ahb_manager_addr[m] == $past(DUT.ahb_manager_addr[m]) - 1 &&

 `AHB_WRITE_DATA_PHASE(m, s) &&

 `AHB_WRITE_ADDR_PHASE_RESTRICTED(m, s)

 ##1

 // Cycle 2 (Just set back address to initial address)

 DUT.ahb_manager_addr[m] == $past(DUT.ahb_manager_addr[m]) + 1

 ##1

 // Cycle 3

 // - Transaction from manager m to subordinate s allowed.

 // - Address is higher as previous address

 `AHB_WRITE_ADDR_PHASE_ALLOWED(m, s) &&

 DUT.ahb_manager_addr[m] > $past(DUT.ahb_manager_addr[m])

 ##1

 // Cycle 4

 // - Data of previous transaction gets routed through correctly.

 // - Transaction by manager m to subordinate p/s restricted.

 // - Address is incremented by 1

 DUT.ahb_manager_addr[m] == $past(DUT.ahb_manager_addr[m]) + 1

 `AHB_WRITE_DATA_PHASE(m, s) &&

 `WR_TRANSACTION_RESTRICTED(m, s)

);
Figure 4: Cover property example to extract a single address window

Step 5: Analyze memory map traces and extract memory map

All covered and uncovered traces of the memory map extraction proof are analyzed and post-processed

in this step to detect if there is a single address window or multiple address windows available to access a certain

subordinate. This is implemented by executing tool specific TCL commands to analyze formal traces.

Step 6: Third proof - Verify memory map

The extracted memory map gets fully verified with the help of already existing properties to verify all

kinds of AHB transactions. For every address within the extracted ranges we check that read and write access is

going through the interconnect according to the protocol specification. Based on the numbers of possible

communication paths this step might take several hours to complete. We check e.g. that protocol specific signals

like the AHB burst size get always routed through the interconnect to a subordinate whenever a valid address is

used to initiate the AHB transaction.

Step 7: Report creation

5

The report creation is based on all previously collected data and writes out a single text based report

which can be used by design and verification engineers to compare it against the interconnect specifications. A

lightweight filter mechanism is used to detect bogus results by combining all extracted checks.

III. EXEMPLARY DESIGN UNDER TEST

The exemplary DUT is an AHB interconnect with a total number of 10 AHB managers and 11 AHB

ports. Every port can handle up to two AHB subordinates. Figure 5 shows the DUT as part of the testbench

toplevel. All interfaces are connected to AHB ABVIPs. Four SVA modules are instantiated to implement

assumptions, cover properties and assertions. Splitting the basic checks, the memory map extraction and memory

map verification allows to start separate proofs in the used FPV tool.

Testbench Toplevel

AHB Interconnect

Manager

Interface 0

AHB Port 0

Subordinate 0

Access Rights

&

Memory Map

Subordinate 1

AHB Port ...

Subordinate 0

Subordinate 1

AHB Port 10

Subordinate 0

Subordinate 1

Manager

Interface 1

Manager

Interface 2

Manager

Interface 9

Manager

Interface 8

Manager

Interface ...

Manager 0

ABVIP

Manager 1

ABVIP

Manager 2

ABVIP

Manager ...

ABVIP

Manager 8

ABVIP

Manager 9

ABVIP

P0 S0 ABVIP

P0 S1 ABVIP

Px S0 ABVIP

Px S1 ABVIP

P10 S0 ABVIP

P10 S1 ABVIP

SVA Module 0

Assumptions

SVA Module 1

Basic Checks

SVA Module 2

Extract Memory

Map

SVA Module 3

Memory Map

Verification

Figure 5: FPV testbench toplevel including DUT, ABVIPs and SVA modules

IV. RESULTS

A. Control Menu

The entire flow gets controlled by a Python script and can be started using a console menu depicted in

Figure 6 either by executing it step by step for debugging or all steps at once. An additional option 0 got added

to reset everything into the initial state.

Figure 6: Console menu to start the design behaviour extraction using FPV

6

B. Number of Properties

The total number of properties which gets used during the entire flow is shown in Table 1. The 21

assertions in the global assumption module are used to ensure that no other data tags are used, which might be

introduced from somewhere inside the DUT. This ensures that the data originating at a specific manager or

subordinate is unique. In addition the ABVIPs include almost 700 assumptions and 2000 cover properties to ensure

that all transactions are compliant with the AHB standard. All numbers will dynamically change with respect to

the DUT under consideration.

Table 1: Number of properties per SVA module

Module Assumptions Cover Properties Assertions

Global Assumptions (Data Tagging) 32 - 21

Basic Checks - 594 -

Memory Map Extraction - 200 -

Memory Map Verification 14 20 330

 AHB ABVIP Managers 390 820 10

AHB ABVIP Subordinates 286 1056 -

Total 722 2690 361

C. Runtime

The total runtime of the flow for the DUT without re-using any cached data is around 3 hours like shown

in Table 2. The basic checks are converging after just 3 minutes, as just low complexity cover properties are used.

The memory map extraction takes around 15 minutes and the exhaustive memory map verification runs for 2:45

hours. The runtime of the third proof is highly related to the number of extracted address windows.

Table 2: Runtime of all proofs

Proof # Runtime [h:mm]

Proof 1: Basic Checks 0:03

Proof 2: Memory Map Extraction 0:15

Proof 3: Memory Map Verification 2:45

Total 3:03

D. Extracted Access Rights

Initially the access rights are assumed to be read/write (RW) for all possible connections and they will

be refined based on the results of the first formal proof. Figure 7 shows the initial assumption matrix which got

generated for all possible connections. Figure 8 shows the updated matrix after the first proof got analyzed. Port

P5, P7, P8 and P9 are not accessible at all. The only ports where the second subordinate is fully accessible are P0

and P6. Based on the automatically extracted information, that – due to underlying formal proofs – is fully correct,

a designer can compactly assess whether this behaviour is intended or not. There is no manual effort required to

gather these information.

Figure 7: Initially assumed access rights (RW=read/write)

7

Figure 8: Extracted access rights (RW=read/write, WO=write only, NA = not accessible)

E. Extracted protocol specific behaviour

As mentioned in the previous chapters we have implemented cover properties for protocol specific

signals to gain more insights why certain communication paths are not accessible. Therefore, we selected three

important AHB signals which are crucial to establish a communication between manager and subordinate: PSEL,

HREADY and TRANS. Figure 9 exemplary shows the TRANS and HREADY behaviour by comparing the initial

assumption with the extracted behaviour. Ports P7, P8 and P9 are not accessible because the HREADY signal gets

stuck at 0, whereas P5 is not accessible due to a stuck at idle of the TRANS signal.

Figure 9: Extracted AHB TRANS / HREADY behaviour (initial assumption left, extracted results right)

F. Memory Map Extraction

The memory map extraction gets executed only for connections where the basic checks ensure that the

access is possible to optimize the runtime. Figure 10 shows the extracted memory map for all ports and

subordinates. For most of the subordinates there exists just a single address window, only for port P0 and

subordinate S1 there are two address windows. After passing this over to the design team of the interconnect IP

we got the feedback that several unexpected issues are unveiled in the results which are not intended caused by

wrong settings:

• The first address window of port P0, subordinate S0 with the address 32’h0000_0000 to 32’h0000_01FF

is not expected and is a potential security risk, as it might expose registers / data which shall be not

reachable.

• Port 5 is expected to be reachable, but a bug in the AHB TRANS logic prevents the access.

8

G. Memory Map Verification

The final memory map verification is based on assertions and checks that all extracted communication

paths and address windows can be used to initiate a valid AHB write and read transaction. The final report contains

a single line per check, for instance that the AHB write access to all subordinates of port P0 is possible. One design

bug got discovered by these checks as the extracted address from any manager to port P0 subordinate S1 is not

expected to have two address windows.

Figure 10: Extracted memory map for all ports and subordinates (NO_ADDR is equal to 32’hFFFF_FFFF)

H. Limitations

The proposed approach is currently limited to AHB interfaces. Adapting it to additional standard protocol

interfaces like AXI is under development. The number of possible address windows per subordinate is currently

limited to 2, but can be scaled with a drawback of a runtime penalty. The total runtime might get critical for a

higher number of managers, subordinates or accessible address windows as the time for formal proofs increases

exponentially. For more complex designs a well-defined abstraction and black boxing strategy must be in place

to deal with a possible state space explosion.

V. SUMMARY

In this paper we presented a fully automized flow to extract the design behaviour of an AHB interconnect

by taking advantage of formal traces. The flow only requires the DUT and testbench toplevel as inputs. No

specifications are needed. In seven steps we extracted the basic connectivity matrix, protocol specific behaviour

and a full memory map. In a final step the resulting memory maps gets exhaustively verified to validate the

extracted results. For the given example, it takes around 3 hours to execute the flow and multiple design bugs got

unveiled. The flow can easily be re-started for new design releases. Based on the results we plan to strengthen the

usage of FPV for design behaviour extraction on more complex designs.

VI. REFERENCES

[1] D. Y. H. P. M. Farimah Farahmandi, System-on-Chip Security, Springer, 2020.

[2] H. Foster, "Functional Verification Study," Wilson Research Group, 2022.

[3] Jan Hahlbeck, Steffen Löbel, Chandana G. P., "Towards a Hybrid Verification Environment for Signal

Processing SoCs," in DVCon Europe, 2023.

[4] Erik Seligman, Tom Schubert, M.V. Achutha Kiran Kumar, Formal Verification: An Essential Toolkit for

Modern VLSI Design, Morgan Kaufmann, 2023.

[5] Cadence, "Jasper FPV App," [Online]. Available: https://www.cadence.com/en_US/home/tools/system-

design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-

verification-app.html. [Accessed June 2024].

[6] ARM, "AMBA AHB Protocol Specification," 2021. [Online]. Available:

https://developer.arm.com/documentation/ihi0033/latest/. [Accessed 26 03 2024].

