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Abstract—Power aware design and verification are important requirements of the modern system on chip flow. 

With the proliferation of free and open-source design and verification tools, power aware simulation is still only 

supported with commercial simulators. To enable power aware simulation with an open-source toolchain, a framework 

is introduced to enable design and verification engineers to specify power intent and run power aware simulation using 

Python and Cocotb. The framework implements power aware specifications with a Python frontend using popular and 

easy language to define and drive power aware intent. The framework also integrates with Yosys to extract design 

information and Cocotb to implement power aware semantics. 
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I.  INTRODUCTION 

Power aware (PA) simulation is an essential part of the design and verification flow, as processing power and 

battery life are not only important but also conflicting requirements. The design and verification of low power 

system on chip (SOC) have gone through major improvements and innovations over the past few decades. As 

design density increases exponentially and technology dimensions get smaller, the power dissipation increases 

drastically, leading to cooling and reliability problems. For battery-powered devices, the requirement of adding 

more features and increasing the chip frequency results in increasing the power consumption which results in 

shorter battery lifetime. As a result, the power budget became one of the most important concerns along with cost, 

area, and timing. 

A. Power aware techniques 

Clock gating and multi-voltage techniques are the most popular techniques developed to address power 

consumption. Clock gating is turning off clocks when blocks are not in use. Multi-voltage design introduced 

multiple variants depending on power budget requirements: 

• Static voltage scaling (SVS) uses different blocks operating on fixed different voltages depending on 

functionality and performance requirements.  

• Dynamic voltage and frequency scaling (DVFS) enables each block to operate on a different voltage and 

frequency depending on load and performance requirements. 

B. Unified power format 

Unified power format (UPF) [1] is the de-facto standard to specify power intent. It is interoperable and 

supported by commercial tools. UPF specifies power aware semantics by defining power domains, ports, and 

nets. It also defines power blocks such as isolation, retention, and power switches. Beside PA simulations, UPF is 

used by synthesizers for power elements insertion based on technology-specific libraries. 

C. Cocotb Library 

Coroutine based co-simulation testbench (Cocotb) [2] is a concurrent coroutine library to enable writing 

testbenches for Verilog and VHDL designs in Python. Cocotb is simulator agnostic and supports both commercial 

and open-source simulators by implementing a C++/Python layer over native interfaces like Verilog programming 

interface (VPI). As Cocotb only provides access to design signals, there have been efforts to implement functional 

verification features on top of Cocotb. pyuvm [3] implements the universal verification methodology (UVM) class 

library allowing reusable verification components with Cocotb. In [4], authors implemented Cocotb-coverage to 

add coverage and randomization semantics such as features specified in Systemverilog language manual [5]. In [6], 

authors implemented a fault injection framework using Cocotb to evaluate fault injection policies. 
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D. Yosys Synthesizer 

Yosys [7] is an open-source Verilog synthesizer that generates a generic or implementation netlist based on 

technology-specific libraries. Yosys provides a command line interface to run synthesis phases. Also, it provides 

Python bindings to enable native integration. 

E. Cocotb Power Aware Simulation Framework 

Currently, UPF is only supported with commercial simulators which leaves a gap in the open-source design and 

verification flow. In this work, Cocotb power aware simulation (CPAS) framework is developed to specify power 

intent and run PA simulations using Python. The framework implements a UPF frontend to process UPF commands 

and uses Yosys synthesizer to extract information required for PA simulations. The advantage of CPAS, it enables 

design and verification engineers to run PA simulations with free open-source toolchain (Python, Cocotb, iverilog, 

Yosys) enabling prototyping, development, and verification of power intent. The framework also enables 

integration with Python standard library and user packages enabling innovative techniques for processing UPF or 

debugging PA simulations. 

II. CPAS IMPLEMENTATION 

The CPAS framework leverages open-source tools Yosys and Cocotb to enable PA simulations with Python. 

The framework implements three engines: Yosys engine, power engine, and Cocotb engine shown in 

 Figure 1. The framework takes the following inputs: Cocotb power test, Python power specifications and design 

files. And it generates text logs to trace the power nets, ports, domains, isolation, retention, and power switch 

elements.  

The modular architecture enables Yosys and Cocotb engines to abstract the details of the underlying tools. The 

power engine encapsulates all power aware semantics. This enables easy development and modifications. For 

example, the power engine can be modified for a newer UPF version while keeping the other engines intact. 

 

 Figure 1 CPAS architecture. 

A. Power Engine 

The power engine parses Python-based power specifications and calculates domains state when power ports or 

power switch control signals change. It also triggers Cocotb engine to drive corruption, isolation, and retention 

semantics. The engine supports the following UPF 1.0 commands: 

• set_design_top 

• set_scope 

• create_supply_net 

• create_supply_port 

• connect_supply_net 

• create_power_switch 

• create_power_domain 

• set_domain_supply_net 

• set_retention 

• set_retention_control 

• set_isolation 

• set_isolation_control 
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Beside the power intent commands, there are two commands to control supply ports state: 

• supply_on 

• supply_off 

B. Yosys Engine 

Yosys engine is needed to extract important information required for domain corruption, retention, and isolation. 

The engine calls Yosys using the Python bindings to extract the following information: 

•  Synthesizable flip-flops 

•  Port direction: required as Cocotb information model does not support port direction. 

C. Cocotb Engine 

Cocotb engine is the core controller of CPAS framework as it coordinates with Yosys and power engines to 

monitor signals and use force and release to implement power aware semantics. 

D. Use Model 

CPAS can be integrated with a Cocotb test using the following steps: 

1. Define CPAS Python power intent. 

2. Create CPAS instance. 

3. Use supply_on/supply_off to drive pad voltage changes or control signals to drive isolation, retention, 

and power switches. 

 

The power intent method defines power domains, nets, ports, and other power elements using power engine 

APIs the same way TCL UPF commands are used. 

 
def power_intent(pe): 

  top_pd = pe.create_power_domain("top_pd", include_scope=True) 
  pe.create_supply_port("VDD_PORT", top_pd) 
  pe.create_supply_net("VDD", top_pd) 
  pe.set_domain_supply_net(top_pd, top_pd.VDD, top_pd.VSS) 
  pe.connect_supply_net(top_pd.VDD, [top_pd.VDD_PORT]) 

  

Then, CPAS initialization interface requires design top, testbench top, list of design RTL and the power intent 

method defined above. 

cpas = CPAS( design_top = top.dut, top = top, rtl_source = verilog_sources, power_intent = power_intent) 
 

The power test can drive the control signals, or call supply_on/supply_off to change any port state and trigger 

power aware semantic. 

E. Possible Applications 

As CPAS uses Cocotb as an execution environment, a typical use case is enabling PA simulations with a 

verification environment already using Cocotb. Another use case is creating a small CPAS testcase for 

prototyping and experimenting with power topology and power controller logic. Also, In the future, CPAS could 

work as a backend to generate UPF files from specifications, graphical user interface or translated from another 

format such as Excel sheets, or JSON. 

III. RESULTS 

The results show CPAS examples including test stimulus, generated messages, and waveform for domain 

corruption, retention, isolation, and power switch scenarios. The block diagram in Figure 2 shows simple design 

including three blocks (U1, U2, and U3) and power aware elements used to implement the power intent.  
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 Figure 2 Sample power design. 

The waveform in Figure 3 shows signal values of ports and flip-flops with markers at the start and end of 

power scenarios. 

 

Figure 3 Power aware scenarios waveform. 

A. Power Domain 

Domain top_pd is created by create_power_domain and supply nets are connected in top_pd domain with 

set_domain_supply_net. 

  pe.set_design_top("top/dut") 
  pe.set_scope("") 
 
  top_pd = pe.create_power_domain("top_pd", include_scope=True) 
 
  pe.create_supply_port("VDD_PORT", top_pd) 
  pe.create_supply_port("VSS_PORT", top_pd) 
  pe.create_supply_net("VDD", top_pd) 
  pe.create_supply_net("VSS", top_pd) 
 
  pe.set_domain_supply_net(top_pd, top_pd.VDD, top_pd.VSS) 
 
  pe.connect_supply_net(top_pd.VDD, [top_pd.VDD_PORT]) 
  pe.connect_supply_net(top_pd.VSS, [top_pd.VSS_PORT])  

To trigger domain corruption, Cocotb test calls supply_off on top_pd/VDD_PORT to turn off the power port. 

The power engine recalculates top_pd state and other domains directly and indirectly connected to port 

VDD_PORT. 
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cpas.power_engine.supply_on("top_pd/VDD_PORT", 1) 
cpas.power_engine.supply_on("top_pd/VSS_PORT", 1) 
... 
cpas.power_engine.supply_off("top_pd/VDD_PORT")  
During simulation, CPAS prints messages to log power events such as domain state change, corruption, 

retention, isolation, and power switch activity. Messages are printed when domain u1_pd changes from normal to 

corrupt after VDD goes to off. As domain u1_pd goes to corrupt, it is expected that flip-flops and connected nets 

under u1_pd will be corrupted. Figure 3, between markers A and B, shows flip-flop r1 and connected net 

corruption inside U1 instance. Note that top_pd and u3_pd also change to corrupt state as they are connected to 

top_pd/VDD_PORT. 

PAEngine: Network update: top_pd.VDD_PORT --> top_pd.VDD_PORT to (<POWERSTATE.OFF: 2>, 0) 
PAEngine: Network update: top_pd.VDD --> u1_pd.VDD_PORT to (<POWERSTATE.OFF: 2>, 0) 
PAEngine: Network update: u1_pd.VDD_PORT --> u1_pd.VDD to (<POWERSTATE.OFF: 2>, 0) 
PAEngine: Update Domain top_pd to vdd: (<POWERSTATE.OFF: 2>, 0) gnd:(<POWERSTATE.FULL_ON: 1>, 0) simstate 
SIMSTATE.CORRUPT 
Cocotb:  corrupt domain top_pd with scope top.dut signals: [ModifiableObject(top.dut.r1)]  

B. Retention 

For retention scenario, set_retention and set_retention_control methods are used to define retention policy and 

control signals for domain u1_pd. 

ret = pe.set_retention( 
  name="u1_ret", 
  domain=u1_pd, 
  retention_power_net=top_pd.VDD 
) 
 
pe.set_retention_control(ret, 
  domain=u1_pd, 
  save_signal=("m_pwr_ctl/save_signal", power_engine.RETTYPE.posedge), 
  restore_signal=("m_pwr_ctl/restore_signal", power_engine.RETTYPE.posedge), 
)  
To trigger retention for flip-flops in domain u1_pd, Cocotb test drives positive edge on save and restore signals 

to control retention during domain u1_pd corruption. 

# retain value 
top.dut.m_pwr_ctl.save_signal.value = 1 
... 
top.dut.m_pwr_ctl.save_signal.value = 0 
 
cpas.power_engine.supply_off("u1_pd/VDD_PORT") 
# During retention 
cpas.power_engine.supply_on("u1_pd/VDD_PORT",1) 
 
# restore old value  
top.dut.m_pwr_ctl.restore_signal.value = 1 
... 
top.dut.m_pwr_ctl.restore_signal.value = 0  
Cocotb engine prints the following messages to show U1.r1 is saved and restored according to the retention 

controller signals. Figure 3, between markers C and D, shows flip-flop U1.r1 corrupted on domain collapse then 

restored back to 0. After one clock cycle, it gets assigned to 1 during the normal operation of the flip-flop at 

marker E. 
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Cocotb: RET Save domain u1_pd with scope top.dut.U1 signals: [ModifiableObject(top.dut.U1.r1)] 
 
PAEngine: Update Domain u1_pd to vdd: (<POWERSTATE.OFF: 2>, 0) gnd:(<POWERSTATE.FULL_ON: 1>, 1) simstate 
SIMSTATE.CORRUPT 
 
PAEngine: Update Domain u1_pd to vdd: (<POWERSTATE.FULL_ON: 1>, 1) gnd:(<POWERSTATE.FULL_ON: 1>, 1) simstate 
SIMSTATE.NORMAL 
 
Cocotb: RET RESTORE domain u1_pd with scope top.dut.U1 signals: [ModifiableObject(top.dut.U1.r1)]  

C. Isolation 

For isolation scenario, set_isolation and set_isolation_control methods are used to create isolation element and 

connect isolation control signal. 

iso = pe.set_isolation(name="u1_iso", 
  domain=u1_pd, 
  isolation_power_net=top_pd.VDD, 
  clamp_value=power_engine.CLAMPVALUE.V0) 
 
pe.set_isolation_control(iso, 
  domain=u1_pd, 
  isolation_signal="m_pwr_ctl/iso_signal", 
  isolation_sense=power_engine.ISOSENSE.HIGH)  

To control isolation, Cocotb test asserts the isolation signal by changing iso_signal before calling supply_off 

and de-asserts iso_signal after the supply is back to on again. 

top.dut.m_pwr_ctl.iso_signal.value = 1 
cpas.power_engine.supply_off("u1_pd/VDD_PORT") 
... 
cpas.power_engine.supply_on("u1_pd/VDD_PORT",1) 
top.dut.m_pwr_ctl.iso_signal.value = 0  

Cocotb engine prints messages for the isolation of output port U1.out before turning off u1_pd. The isolation 

is shown in Figure 3 between marker F and G, where U1.out output port is isolated to 0 stopping x-propagation 

from U1.r1 to U1.out port. 

Cocotb: ISO domain u1_pd with scope top.dut.U1 signals: [ModifiableObject(top.dut.U1.out)] set 

WARNING PAEngine: Update Domain u1_pd to vdd: (<POWERSTATE.OFF: 2>, 0) gnd:(<POWERSTATE.FULL_ON: 1>, 1) 
simstate SIMSTATE.CORRUPT 

PAEngine: Update Domain u1_pd to vdd: (<POWERSTATE.FULL_ON: 1>, 1) gnd:(<POWERSTATE.FULL_ON: 1>, 1) simstate 
SIMSTATE.NORMAL 

Cocotb DEISO domain u1_pd with scope top.dut.U1 signals: [ModifiableObject(top.dut.U1.out)] 
 

D. Power switch 

For power switch scenario, create_power_switch is used to define power switch in top_pd domain driving 

supply net u3_vdd from power port top_pd.VDD. 

sw = pe.create_power_switch( 
    name="u1_pwr_sw", 
    domain=top_pd, 
    output_supply_port=u3_vdd, 
    input_supply_port=[ 
        ("my_sw_input_port", top_pd.VDD) 
    ], 
    control_port=[ 
        ("my_sw_control_port","m_pwr_ctl/pwr_sw") 
    ],)  
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Cocotb test can de-assert and assert pwr_sw control signal to turn on and off the power switch which affects 

u3_pd domain. 

top.dut.m_pwr_ctl.pwr_sw.value = 0 
... 
top.dut.m_pwr_ctl.pwr_sw.value = 1  

Cocotb engine prints messages about domain u3_pd changing to corrupt and back to normal again when the 

switch control signal is de-asserted and asserted. Between markers H and I in Figure 3, The waveform shows the 

corruption of u3_pd domain while the switch is turned off. 

PAEngine: Updating SWITCH State  to (<POWERSTATE.OFF: 2>, 0) output port  Name: VDD -- Type: SupplyNet -- conn: 
VDD_PORT 
 
PAEngine: Update Domain u3_pd to vdd: (<POWERSTATE.OFF: 2>, 0) gnd:(<POWERSTATE.FULL_ON: 1>, 1) simstate 
SIMSTATE.CORRUPT 
 
PAEngine: Updating SWITCH State  to (<POWERSTATE.FULL_ON: 1>, 1) output port  Name: VDD -- Type: SupplyNet -- 
conn: VDD_PORT 
 
PAEngine: Update Domain u3_pd to vdd: (<POWERSTATE.FULL_ON: 1>, 1) gnd:(<POWERSTATE.FULL_ON: 1>, 1) simstate 
SIMSTATE.NORMAL  

IV. FUTURE IMPROVEMENTS 

The main limitation of CPAS that it currently supports UPF 1.0 commands. That said, due to the modular 

pythonic architecture, new versions can be supported in the power engine keeping other engines unchanged. As 

CPAS provides a framework to describe UPF semantics in Python, UPF files can be parsed or generated from 

CPAS Python specifications. Also, it is possible to generate CPAS specification from graphical user interface. As 

a result, the following future improvements are planned: 

• Implement newest UPF commands. 

• Implement graphical user interface to generate Python CPAS specification. 

• Implement UPF-to-CPAS parser. 

• Implement CPAS-to-UPF generator. 

• Add power aware instrumentation for VCD logging and visualization of power events. 

• Support UPF level shifters. 

V. CONCLUSION 

Power aware design and verification are essential tasks of the modern SOC design flow. That said, UPF is the 

industry standard for PA simulation and only supported by commercial simulators leaving a gap in open-source 

design and verification flow.  

The proposed CPAS framework implements power intent specifications using Python and integrates with 

Cocotb to create power aware tests and verify power controller logic. The results show power aware specifications 

for corruption, isolation, retention, and power switch. The results also show messages and waveform for typical 

power aware scenarios.  

CPAS enables integration of PA simulation into Cocotb tests or prototyping power design purely in Python. As 

CPAS is developed in Python, it enables access to the Python standard library and user-defined packages for 

advanced processing and visualization.  
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